

# **China Harbour Engineering Company Limited**

Contract No. HY/2010/02

# Hong Kong – Zhuhai – Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works

Monthly EM&A Report for March 2015

[04/2015]

|                                   | Name             | Signature |
|-----------------------------------|------------------|-----------|
| Prepared & Checked:               | Y T Tang         | Constain  |
| Reviewed, Approved and Certified: | Echo Leong (ETL) | Schokeon  |

| Version: | Rev. 0 | Date: | 16 April 2015 |
|----------|--------|-------|---------------|
|----------|--------|-------|---------------|

#### **Disclaimer**

This report is prepared for China Harbour Engineering Company Limited and is given for its sole benefit in relation to and pursuant to Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities-Reclamation Works and may not be disclosed to, quoted to or relied upon by any person other than China Harbour Engineering Company Limited without our prior written consent. No person (other than China Harbour Engineering Company Limited) into whose possession a copy of this report comes may rely on this report without our express written consent and China Harbour Engineering Company Limited may not rely on it for any purpose other than as described above.

AECOM Asia Co. Ltd.

15/F, Grand Central Plaza, Tower 1, 138 Shatin Rural Committee Road, Shatin, NT, Hong Kong Tel: (852) 3922 9000 Fax: (852) 2317 7609 www.aecom.com



Ref.: HYDHZMBEEM00\_0\_2884L.15 16 April 2015

Engineer's Representative Ove Arup & Partners Chief Resident Engineer's Office 5 Ying Hei Road, Tung Chung, Lantau Hong Kong By Fax (3698 5999) and By Post

Attention: Mr. Roger Marechal

Dear Sir,

Re: Agreement No. CE 48/2011 (EP)
Environmental Project Office for the
HZMB Hong Kong Link Road, HZMB Hong Kong Boundary Crossing Facilities,
and Tuen Mun-Chek Lap Kok Link – Investigation

Contract No. HY/2010/02 HZMB HKBCF – Reclamation Works Monthly Environmental Monitoring & Audit Report for March 2015

Reference is made to the Environmental Team's submission of the Monthly Environmental Monitoring & Audit Report for March 2015 (letter ref: 60249820/C/RMKY15041601 dated 16 April 2015) copied to us by E-mail on 16 April 2015.

We are pleased to inform you that we have no adverse comment on the captioned Monthly EM&A Report. We write to verify the captioned report in accordance with Condition 5.4 of EP-353/2009/H and Condition 4.4 of EP-354/2009/D (for TM-CLKL Southern Landfall Reclamation only).

Thank you very much for your kind attention and please do not hesitate to contact the undersigned should you have any queries.

Yours sincerely,

Raymond Dai

Independent Environmental Checker

Longuet

c.c. HyD Mr. Matthew Fung (By Fax: 3188 6614) HyD Mr. Wai-ping Lee (By Fax: 3188 6614) AECOM Ms. Echo Leong (By Fax: 2317 7609) CHEC Mr. Lim Kim Chuan (By Fax: 2578 0413)

Internal: DY, YH, SL, JM, ENPO Site

Q:\Projects\HYDHZMBEEM00\02\_Proj\_Mgt\02\_Corr\HYDHZMBEEM00\_0\_2884L.15.docx

## **TABLE OF CONTENTS**

|     |                                                                                                                                                            |                                                                                                                                                                                                                      | Page                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| EXE | ECUTIVE SUMMARY                                                                                                                                            |                                                                                                                                                                                                                      | 3                                      |
| 1   | INTRODUCTION                                                                                                                                               |                                                                                                                                                                                                                      | 5                                      |
|     | <ul><li>1.1 Background</li><li>1.2 Scope of Report</li><li>1.3 Project Organization</li><li>1.4 Summary of Const</li><li>1.5 Summary of EM&amp;A</li></ul> |                                                                                                                                                                                                                      | 5<br>5<br>6<br>6<br>7                  |
| 2   | AIR QUALITY MONITOR                                                                                                                                        | RING                                                                                                                                                                                                                 | 8                                      |
|     | 2.5 Monitoring Method                                                                                                                                      | nent<br>ins<br>eters, Frequency and Duration<br>lology<br>ule for the Reporting Month                                                                                                                                | 8<br>8<br>10<br>10<br>12<br>12         |
| 3   | NOISE MONITORING                                                                                                                                           |                                                                                                                                                                                                                      | 13                                     |
|     | 3.5 Monitoring Method                                                                                                                                      | nent<br>ins<br>eters, Frequency and Duration<br>lology<br>ule for the Reporting Month                                                                                                                                | 13<br>13<br>13<br>14<br>14<br>14<br>15 |
| 4   | WATER QUALITY MON                                                                                                                                          | ITORING                                                                                                                                                                                                              | 16                                     |
|     | <ul><li>4.4 Monitoring Locatio</li><li>4.5 Monitoring Method</li></ul>                                                                                     | nent<br>eters, Frequency and Duration<br>ins<br>lology<br>ule for the Reporting Month                                                                                                                                | 16<br>16<br>16<br>17<br>17<br>19       |
| 5   | DOLPHIN MONITORING                                                                                                                                         | 3                                                                                                                                                                                                                    | 23                                     |
|     | <ul><li>5.4 Monitoring Method</li><li>5.5 Monitoring Proced</li></ul>                                                                                      | nent<br>ncy and Conditions<br>dology and Location<br>ures<br>ule for the Reporting Month                                                                                                                             | 23<br>23<br>23<br>23<br>25<br>25<br>25 |
| 6   | ENVIRONMENTAL SITE                                                                                                                                         | E INSPECTION AND AUDIT                                                                                                                                                                                               | 29                                     |
|     | <ul><li>6.3 Environmental Lice</li><li>6.4 Implementation State</li><li>6.5 Summary of Exceed</li></ul>                                                    | d and Liquid Waste Management Status enses and Permits atus of Environmental Mitigation Measures edances of the Environmental Quality Performance Limit blaints, Notification of Summons and Successful Prosecutions | 29<br>31<br>32<br>32<br>34<br>34       |
| 7   | FUTURE KEY ISSUES                                                                                                                                          |                                                                                                                                                                                                                      | 36                                     |
|     | 7.3 Key Issues for the                                                                                                                                     | ramme for the Coming Months<br>Coming Month<br>ule for the Coming Month                                                                                                                                              | 36<br>37<br>37                         |

### **List of Tables**

| Table 1.1 | Contact Information of Key Personnel                                                   |
|-----------|----------------------------------------------------------------------------------------|
| Table 2.1 | Air Quality Monitoring Equipment                                                       |
| Table 2.2 | Locations of Impact Air Quality Monitoring Stations                                    |
| Table 2.3 | Air Quality Monitoring Parameters, Frequency and Duration                              |
| Table 2.4 | Summary of 1-hour TSP Monitoring Results in the Reporting Period                       |
| Table 2.5 | Summary of 24-hour TSP Monitoring Results in the Reporting Period                      |
| Table 3.1 | Noise Monitoring Equipment                                                             |
| Table 3.2 | Locations of Impact Noise Monitoring Stations                                          |
| Table 3.3 | Noise Monitoring Parameters, Frequency and Duration                                    |
| Table 3.4 | Summary of Construction Noise Monitoring Results in the Reporting Period               |
| Table 4.1 | Water Quality Monitoring Equipment                                                     |
| Table 4.2 | Impact Water Quality Monitoring Parameters and Frequency                               |
| Table 4.3 | Impact Water Quality Monitoring Stations                                               |
| Table 4.4 | Laboratory Analysis for Suspended Solids                                               |
| Table 4.5 | Summary of Water Quality Exceedances                                                   |
| Table 5.1 | Dolphin Monitoring Equipment                                                           |
| Table 5.2 | Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD)                |
| Table 5.3 | Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State |
| Table 5.4 | Impact Dolphin Monitoring Survey Details March 2015                                    |
| Table 5.5 | The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^ |
| Table 6.1 | Summary of Environmental Licensing and Permit Status                                   |
|           |                                                                                        |

## **Figures**

| Figure 1 | General Project Layout Plan                                          |
|----------|----------------------------------------------------------------------|
| Figure 2 | Impact Air Quality and Noise Monitoring Stations and Wind Station    |
| Figure 3 | Impact Water Quality Monitoring Stations                             |
| Figure 4 | Impact Dolphin Monitoring Line Transect Layout Map                   |
| Figure 5 | Impact Dolphin Monitoring Survey Efforts and Sightings in March 2015 |
| Figure 6 | Environmental Complaint Handling Procedures                          |

Project Organization for Environmental Works

## **List of Appendices**

Appendix A

| Appendix B | Three Month Rolling Construction Programmes                                               |
|------------|-------------------------------------------------------------------------------------------|
| Appendix C | Implementation Schedule of Environmental Mitigation Measures (EMIS)                       |
| Appendix D | Summary of Action and Limit Levels                                                        |
| Appendix E | Calibration Certificates of Monitoring Equipments                                         |
| Appendix F | EM&A Monitoring Schedules                                                                 |
| Appendix G | Impact Air Quality Monitoring Results and their Graphical Presentation                    |
| Appendix H | Meteorological Data for Monitoring Periods on Monitoring Dates in March 2015              |
| Appendix I | Impact Construction Noise Monitoring Results and their Graphical Presentation             |
| Appendix J | Impact Water Quality Monitoring Results and their Graphical Presentation                  |
| Appendix K | Impact Dolphin Monitoring Survey Sighting Summary                                         |
| Appendix L | Event Action Plan                                                                         |
| Appendix M | Monthly Summary of Waste Flow Table                                                       |
| Appendix N | Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful |
|            | Prosecutions                                                                              |



## **EXECUTIVE SUMMARY**

Contract No. HY/2010/02 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun - Chek Lap Kok Link (TMCLKL). It is a designated project and is governed by the current permits for the Project, i.e. the amended Environmental Permits (EPs) issued on 19 January 2015 (EP-353/2009/H) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).

Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).

China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.

ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the environmental monitoring and audit (EM&A) works.

The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016. The EM&A programme, including air quality, noise, water quality and dolphin monitoring and environmental site inspections, was commenced on 12 March 2012.

This report documents the findings of EM&A works conducted in the period between 1 and 31 March 2015. As informed by the Contractor, major activities in the reporting period were:-

### Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Conforming sloping seawalls
- Surcharge remove & laying
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

### Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

### A summary of monitoring and audit activities conducted in the reporting period is listed below:

24-hour Total Suspended Particulates (TSP) monitoring5 sessions1-hour TSP monitoring5 sessionsNoise monitoring5 sessionsImpact water quality monitoring13 sessionsImpact dolphin monitoring2 surveysJoint Environmental site inspection4 sessions

### **Breaches of Action and Limit Levels for Air Quality**

All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.



#### Breaches of Action and Limit Levels for Noise

For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.

### **Breaches of Action and Limit Levels for Water Quality**

For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month. After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.

#### **Impact Dolphin Monitoring**

A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.

Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d

#### Complaint, Notification of Summons and Successful Prosecution

As informed by the Contractor on 09 March 2015, there is an air quality complaint received on 06 March 2015. The complainant Mr. Fung requested for follow-up actions to be taken by relevant departments in response to his Complaint about sand and dust emission from 4-5 uncovered sand barges parking near the coastline of Tuen Mun, the complainant concerns about the health problems to residents as the sand is blown to their apartments. After investigation, there is no adequate information to conclude the observed impact is related to this Contract.

No notification of summons or prosecution was received in the reporting period

### **Reporting Change**

There was no reporting change required in the reporting period.

### **Future Key Issues**

Key issues to be considered in the coming month included:-

- Site runoff should be properly collected and treated prior to discharge;
- Minimize loss of sediment from filling works;
- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
- Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface run-off during rainstorm;
- Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
- Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission:
- Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
- Quieter powered mechanical equipment should be used;
- Provision of proper and effective noise control measures for operating equipment and machinery on-site, such as erection of movable noise barriers or enclosure for noisy plants;
- Closely check and replace the sound insulation materials regularly;
- Better scheduling of construction works to minimize noise nuisance;
- Properly store and label oil drums and chemical containers placed on site;
- Proper chemicals, chemical wastes and wastes management;
- Maintenance works should be carried out within roofed, paved and confined areas;
- Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
- Proper protection and regular inspection of existing trees, transplanted/retained trees.
- Control night-time lighting and glare by hooding all lights.



- Regular review and provide maintenance to dust control measures such as sprinkler system.

### 1 INTRODUCTION

### 1.1 Background

- 1.1.1 Contract No. HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities Reclamation Work (here below, known as "the Project") mainly comprises reclamation at the northeast of the Hong Kong International Airport of an area of about 130-hectare for the construction of an artificial island for the development of the Hong Kong Boundary Crossing Facilities (HKBCF), and about 19-hectare for the southern landfall of the Tuen Mun Chek Lap Kok Link (TMCLKL).
- 1.1.2 The environmental impact assessment (EIA) reports (Hong Kong Zhuhai Macao Bridge Hong Kong Boundary Crossing Facilities EIA Report (Register No. AEIAR-145/2009) (HKBCFEIA) and Tuen Mun Chek Lap Kok Link EIA Report (Register No. AEIAR-146/2009) (TMCLKLEIA), and their environmental monitoring and audit (EM&A) Manuals (original EM&A Manuals), for the Project were approved by Environmental Protection Department (EPD) in October 2009.
- 1.1.1 EPD subsequently issued the Environmental Permit (EP) for HKBCF in November 2009 (EP-353/2009) and the Variation of Environmental Permit (VEP) in June 2010 (EP-353/2009/A), November 2010 (EP-353/2009/B), November 2011 (EP-353/2009/C), March 2012 (EP-353/2009/D), October 2012 (EP-353/2009/E), April 2013 (EP-353/2009/F), August 2013 (EP-353/2009/G) and January 2015 (EP-353/2009/H). Similarly, EPD issued the Environmental Permit (EP) for TMCLKL in November 2009 (EP-354/2009) and the Variation of Environmental Permit (VEP) in December 2010 (EP-354/2009/A), January 2014 (EP-354/2009/B), December 2014 (EP-354/2009/C) and March 2015 (EP-354/2009/D).
- 1.1.2 The Project is a designated project and is governed by the current permits for the Project, i.e. the amended EPs issued on 19 January 2015 (EP-353/2009/H) and 13 March 2015 (EP-354/2009/D) (for TMCLKL Southern Landfall Reclamation only).
- 1.1.3 A Project Specific EM&A Manual, which included all project-relation contents from the original EM&A Manuals for the Project, was issued in May 2012.
- 1.1.4 Ove Arup & Partners Hong Kong Limited (Arup) was appointed by Highways Department (HyD) as the consultants for the design and construction assignment for the Project's reclamation works (i.e. the Engineer for the Project).
- 1.1.5 China Harbour Engineering Company Limited (CHEC) was awarded by HyD as the Contractor to undertake the construction work of the Project.
- 1.1.6 ENVIRON Hong Kong Ltd. was employed by HyD as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.
- 1.1.7 AECOM Asia Co. Ltd. (AECOM) was appointed by CHEC to undertake the role of Environmental Team for the Project for carrying out the EM&A works.
- 1.1.8 The construction phase of the Project under the EPs was commenced on 12 March 2012 and will be tentatively completed by early Year 2016.
- 1.1.9 According to the Project Specific EM&A Manual, there is a need of an EM&A programme including air quality, noise, water quality and dolphin monitoring and environmental site inspections. The EM&A programme of the Project commenced on 12 March 2012.

### 1.2 Scope of Report

1.2.1 This is the thirty-seventh monthly EM&A Report under the Contract No.HY/2010/02 Hong Kong-Zhuhai-Macao Bridge Hong Kong Boundary Crossing Facilities – Reclamation Works. This report presents a summary of the environmental monitoring and audit works, list of activities and mitigation measures proposed by the ET for the Project in March 2015.



## 1.3 Project Organization

1.3.1 The project organization structure is shown in Appendix A. The key personnel contact names and numbers are summarized in Table 1.1.

Table 1.1 Contact Information of Key Personnel

| Party                                                                   | Position                               | Name            | Telephone | Fax       |
|-------------------------------------------------------------------------|----------------------------------------|-----------------|-----------|-----------|
| Engineer's Representative (ER)  (Ove Arup & Partners Hong Kong Limited) | Chief Resident Engineer                | Roger Marechal  | 3698 5700 | 2698 5999 |
| IEC / ENPO                                                              | Independent<br>Environmental Checker   | Raymond Dai     | 3465 2888 | 3465 2899 |
| (ENVIRON Hong<br>Kong Limited)                                          | Environmental Project<br>Office Leader | Y. H. Hui       | 3465 2868 | 3465 2899 |
| Contractor (China Harbour                                               | Environmental Officer                  | Richard Ng      | 36932253  | 2578 0413 |
| `Engineering<br>Company Limited)                                        | 24-hour Hotline                        | Alan C.C. Yeung | 9448 0325 |           |
| ET  (AECOM Asia Company Limited)                                        | ET Leader                              | Echo Leong      | 3922 9280 | 2317 7609 |

### 1.4 Summary of Construction Works

- 1.4.1 The construction phase of the Project under the EP commenced on 12 March 2012.
- 1.4.2 As informed by the Contractor, details of the major works carried out in this reporting period are listed below:-

## Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Conforming sloping seawalls
- Surcharge remove & laying
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

### Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

- 1.4.3 The 3-month rolling construction programme of the Project is shown in Appendix B.
- 1.4.4 The general layout plan of the Project site showing the detailed works areas is shown in Figure 1.
- 1.4.5 The environmental mitigation measures implementation schedule are presented in Appendix C.

### 1.5 Summary of EM&A Programme Requirements

- 1.5.1 The EM&A programme required environmental monitoring for air quality, noise, water quality, marine ecology and environmental site inspections for air quality, noise, water quality, waste management, marine ecology, and landscape and visual impact. The EM&A requirements for each parameter described in the following sections include:-
  - All monitoring parameters;
  - Monitoring schedules for the reporting month and forthcoming month;
  - Action and Limit levels for all environmental parameters;
  - Event / Action Plan;
  - Environmental mitigation measures, as recommended in the Project EIA reports; and
  - Environmental requirement in contract documents.

## 2 AIR QUALITY MONITORING

### 2.1 Monitoring Requirements

2.1.1 In accordance with the Project Specific EM&A Manual, baseline 1-hour and 24-hour Total Suspended Particulates (TSP) levels at 4 air quality monitoring stations were established. Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was carried out for at least once every 6 days. The Action and Limit level of the air quality monitoring is provided in Appendix D.

### 2.2 Monitoring Equipment

2.2.1 24-hour TSP air quality monitoring was performed using High Volume Sampler (HVS) located at each designated monitoring station. The HVS meets all the requirements of the Project Specific EM&A Manual. Portable direct reading dust meters were used to carry out the 1-hour TSP monitoring. Brand and model of the equipment is given in Table 2.1.

Table 2.1 Air Quality Monitoring Equipment

| Equipment                                       | Brand and Model                                                                                                              |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Portable direct reading dust meter (1-hour TSP) | Sibata Digital Dust Monitor (Model No. LD-3 and LD-3B)                                                                       |
| High Volume Sampler<br>(24-hour TSP)            | Tisch Environmental Mass Flow Controlled Total<br>Suspended Particulate (TSP) High Volume Air Sampler<br>(Model No. TE-5170) |

### 2.3 Monitoring Locations

- 2.3.1 Monitoring locations AMS2 and AMS7 were set up at the proposed locations in accordance with Project Specific EM&A Manual. For AMS6 (Dragonair/CNAC (Group) Building), permission on setting up and carrying out impact monitoring works was sought, however, access to the premise has not been granted yet on this report issuing date. For monitoring location AMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact air quality monitoring was conducted at site boundary of the site office area in Works Area WA2 (AMS3B) respectively. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.2 It was observed that a tree near AMS3B may affect the wind flow around the HVS located at AMS3B. With no further comment received from IEC, the HVS at AMS3B has been relocated on 8 September 2014 to slightly more than 2 meters separation from it, measured horizontally. Same baseline and Action Level for air quality, as derived from the baseline monitoring data recorded at Ho Yu College, was adopted for this alternative air quality location.
- 2.3.3 Reference is made to ET's proposal of the omission of air monitoring station (AMS 6) dated on 1 November 2012 and EPD's letter dated on 19 November 2012 regarding the conditional approval of the proposed omission of air monitoring station (AMS 6) for Contract No. HY/2010/02. The aforesaid omission of Monitoring Station AMS6 is effective since 19 November 2012.
- 2.3.4 Reference is made to ET's proposal of relocation of air quality monitoring station (AMS7) dated on 2 February 2015, with no further comment received from IEC on 2 February 2015 and no objection received from EPD on 5 February 2015, the impact air quality monitoring station AMS7 (Hong Kong SkyCity Marriott Hotel) has been relocated to AMS7A (Chu Kong Air-Sea Union Transportation Company Limited) on 3 February 2015. Action Level for air quality, as derived from the baseline monitoring data recorded at Hong Kong SkyCity Marriott Hotel, was adopted for this alternative air quality location.



2.3.5 Figure 2 shows the locations of monitoring stations. Table 2.2 describes the details of the monitoring stations.

Table 2.2 Locations of Impact Air Quality Monitoring Stations

| Monitoring Station Location                                 |  | Description                          |  |
|-------------------------------------------------------------|--|--------------------------------------|--|
| AMS2 Tung Chung Development Pier                            |  | Rooftop of the premise               |  |
| AMS3B Site Boundary of Site Office Area at Works Area WA2   |  | On ground at the area boundary       |  |
| AMS6* Dragonair/CNAC (Green                                 |  | On ground at boundary of the premise |  |
| Chu Kong Air-Sea Union AMS7A Transportation Company Limited |  | On ground at boundary of the premise |  |

\*Remarks: Reference is made to EPD conditional approval of the omission of air monitoring station (AMS 6) for the project. The omission will be effective on 19 November 2012.

### 2.4 Monitoring Parameters, Frequency and Duration

2.4.1 Table 2.3 summarizes the monitoring parameters, frequency and duration of impact TSP monitoring.

Table 2.3 Air Quality Monitoring Parameters, Frequency and Duration

| Parameter   | Frequency and Duration                                              |  |  |
|-------------|---------------------------------------------------------------------|--|--|
| 1-hour TSP  | Three times every 6 days while the highest dust impact was expected |  |  |
| 24-hour TSP | Once every 6 days                                                   |  |  |

### 2.5 Monitoring Methodology

### 2.5.1 24-hour TSP Monitoring

- (a) The HVS was installed in the vicinity of the air sensitive receivers. The following criteria were considered in the installation of the HVS.
  - (i) A horizontal platform with appropriate support to secure the sampler against gusty wind was provided.
  - (ii) No two samplers should be placed less than 2 meters apart.
  - (iii) The distance between the HVS and any obstacles, such as buildings, was at least twice the height that the obstacle protrudes above the HVS.
  - (iv) A minimum of 2 meters separation from walls, parapets and penthouse for rooftop sampler.
  - (v) A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
  - (vi) No furnace or incinerator flues nearby.
  - (vii) Airflow around the sampler was unrestricted.
  - (viii) Permission was obtained to set up the samplers and access to the monitoring stations.
  - (ix) A secured supply of electricity was obtained to operate the samplers.
  - (x) The sampler was located more than 20 meters from any dripline.
  - (xi) Any wire fence and gate, required to protect the sampler, did not obstruct the monitoring process.
  - (xii) Flow control accuracy was kept within ±2.5% deviation over 24-hour sampling period.

## (b) Preparation of Filter Papers

- (i) Glass fibre filters, G810 were labelled and sufficient filters that were clean and without pinholes were selected.
- (ii) All filters were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.



(iii) All filter papers were prepared and analysed by ALS Technichem (HK) Pty Ltd., which is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes.

### (c) Field Monitoring

- (i) The power supply was checked to ensure the HVS works properly.
- (ii) The filter holder and the area surrounding the filter were cleaned.
- (iii) The filter holder was removed by loosening the four bolts and a new filter, with stamped number upward, on a supporting screen was aligned carefully.
- (iv) The filter was properly aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter.
- (v) The swing bolts were fastened to hold the filter holder down to the frame. The pressure applied was sufficient to avoid air leakage at the edges.
- (vi) Then the shelter lid was closed and was secured with the aluminum strip.
- (vii) The HVS was warmed-up for about 5 minutes to establish run-temperature conditions.
- (viii) A new flow rate record sheet was set into the flow recorder.
- On site temperature and atmospheric pressure readings were taken and the flow rate of the HVS was checked and adjusted at around 1.1 m³/min, and complied with the range specified in the updated EM&A Manual (i.e. 0.6-1.7 m³/min).
- (x) The programmable digital timer was set for a sampling period of 24 hrs, and the starting time, weather condition and the filter number were recorded.
- (xi) The initial elapsed time was recorded.
- (xii) At the end of sampling, on site temperature and atmospheric pressure readings were taken and the final flow rate of the HVS was checked and recorded.
- (xiii) The final elapsed time was recorded.
- (xiv) The sampled filter was removed carefully and folded in half length so that only surfaces with collected particulate matter were in contact.
- (xv) It was then placed in a clean plastic envelope and sealed.
- (xvi) All monitoring information was recorded on a standard data sheet.
- (xvii) Filters were then sent to ALS Technichem (HK) Pty Ltd. for analysis.

## (d) Maintenance and Calibration

- (i) The HVS and its accessories were maintained in good working condition, such as replacing motor brushes routinely and checking electrical wiring to ensure a continuous power supply.
- (ii) 5-point calibration of the HVS was conducted using TE-5025A Calibration Kit prior to the commencement of baseline monitoring. Bi-monthly 5-point calibration of the HVS will be carried out during impact monitoring.
- (iii) Calibration certificate of the HVSs are provided in Appendix E.

## 2.5.2 1-hour TSP Monitoring

## (a) Measuring Procedures

The measuring procedures of the 1-hour dust meter were in accordance with the Manufacturer's Instruction Manual as follows:-

- (i) Turn the power on.
- (ii) Close the air collecting opening cover.
- (iii) Push the "TIME SETTING" switch to [BG].
- (iv) Push "START/STOP" switch to perform background measurement for 6 seconds.
- (v) Turn the knob at SENSI ADJ position to insert the light scattering plate.
- (vi) Leave the equipment for 1 minute upon "SPAN CHECK" is indicated in the display.
- (vii) Push "START/STOP" switch to perform automatic sensitivity adjustment. This measurement takes 1 minute.
- (viii) Pull out the knob and return it to MEASURE position.
- (ix) Push the "TIME SETTING" switch the time set in the display to 3 hours.
- (x) Lower down the air collection opening cover.
- (xi) Push "START/STOP" switch to start measurement.

- (b) Maintenance and Calibration
  - (i) The 1-hour TSP meter was calibrated at 1-year intervals against a continuous particulate TEOM Monitor, Series 1400ab. Calibration certificates of the Laser Dust Monitors are provided in Appendix E.
  - (ii) 1-hour validation checking of the TSP meter against HVS is carried out on half-year basis at the air quality monitoring locations.

## 2.6 Monitoring Schedule for the Reporting Month

2.6.1 The schedule for air quality monitoring in March 2015 is provided in Appendix F.

#### 2.7 Results and Observations

2.7.1 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in Table 2.4 and 2.5 respectively. Detailed impact air quality monitoring results are presented in Appendix G.

Table 2.4 Summary of 1-hour TSP Monitoring Results in the Reporting Period

|       | Average (μg/m³) | Range (μg/m³) | Action Level<br>(μg/m³) | Limit Level<br>(μg/m³) |
|-------|-----------------|---------------|-------------------------|------------------------|
| AMS2  | 77              | 72-85         | 374                     | 500                    |
| AMS3B | 77              | 72-84         | 368                     | 500                    |
| AMS7A | 78              | 72-84         | 370                     | 500                    |

Table 2.5 Summary of 24-hour TSP Monitoring Results in the Reporting Period

|       | Average (μg/m³) | Range (μg/m³) | Action Level<br>(μg/m³) | Limit Level<br>(μg/m³) |
|-------|-----------------|---------------|-------------------------|------------------------|
| AMS2  | 55              | 35-96         | 176                     | 260                    |
| AMS3B | 62              | 47-95         | 167                     | 260                    |
| AMS7A | 36              | 24-50         | 183                     | 260                    |

- 2.7.2 The event action plan is annexed in Appendix L.
- 2.7.3 Meteorological information collected from the wind station during the monitoring periods on the monitoring dates, as shown in Figure 2, including wind speed and wind direction, is annexed in Appendix H.

### 3 NOISE MONITORING

### 3.1 Monitoring Requirements

3.1.1 In accordance with the Project Specific EM&A Manual, impact noise monitoring was conducted for at least once per week during the construction phase of the Project. The Action and Limit level of the noise monitoring is provided in Appendix D.

### 3.2 Monitoring Equipment

3.2.1 Noise monitoring was performed using sound level meter at each designated monitoring station. The sound level meters deployed comply with the International Electrotechnical Commission Publications (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications. Acoustic calibrator was deployed to check the sound level meters at a known sound pressure level. Brand and model of the equipment is given in Table 3.1.

Table 3.1 Noise Monitoring Equipment

| Equipment                    | Brand and Model       |
|------------------------------|-----------------------|
| Integrated Sound Level Meter | Rion NL-31 & B&K2238  |
| Acoustic Calibrator          | Rion NC-74 & B&K 4231 |

#### 3.3 Monitoring Locations

- 3.3.1 Monitoring locations NMS2 was set up at the proposed locations in accordance with Project Specific EM&A Manual. However, for monitoring location NMS3 (Ho Yu College), as proposed in the Project Specific EM&A Manual, approval for carrying out impact monitoring could not be obtained from the principal of the school. Permission on setting up and carrying out impact monitoring works at nearby sensitive receivers, like Caribbean Coast and Coastal Skyline, was also sought. However, approvals for carrying out impact monitoring works within their premises were not obtained. Impact noise monitoring was conducted at site boundary of the site office area in Works Area WA2 (NMS3B) respectively. Same baseline noise level (as derived from the baseline monitoring data recorded at Ho Yu College) and Limit Level were adopted for this alternative noise monitoring location.
- 3.3.2 Figure 2 shows the locations of the monitoring stations. Table 3.2 describes the details of the monitoring stations.

Table 3.2 Locations of Impact Noise Monitoring Stations

| Monitoring Station Location |                                                        | Description                                |  |
|-----------------------------|--------------------------------------------------------|--------------------------------------------|--|
| NMS2                        | Seaview Crescent Tower 1                               | Free-field on the rooftop of the premise   |  |
| NMS3B                       | Site Boundary of Site Office<br>Area at Works Area WA2 | Free-field on ground at the area boundary. |  |

## 3.4 Monitoring Parameters, Frequency and Duration

3.4.1 Table 3.3 summarizes the monitoring parameters, frequency and duration of impact noise monitoring.

Table 3.3 Noise Monitoring Parameters, Frequency and Duration

| Parameter                                                                                                                                                         | Frequency and Duration |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 30-mins measurement at each monitoring station between 0700 and 1900 on normal weekdays (Monday to Saturday). $L_{eq}$ , $L_{10}$ and $L_{90}$ would be recorded. | At least once per week |

## 3.5 Monitoring Methodology

### 3.5.1 Monitoring Procedure

- (a) The sound level meter was set on a tripod at a height of 1.2 m above the ground for free-field measurements at NMS2. A correction of +3 dB(A) shall be made to the free field measurements.
- (b) All measurement at NMS3B were free field measurements in the reporting month at NMS3B. A correction of +3 dB(A) shall be made to the free field measurements.
- (c) The battery condition was checked to ensure the correct functioning of the meter.
- (d) Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:-
  - (i) frequency weighting: A
  - (ii) time weighting: Fast
  - (iii) time measurement:  $L_{eq(30-minutes)}$  during non-restricted hours i.e. 07:00-1900 on normal weekdays.
- (e) Prior to and after each noise measurement, the meter was calibrated using the acoustic calibrator for 94dB(A) at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1 dB(A), the measurement would be considered invalid and repeat of noise measurement would be required after re-calibration or repair of the equipment.
- (f) During the monitoring period, the  $L_{eq}$ ,  $L_{10}$  and  $L_{90}$  were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- (g) Noise measurement was paused during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible. Observations were recorded when intrusive noise was unavoidable.
- (h) Noise monitoring was cancelled in the presence of fog, rain, wind with a steady speed exceeding 5m/s, or wind with gusts exceeding 10m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

### 3.5.2 Maintenance and Calibration

- (a) The microphone head of the sound level meter was cleaned with soft cloth at regular intervals.
- (b) The meter and calibrator were sent to the supplier or HOKLAS laboratory to check and calibrate at yearly intervals.
- (c) Calibration certificates of the sound level meters and acoustic calibrators are provided in Appendix E.

#### 3.6 Monitoring Schedule for the Reporting Month

3.6.1 The schedule for construction noise monitoring in March 2015 is provided in Appendix F.

## 3.7 Monitoring Results

3.7.1 The monitoring results for construction noise are summarized in Table 3.4 and the monitoring data is provided in Appendix I.

Table 3.4 Summary of Construction Noise Monitoring Results in the Reporting Period

|       | Average, dB(A),           | Range, dB(A),             | Limit Level, dB(A),       |  |
|-------|---------------------------|---------------------------|---------------------------|--|
|       | L <sub>eq (30 mins)</sub> | L <sub>eq (30 mins)</sub> | L <sub>eq (30 mins)</sub> |  |
| NMS2  | 68                        | 67-69*                    | 75                        |  |
| NMS3B | 67                        | 64-68*                    | 70/65^                    |  |

<sup>\*+3</sup>dB(A) Façade correction included

- 3.7.2 No Action or Limit Level Exceedance of construction noise was recorded in the reporting month.
- 3.7.3 Major noise sources during the noise monitoring included construction activities of the Project, construction activities by other contracts and nearby traffic noise.
- 3.7.4 The event action plan is annexed in Appendix L.

<sup>^</sup> Daytime noise Limit Level of 70 dB(A) applies to education institutions, while 65dB(A) applies during school examination period.

## 4 WATER QUALITY MONITORING

## 4.1 Monitoring Requirements

4.1.1 Impact water quality monitoring was carried out to ensure that any deterioration of water quality was detected, and that timely action was taken to rectify the situation. For impact water quality monitoring, measurements were taken in accordance with the Project Specific EM&A Manual. Appendix D shows the established Action/Limit Levels for the environmental monitoring works.

## 4.2 Monitoring Equipment

4.2.1 Table 4.1 summarises the equipment used in the impact water quality monitoring programme.

Table 4.1 Water Quality Monitoring Equipment

| Equipment                                             | Brand and Model                             |
|-------------------------------------------------------|---------------------------------------------|
| Dissolved Oxygen (DO) and Temperature Meter, Salinity | YSI Model 6820                              |
| Meter and Turbidimeter                                |                                             |
| pH Meter                                              | YSI Model 6820 or Thermo Orion 230A+        |
| Positioning Equipment                                 | JRC DGPS 224 Model JLR-4341 with J-NAV      |
|                                                       | 500 Model NWZ4551                           |
| Water Depth Detector                                  | Eagle Cuda-168 and Lowrance x-4             |
| Water Sampler                                         | Kahlsio Water Sampler (Vertical) 2.2 L with |
|                                                       | messenger                                   |

## 4.3 Monitoring Parameters, Frequency and Duration

4.3.1 Table 4.2 summarises the monitoring parameters, frequency and monitoring depths of impact water quality monitoring as required in the Project Specific EM&A Manual.

Table 4.2 Impact Water Quality Monitoring Parameters and Frequency

| Monitoring<br>Stations                                                                                                                                                                           | Parameter, unit                                                                                                                                                                                                                  | Frequency                                                                                            | No. of depth                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Impact Stations: IS5, IS(Mf)6, IS7, IS8, IS(Mf)9, IS10, IS(Mf)11, IS(Mf)16, IS17  Control/Far Field Stations: CS(Mf)3, CS(Mf)5, CS4, CS6, CSA  Sensitive Receiver Stations: SR3-SR7, SR10A&SR10B | <ul> <li>Depth, m</li> <li>Temperature, °C</li> <li>Salinity, ppt</li> <li>Dissolved     Oxygen (DO),     mg/L</li> <li>DO Saturation, %</li> <li>Turbidity, NTU</li> <li>pH</li> <li>Suspended     Solids (SS), mg/L</li> </ul> | Three times per week during mid- ebb and mid- flood tides (within ± 1.75 hour of the predicted time) | 3 (1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth is less than 6 m, in which case the middepth station may be omitted. Should the water depth be less than 3 m, only the mid-depth station will be monitored). |

## 4.4 Monitoring Locations

- 4.4.1 In accordance with the Project Specific EM&A Manual, twenty-one stations (9 Impact Stations, 7 Sensitive Receiver Stations and 5 Control/Far Field Stations) were designated for impact water quality monitoring. The nine Impact Stations (IS) were chosen on the basis of their proximity to the reclamation and thus the greatest potential for water quality impacts, the seven Sensitive Receiver Stations (SR) were chosen as they are close to the key sensitive receives and the five Control/ Far Field Stations (CS) were chosen to facilitate comparison of the water quality of the IS stations with less influence by the Project/ ambient water quality conditions.
- 4.4.2 Due to safety concern and topographical condition of the original locations of SR4 and SR10B, alternative impact water quality monitoring stations, naming as SR4 (N) and SR10B (N), were adopted, which are situated in vicinity of the original impact water quality monitoring stations (SR4 and SR10B) and could be reachable.
- 4.4.3 Same baseline and Action Level for water quality, as derived from the baseline monitoring data recorded, were adopted for these alternative impact water quality monitoring stations.
- 4.4.4 The locations of these monitoring stations are summarized in Table 4.3 and depicted in Figure 3.

Table 4.3 Impact Water Quality Monitoring Stations

| Station  | Description                                                  | East   | North  |
|----------|--------------------------------------------------------------|--------|--------|
| IS5      | Impact Station (Close to HKBCF construction site)            | 811579 | 817106 |
| IS(Mf)6  | Impact Station (Close to HKBCF construction site)            | 812101 | 817873 |
| IS7      | Impact Station (Close to HKBCF construction site)            | 812244 | 818777 |
| IS8      | Impact Station (Close to HKBCF construction site)            | 814251 | 818412 |
| IS(Mf)9  | Impact Station (Close to HKBCF construction site)            | 813273 | 818850 |
| IS10     | Impact Station (Close to HKBCF construction site)            | 812577 | 820670 |
| IS(Mf)11 | Impact Station (Close to HKBCF construction site)            | 813562 | 820716 |
| IS(Mf)16 | Impact Station (Close to HKBCF construction site)            | 814328 | 819497 |
| IS17     | Impact Station (Close to HKBCF construction site)            | 814539 | 820391 |
| SR3      | Sensitive receivers (San Tau SSSI)                           | 810525 | 816456 |
| SR4(N)   | Sensitive receivers (Tai Ho)                                 | 814705 | 817859 |
| SR5      | Sensitive receivers (Artificial Reef in NE Airport)          | 811489 | 820455 |
| SR6      | Sensitive receivers (Sha Chau and Lung Kwu Chau Marine Park) | 805837 | 821818 |
| SR7      | Sensitive receivers (Tai Mo Do)                              | 814293 | 821431 |
| SR10A    | Sensitive receivers (Ma Wan FCZ)1                            | 823741 | 823495 |
| SR10B(N) | Sensitive receivers (Ma Wan FCZ)2                            | 823683 | 823187 |
| CS(Mf)3  | Control Station                                              | 809989 | 821117 |
| CS(Mf)5  | Control Station                                              | 817990 | 821129 |
| CS4      | Control Station                                              | 810025 | 824004 |
| CS6      | Control Station                                              | 817028 | 823992 |
| CSA      | Control Station                                              | 818103 | 823064 |

## 4.5 Monitoring Methodology

### 4.5.1 Instrumentation



(a) The in-situ water quality parameters, viz. dissolved oxygen, temperature, salinity, turbidity and pH, were measured by multi-parameter meters (i.e. Model YSI 6820 CE-C-M-Y) and pH meter (i.e. Thermo Orion 230A+) respectively.

## 4.5.2 Operating/Analytical Procedures

- (a) Digital Differential Global Positioning Systems (DGPS) were used to ensure that the correct location was selected prior to sample collection.
- (b) Portable, battery-operated echo sounders were used for the determination of water depth at each designated monitoring station.
- (c) All in-situ measurements were taken at 3 water depths, 1 m below water surface, mid-depth and 1 m above sea bed, except where the water depth was less than 6 m, in which case the mid-depth station was omitted. Should the water depth be less than 3 m, only the mid-depth station was monitored.
- (d) At each measurement/sampling depth, two consecutive in-situ monitoring (DO concentration and saturation, temperature, turbidity, pH, salinity) and water sample for SS. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of DO or turbidity parameters was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- (e) Duplicate samples from each independent sampling event were collected for SS measurement. Water samples were collected using the water samplers and the samples were stored in high-density polythene bottles. Water samples collected were well-mixed in the water sampler prior to pre-rinsing and transferring to sample bottles. Sample bottles were pre-rinsed with the same water samples. The sample bottles were then be packed in cool-boxes (cooled at 4°C without being frozen), and delivered to ALS Technichem (HK) Pty Ltd. for the analysis of suspended solids concentrations. The laboratory determination work would be started within 24 hours after collection of the water samples. ALS Technichem (HK) Pty Ltd. is a HOKLAS accredited laboratory and has comprehensive quality assurance and quality control programmes. For QA/QC procedures, one duplicate samples of every batch of 20 samples was analyzed.
- (f) The analysis method and reporting and detection limit for SS is shown in Table 4.4.

Table 4.4 Laboratory Analysis for Suspended Solids

| Parameters           | Instrumentation | Analytical Method | Reporting Limit | Detection Limit |
|----------------------|-----------------|-------------------|-----------------|-----------------|
| Suspended Solid (SS) | Weighting       | APHA 2540-D       | 0.5mg/L         | 0.5mg/L         |

(g) Other relevant data were recorded, including monitoring location / position, time, water depth, tidal stages, weather conditions and any special phenomena or work underway at the construction site in the field log sheet for information.

#### 4.5.3 Maintenance and Calibration

- (a) All in situ monitoring instruments would be calibrated and calibrated by ALS Technichem (HK) Pty Ltd. before use and at 3-monthly intervals throughout all stages of the water quality monitoring programme. Calibration details are provided in Appendix E.
- (b) The dissolved oxygen probe of YSI 6820 was calibrated by wet bulb method. Before the calibration routine, the sensor for dissolved oxygen was thermally equilibrated in water-saturated air. Calibration cup is served as a calibration chamber and it was loosened from airtight condition before it is used for the calibration. Calibration at ALS Technichem (HK) Pty Ltd. was carried out once every three months in a water sample with a known concentration of dissolved oxygen. The sensor was immersed in the water and after thermal equilibration, the known mg/L value was keyed in and the calibration was carried out automatically.
- (c) The turbidity probe of YSI 6820 is calibrated two times a month. A zero check in distilled water was performed with the turbidity probe of YSI 6820 once per monitoring day. The probe will be calibrated with a solution of known NTU at ALS Technichem (HK) Pty Ltd. once every three months.

### 4.6 Monitoring Schedule for the Reporting Month

4.6.1 The schedule for impact water quality monitoring in March 2015 is provided in Appendix F.

## 4.7 Results and Observations

4.7.1 Impact water quality monitoring results and graphical presentations are provided in Appendix J.

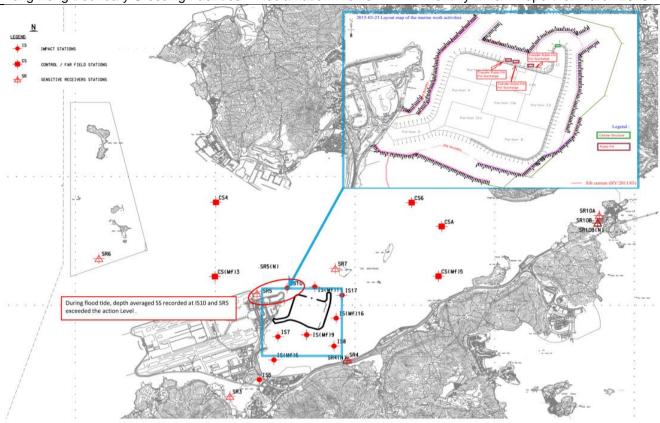



Table 4.5 Summary of Water Quality Exceedances

| Station           | Exceedance<br>Level | DO ( | S&M)  | DO (B | ottom) | Tur | bidity | SS  |                 | T   | otal  |
|-------------------|---------------------|------|-------|-------|--------|-----|--------|-----|-----------------|-----|-------|
|                   | Levei               | Ebb  | Flood | Ebb   | Flood  | Ebb | Flood  | Ebb | Flood           | Ebb | Flood |
| ICE               | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS5               | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IC/Mf\C           | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS(Mf)6           | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS7               | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 137               | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS8               | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 130               | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS(Mf)9           | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 13(1111)3         | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS10              | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | (1)<br>23 Mar15 | 0   | 1     |
|                   | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS(Mf)11          | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 13(1011)11        | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS(Mf)16          | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 13(1011)10        | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| IS17              | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 1017              | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| SR3               | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| Orto              | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| SR4(N)            | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| O1(4(1 <b>1</b> ) | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| SR5               | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | (1)<br>23 Mar15 | 0   | 1     |
|                   | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| SR6               | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 5110              | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| SR7               | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| 5117              | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| SR10A             | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
|                   | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| SR10B             | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| (N)               | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               | 0   | 0     |
| Total             | Action              | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 2               |     | 2     |
|                   | Limit               | 0    | 0     | 0     | 0      | 0   | 0      | 0   | 0               |     | 0     |

Note: S: Surface; and M: Mid-depth.

- 4.7.2 For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month.
- 4.7.2.1 The exceedance was confirmed after checking against relevant control station(s) during flood tide i.e. CS6, CSA and CS(Mf)5 following the Action and Limit Levels for Water Quality.
- 4.7.2.2 Layout map below shows active works conducted on 23 March 2015. Transfer of public fill for surcharge was conducted at north part of HKBCF reclamation works and marine based construction works such cellular structure was conducted at northeast part of the HKBCF Reclamation Works.



4.7.2.3 Photo record which shows the sea condition near IS10 at northwest part of the HKBCF during flood tide on 23 March 2015



4.7.2.4 Exceedance recorded at IS10 and SR5 during mid-flood tide are unlikely due to marine based construction activities of the Project because:

- 4.7.2.5 With reference to the silt curtain checking record, defects such as disconnection of the silt curtain was not observed at northwest part of the perimeter silt curtain which are close to the IS10 and SR5.
- 4.7.2.6 The attached layout map shows transfer of public fill for surcharge was conducted at north part of HKBCF reclamation works, since it is not marine based work, therefore it was considered unlikely to cause the SS exceedances recorded at IS10 and SR5 during mid-flood tide.
- 4.7.2.7 The attached layout map shows that cellular structure was conducted at northeast part of the HKBCF Reclamation Works, however, the turbidity data retrieved from the IS17 and IS(Mf)11 which are in the vicinity of marine-based works (cellular structure) undertaken on 23 March 2015, did not exceed the action and limit level. As such, it was considered unlikely to cause the SS exceedances recorded at IS10 and SR5 during mid-flood tide.
- 4.7.2.8 Furthermore, no filling activities were observed in progress and no silt plume was observed to flow from the inside of the perimeter silt curtain to the outside of the perimeter silt curtain when monitoring was conducted at IS10 and SR5. (Also see attached for sea condition observed on 23 March 2015 during flood tide.)
- 4.7.2.9 Also, turbidity level recorded at SR5, IS10 and IS(Mf)11 were below the action and limit level. This indicates the turbidity level at area near SR5 and IS10 was not adversely affected.
- 4.7.2.10 The exceedances were likely due to local effects in the vicinity of SR5 and IS10.
- 4.7.2.11 After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.
- 4.7.2.12 Action taken under the action plan:
  - 1. Not applicable as SS was not measured in situ;
  - 2. After considering the above mentioned investigation results, it appears that it was unlikely that the SS exceedances were attributed to active construction activities of this Contract;
  - 3. IEC, contractor and ER were informed via email;
  - 4. Monitoring data, all plant, equipment and Contractor's working methods were checked;
  - 5. Since it is considered that the SS exceedance is unlikely to be project related, as such, actions 5-7 under the EAP are not considered applicable.
- 4.7.2.13 Nevertheless, the Contractor was reminded to ensure provision of ongoing maintenance to the silt curtains and to carry out maintenance work once defects were found.
- 4.7.2.14 Maintenance work of the silt curtain was carried out by the Contractor on a daily basis as necessary.
  - 4.7.3 The event action plan is annexed in Appendix L.



### 5 DOLPHIN MONITORING

### 5.1 Monitoring Requirements

- 5.1.1 Vessel based surveys for the Chinese White Dolphin (CWD), Sousa chinensis, are to be conducted by a dedicated team comprising a qualified marine mammal ecologist and experienced marine mammal observers (MMOs). The purpose of the surveys are to evaluate the impact of the HKCBF reclamation and, if deemed detrimental, to take appropriate action as per the EM&A manual.
- 5.1.2 This 'Impact Monitoring' follows several months of 'Baseline Monitoring' so similar survey methodologies have been adopted to facilitate comparisons between datasets. Further, the data collected are compatible with, and are available for, incorporation into the data set managed by the Agriculture, Fisheries and Conservation Department (AFCD) as part of Hong Kong's long term Marine Mammal Monitoring Programme.

### 5.2 Monitoring Equipment

Table 5.1 summarises the equipment used for the impact dolphin monitoring.

Table 5.1 Dolphin Monitoring Equipment

| Equipment                            | Model                                        |
|--------------------------------------|----------------------------------------------|
| Commercially licensed motor vessel   | 15m in length with a 4.5m viewing platform   |
| Global Positioning System (GPS) x2   | Integrated into T7000                        |
|                                      | Garmin GPS Map 76C                           |
| Computers (T7000 Tablet, Intel Atom) | Windows 7/MSO 13                             |
|                                      | Logger                                       |
| Camera                               | Nikon D7100 300m 2.8D fixed focus            |
|                                      | Nikon D90 80-400mm zoom lens                 |
| Laser Rangefinder                    | Range Finder Bushnell 1000m                  |
| Marine Binocular x3                  | Nexus 7 x 50 marine binocular with compass   |
|                                      | and reticules                                |
|                                      | Fujinon 7 x 50 marine binocular with compass |
|                                      | and reticules                                |

#### 5.3 Monitoring Frequency and Conditions

- 5.3.1 Dolphin monitoring is conducted twice per month in each survey area.
- 5.3.2 Dolphin monitoring is conducted only when visibility is good (e.g., over 1km) and the sea condition is at a Beaufort Sea State of 4 or better.
- 5.3.3 When thunder storm, black rain or typhoon warnings are in force, all survey effort is stopped.

## 5.4 Monitoring Methodology and Location

- 5.4.1 The impact dolphin monitoring is vessel-based and combines line-transect and photo-ID methodology. The survey follows pre-set and fixed transect lines in the two areas defined by AFCD as:
- 5.4.2 Northeast Lantau survey area; and
- 5.4.3 Northwest Lantau survey area.
- 5.4.4 The co-ordinates for the transect lines and layout map have been provided by AFCD and are shown in Table 5.2 and Figure 4.

Impact Dolphin Monitoring Line Transect Co-ordinates (Provided by AFCD) Table 5.2

|     | HK Grid | System | Long Lat   | in WGS84  |
|-----|---------|--------|------------|-----------|
| ID  | X       | Υ      | Long       | Lat       |
| 1   | 804671  | 814577 | 113.870308 | 22.269741 |
| 1   | 804671  | 831404 | 113.869975 | 22.421696 |
| 2   | 805475  | 815457 | 113.878087 | 22.277704 |
| 2   | 805477  | 826654 | 113.877896 | 22.378814 |
| 3   | 806464  | 819435 | 113.887615 | 22.313643 |
| 3   | 806464  | 822911 | 113.887550 | 22.345030 |
| 4   | 807518  | 819771 | 113.897833 | 22.316697 |
| 4   | 807518  | 829230 | 113.897663 | 22.402113 |
| 5   | 808504  | 820220 | 113.907397 | 22.320761 |
| 5   | 808504  | 828602 | 113.907252 | 22.396462 |
| 6   | 809490  | 820466 | 113.916965 | 22.323003 |
| 6   | 809490  | 825352 | 113.916884 | 22.367128 |
| 7   | 810499  | 820690 | 113.926752 | 22.325043 |
| 7   | 810499  | 824613 | 113.926688 | 22.360464 |
| 8   | 811508  | 820847 | 113.936539 | 22.326475 |
| 8   | 811508  | 824254 | 113.936486 | 22.357241 |
| 9   | 812516  | 820892 | 113.946329 | 22.326894 |
| 9   | 812516  | 824254 | 113.946279 | 22.357255 |
| 10* | 813525  | 818270 | 113.956156 | 22.303225 |
| 10* | 813525  | 824657 | 113.956065 | 22.360912 |
| 11  | 814556  | 818449 | 113.966160 | 22.304858 |
| 11  | 814556  | 820992 | 113.966125 | 22.327820 |
| 12  | 815542  | 818807 | 113.975726 | 22.308109 |
| 12  | 815542  | 824882 | 113.975647 | 22.362962 |
| 13  | 816506  | 819480 | 113.985072 | 22.314192 |
| 13  | 816506  | 824859 | 113.985005 | 22.362771 |
| 14  | 817537  | 820220 | 113.995070 | 22.320883 |
| 14  | 817537  | 824613 | 113.995018 | 22.360556 |
| 15  | 818568  | 820735 | 114.005071 | 22.325550 |
| 15  | 818568  | 824433 | 114.005030 | 22.358947 |
| 16  | 819532  | 821420 | 114.014420 | 22.331747 |
| 16  | 819532  | 824209 | 114.014390 | 22.356933 |
| 17  | 820451  | 822125 | 114.023333 | 22.338117 |
| 17  | 820451  | 823671 | 114.023317 | 22.352084 |
| 18  | 821504  | 822371 | 114.033556 | 22.340353 |
| 18  | 821504  | 823761 | 114.033544 | 22.352903 |
| 19  | 822513  | 823268 | 114.043340 | 22.348458 |
| 19  | 822513  | 824321 | 114.043331 | 22.357971 |
| 20  | 823477  | 823402 | 114.052695 | 22.349680 |
| 20  | 823477  | 824613 | 114.052686 | 22.360610 |
| 21  | 805476  | 827081 | 113.877878 | 22.382668 |
| 21  | 805476  | 830562 | 113.877811 | 22.414103 |
| 22  | 806464  | 824033 | 113.887520 | 22.355164 |
| 22  | 806464  | 829598 | 113.887416 | 22.405423 |
| 23  | 814559  | 821739 | 113.966142 | 22.334574 |
| 23  | 814559  | 824768 | 113.966101 | 22.361920 |

\*Remark: Due to the presence of deployed silt curtain systems at the site boundaries of the Project, some of the transect lines shown in Figure 5 could not be fully surveyed during the regular survey. Transect 10 is reduced from 6.4km to approximately 3.6km in length due to the HKBCF construction site. Therefore the total transect length for both NEL and NWL combined is reduced to approximately 111km.



## 5.5 Monitoring Procedures

- 5.5.1 The study area incorporates 23 transects which are to be surveyed twice per month. Each survey day lasts approximately 9 hours.
- 5.5.2 The survey vessel departs from Tung Chung Development Pier, Tsing Yi Public Pier or the nearest safe and convenient pier.
- 5.5.3 When the vessel reaches the start of a transect line, "on effort" survey begins. Areas between transect lines and traveling to and from the study area are defined as "off effort".
- 5.5.4 The transect line is surveyed at a speed of 6-8 knots (11-14 km/hr). For the sake of safety, the speed was sometimes a bit slower to avoid collision with other vessels. During some periods, tide and current flow in the survey areas exceeds 7 knots which can affect survey speed. There are a minimum of four marine mammal observers (MMOs) present on each survey, rotating through four positions, observers (2), data recorder (1) and 'rest' (1). Rotations occur every 30 minutes or at the end of dolphin encounters. The data recorder records effort, weather and sightings data directly onto the programme Logger and is not part of the observer team. The observers search with naked eye and binoculars between 90° and 270° abeam (bow being 0°).
- 5.5.5 When a group of dolphins is sighted, position, bearing and distance data are recorded immediately onto the computer and, after a short observation, an estimate made of group size. These parameters are linked to the time-GPS-ships data which are automatically stored in the programme Logger throughout the survey period. In this manner, information on heading, position, speed, weather, effort and sightings are stored in a format suitable for use with DISTANCE software for subsequent line transect analyses.
- 5.5.6 Once the vessel leaves the transect line, it is deemed to be "off effort". The dolphins are approached with the purpose of taking high resolution pictures for proper photo-identification of individual CWD. Attempts to photograph all dolphins in the group are made. Both the left and right hand sides of the dorsal fin area of each dolphin in the group are photographed, if possible. On finishing photographing, the vessel will return to the transect line at the point of departure and "on effort" survey is resumed.
- 5.5.7 Sightings which are made while on the transect line are referred to as "on effort sightings", while not on the actual transect line are referred to as an "opportunistic sightings" (e.g. another group of dolphins is sighted while travelling back to the transect line). Only "on effort sightings" can be used in analyses which require effort or rate quantification, e.g., encounter rate per 100km searched. This is also how "on effort sightings" are treated in the baseline report. "Opportunistic sightings" provide additional information on individual habitat use and population distribution and they are noted accordingly.
- 5.5.8 As time and GPS data are automatically logged throughout the survey and are linked to sightings data input, start and end times of encounters and deviation from the transect lines are recorded and can be subsequently reviewed.

### 5.6 Monitoring Schedule for the Reporting Month

- 5.6.1 The schedule for dolphin monitoring in March 2015 is provided in Appendix F.
- 5.6.2 Two surveys covering both study areas were completed.

### 5.7 Results and Observations

5.7.1 Dolphin surveys were conducted on 19, 20, 30 and 31 March 2015. A total of 218.9 km of transect line was conducted all of which during Beaufort Sea State 2 or better (favourable water conditions). Please note that that some lines were shortened due to works and/or shipping traffic.

The effort summary and sightings data are shown in Tables 5.3 and 5.4, respectively. The survey efforts conducted in March 2015 are plotted in Figure 5a-b. For Table 5.3, only on-effort information is included. Transects conducted in all Beaufort Sea State are included. Compared to previous monthly reports, the whole number Beaufort Sea State scale is used so as to ease comparison with other dolphin monitoring reports.

Table 5.3 Impact Dolphin Monitoring Survey Effort Summary, Effort by Area and Beaufort Sea State

| Survey | Date       | Area | Beaufort | Effort (km)     | Total<br>Distance<br>Travelled<br>(km) |
|--------|------------|------|----------|-----------------|----------------------------------------|
|        | 03/19/2015 | NWL  | 1        | 67              | 67                                     |
| 1      | 03/20/2015 | NWL  | 1        | 6.1             |                                        |
|        | 03/20/2015 | NEL  | 1        | 30.3            | 42.6                                   |
|        | 03/20/2015 | NEL  | 2        | 6.2             |                                        |
|        | 03/30/2015 | NWL  | 0        | 1.8             |                                        |
|        | 03/30/2015 | NWL  | 1        | 53              | 63.3                                   |
| 0      | 03/30/2015 | NWL  | 2        | 8.5             |                                        |
| 2      | 03/31/2015 | NWL  | 1        | 4.9             |                                        |
|        | 03/31/2015 | NWL  | 2        | 5               | 46                                     |
|        | 03/31/2015 | NEL  | 1        | 30.3            | 40                                     |
|        | 03/31/2015 | NEL  | 2        | 5.8             |                                        |
|        |            |      | TOTA     | L in March 2015 | 218.9                                  |

<sup>\*</sup>Remark: Surveys conduct under Beaufort Sea State 3 or below are considered as under favourable condition.

Table 5.4 Impact Dolphin Monitoring Survey Details March 2015

| Date       | Location            | No. Sightings<br>"on effort" | No. Sightings<br>"opportunistic" |
|------------|---------------------|------------------------------|----------------------------------|
|            | NW L                | 2                            | 1                                |
| 03/19/2015 | NEL                 | 0                            | 0                                |
|            | NW L                | 0                            | 0                                |
| 03/20/2015 | NEL                 | 0                            | 0                                |
|            | NW L                | 1                            | 1                                |
| 03/30/2015 | NEL                 | 0                            | 0                                |
|            | NW L                | 0                            | 0                                |
| 03/31/2015 | NEL                 | 0                            | 0                                |
|            | TOTAL in March 2015 | 3                            | 2                                |



Table 5.5 The Encounter Rate of Number of Dolphin Sightings & Total Number of Dolphins per Area^

| Encounter Rate of Number of Dolphin Sightings (STG)* |                      |                      |                  |                  |                          |                          |  |  |
|------------------------------------------------------|----------------------|----------------------|------------------|------------------|--------------------------|--------------------------|--|--|
| Date                                                 | NEL<br>Track<br>(km) | NWL<br>Track<br>(km) | NEL<br>Sightings | NWL<br>Sightings | NEL<br>Encounter<br>Rate | NWL<br>Encounter<br>Rate |  |  |
| 19 & 20 March 2015                                   | 36.5                 | 73.1                 | 0                | 2                | 0.0                      | 2.7                      |  |  |
| 30 & 31 March 2015                                   | 36.1                 | 73.2                 | 0                | 1                | 0.0                      | 1.4                      |  |  |
| Encounter Rate of Total Number of Dolphins (ANI)**   |                      |                      |                  |                  |                          |                          |  |  |
| Date                                                 | NEL<br>Track<br>(km) | NWL<br>Track<br>(km) | NEL<br>Dolphins  | NWL<br>Dolphins  | NEL<br>Encounter<br>Rate | NWL<br>Encounter<br>Rate |  |  |
| 19 & 20 March 2015                                   | 36.5                 | 73.1                 | 0                | 4                | 0.0                      | 5.5                      |  |  |
| 30 & 31 March 2015                                   | 36.1                 | 73.2                 | 0                | 3                | 0.0                      | 4.1                      |  |  |

<sup>\*</sup> Encounter Rate of Number of Dolphin Sightings (STG) presents encounter rates in terms of groups per 100km.

- 5.7.2 A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 5.7.3 Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d
- 5.7.4 Photo ID analyses for February 2015 is presented in Appendix K.
- 5.7.5 Three resightings were noted in February 2015. On 9 February 2015, HZMB 005 was seen twice in one day on different transect lines. On 23 February 2015, HZNB 098 and HZMB 126 were sighted in different groups. Images and resightings data are included in Annex I of Appendix K.
- 5.7.6 Noteworthy Observation<sup>1</sup>:
- 5.7.7.1 When impact monitoring was conducted at the southern parts of transect lines 1 & 2, the view of the area was partially blocked by the working vessels and fixed structures which do not belong to HKBCF Reclamation Works. The number of fixed structures has increased and in many areas, it is no longer possible to pass between them by ship. As the working vessels will move during the on-going works, it is considered that they will temporarily affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour, whereas the fixed structures will continuously affect survey protocol, survey data collection, dolphin movement, dolphin habitat use and dolphin behaviour.
- 5.7.7.2 The HKBCF and adjoining "Southern Landfall" Projects effected lines 11 and 12. The view of the area was partially blocked by the working vessels and in water structures. As the working vessels will move as construction progresses, they will cause temporary effects to survey protocol and survey data collection. In time, the fixed structures will affect all survey protocols and dolphin ecology in the long term.

<sup>\*\*</sup> Encounter Rate of Total Number of Dolphins (ANI) presents encounter rates in terms of individuals per 100km. And the encounter rate is not corrected for individuals, calculation may represent double counting.

<sup>^</sup>The table is made only for reference to the quarterly STG & ANI, which were adopted for the Event & Action Plan.

<sup>&</sup>lt;sup>1</sup> A noteworthy observation is to show that either the conduct of the surveys themselves is affected, i.e., the noted vessel or works impedes the progress or view of the survey platform. In addition, the vessel or construction works may be different or additional to that observed previously and further, are of such a nature that they are a likely to create an impact on the movement or behaviour of the subject of the impact survey, in this case, the dolphins.

A=COM

- 5.7.7.3 The northern end of lines 9-10 was affected by works which do not belong to the HKBCF Project; in particular, the view of the area was partially blocked by the now fixed structure. An anchorage also is located in this area. Due to its permanency, the reclamation will continuously affect all survey protocols and dolphin ecology.
- 5.7.7.4 New projects were ongoing at the southern ends of lines 3 and 5. At line 3, the platform partially blocked some of the survey view. At line 5, an anchored vessel with an extended perimeter designated by yellow buoys overlapped the transect line. There are no apparent fixed structure associated with either of these projects only platforms and servicing vessels. As it is not known what activity was being conducted, the effect that this project may have specifically on dolphins is not known.
- 5.7.7.5 A shipping hazard (a sunken ship) was observed at line 3, however, on the 19th March, works were in progress and the sunken ship was completely removed by the next survey of that area (30 March 2015).
- 5.7.7.6 The survey effort log notes the areas in which the visibility is limited or the survey is affected so that these can be accounted for in any subsequent analyses. Some of these obstructions will become permanent and some will be temporary as the HZMB is built and other projects progress. It is advised that the impact monitoring surveys should be completed as close to the predefined lines as possible (as per Figure 4 of this report).
- 5.7.7.7 The above noteworthy observations are largely a result of multiple and on-going infrastructure projects within the Lantau area. No amendment to EM&A protocols can negate the effects of these projects, e.g., it is a highly dynamic environment and viewing conditions may alter every survey (sometimes within surveys) and most of the survey area is affected, to some degree, by marine construction works. Instead, survey data analyses should incorporate any noteworthy observations which may affect either data collection or dolphin distribution and behavioural changes. The above mentioned activities recorded during boat survey will not affect implementation of the EM&A Programme provided appropriate data analyses are conducted.
- 5.7.7.8 A review of survey conditions was conducted. The works at lines 1 and 2 are progressing and permanent in water structures are in place. Given that these lines are now truncated due to these structures, it is advised that the start/end points of these lines be revised to reflect the new navigation required. A draft proposal to alter transect lines 1 and 2 was submitted to IEC/ENPO on 23 January 2015 to account for the permanent structures in the water. Further comments were given by IEC/ENPO on 26 February 2015 and the draft proposal is currently under ET's review.
- 5.7.7 The event action plan is annexed in Appendix L.

### 6 ENVIRONMENTAL SITE INSPECTION AND AUDIT

#### 6.1 Site Inspection

- 6.1.1 Site Inspections were carried out on a weekly basis to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. In the reporting month, 4 site inspections were carried out on 5, 12, 19 and 26 March 2015.
- 6.1.2 Particular observations during the site inspections are described below:

#### Air Quality

- 6.1.3 Fugitive dust was observed generated when spoil was excavated at east side of the reclamation works. The Contractor was advised to provide dust control measures when material during excavated of the spoil. The Contractor applied water on exposed soil during excavation of spoil. (Closed)
- 6.1.4 Cement was observed on surface of grout production facility; the Contractor was reminded that to ensure generation of fugitive dust is prevented and the entire grouting process and materials unloading, loading and transfer shall be performed within an enclosed system. (Reminder)

#### Noise

6.1.5 The Contractor was reminded to provide the facilities with acoustic decoupling measures in accordance with the proposed mitigation measures for noise stated in the EP-353/2009/H. (Reminder)

### Water Quality

6.1.6 No adverse observation was identified in the reporting month.

### Chemical and Waste Management

- 6.1.7 Defective drip tray was observed on barge, the Contractor was advised to provide drip tray without defects on barges. The Contractor rectified the defect of the drip tray. (Closed)
- 6.1.8 Waste water generated from the grout mixing process was stored within soil bund; the Contractor was advised to provide sufficient enclosure and ensure the wastewater from the work process is not released to the sea. The Contractor provided sufficient enclosure to the waste water observed. (Closed)
- 6.1.9 General refuse was observed stored on site without proper covers. The Contractor was reminded to provide rubbish bin with over to general refuse. General refuse was cleared by the Contractor. (Closed)
- 6.1.10 Oil drums without drip trays were observed on deck surface of barge DL4. The Contractor was reminded to provide mitigation measures such as drip tray to oil drums. The Contractor removed the oil drum. (Closed)
- 6.1.11 It was observed that the pipes used for transferring grout between barge DL4 and 天駿 3 were not fully enclosed, the Contractor was advised to provide measures to ensure potential leakage of grout from the grouting production process to the sea can be effective prevented. The Contractor provided measures to prevent potential leakage of grout from the grouting production process to the sea. (Closed)
- 6.1.12 Solidified grout was observed on deck of barge DL4. The Contractor was reminded to keep the deck surface clean and tidy. The solidified grouts were cleared by the Contractor. (Closed)
- 6.1.13 Oil drums without drip trays were observed at portion C2a. The Contractor was reminded to provide mitigation measures such as drip tray to oil drums. The oil drums were removed by the Contractor. (Closed)

- 6.1.14 Stagnant water was observed accumulated inside a drip tray on Barge Luen Hing 368, the Contractor was reminded to clear the water regularly to prevent potential runoff. (Reminder)
- 6.1.15 Hole was observed within bunding placed on Barge SHB 209, the Contractor was advised to provide effective mitigation measures by sealing the hole to prevent leakage and potential runoff. The Contractor rectified the deficiency by sealing the hole within the bunding on barge SHB 209. (Closed)

### Landscape and Visual Impact

6.1.16 No relevant adverse impact was observed in the reporting month.

#### **Others**

6.1.17 Rectifications of remaining identified items are undergoing by the Contractor. Follow-up inspections on the status on provision of mitigation measures will be conducted to ensure all identified items are mitigated properly.



## 6.2 Advice on the Solid and Liquid Waste Management Status

- 6.2.1 The Contractor had registered as a chemical waste producer for this Project. Receptacles were available for general refuse collection and sorting.
- 6.2.2 As advised by the Contractor, 390,873.5m³ of fill were imported for the Project use in the reporting period. 334kg of paper/cardboard packaging, 2kg plastic waste, 4kg of metals and 39m³ of general refuse were generated and disposed of in the reporting period. Monthly summary of waste flow table is detailed in Appendix M.
- 6.2.3 The Contractor is advised to properly maintain on site C&D materials and wastes storage, collection, sorting and recording system, dispose of C&D materials and wastes at designated ground and maximize reuse / recycle of C&D materials and wastes. The Contractor is reminded to properly maintain the site tidiness and dispose of the wastes accumulated on site regularly and properly.
- 6.2.4 The Contractor is reminded that chemical waste should be properly treated and stored temporarily in designated chemical waste storage area on site in accordance with the Code of Practice on the Packaging, Labeling and Storage of Chemical Wastes.

### 6.3 Environmental Licenses and Permits

6.3.1 The environmental licenses and permits for the Project and valid in the reporting month is summarized in Table 6.1.

Table 6.1 Summary of Environmental Licensing and Permit Status

| Statutory<br>Reference | License/<br>Permit                                          | License or<br>Permit No. | Valid Period |            | License/<br>Permit | Remarks                                                                           |  |
|------------------------|-------------------------------------------------------------|--------------------------|--------------|------------|--------------------|-----------------------------------------------------------------------------------|--|
| 11010101100            |                                                             |                          | From         | То         | Holder             |                                                                                   |  |
| EIAO                   | Environmental<br>Permit                                     | EP-<br>353/2009/H        | 19/01/2015   | N/A        | HyD                | Hong Kong – Zhuhai –<br>Macao Bridge Hong<br>Kong Boundary<br>Crossing Facilities |  |
|                        |                                                             | EP-<br>354/2009/D        | 13/03/2015   | N/A        |                    | Tuen Mun – Chek Lap<br>Kok Link (TMCLKL<br>Southern Landfall<br>Reclamation only) |  |
| APCO                   | NA notification                                             |                          | 30/12/2011   |            | CHEC               | Works Area WA2 and<br>WA3                                                         |  |
| APCO                   | NA notification                                             |                          | 17/01/2012   |            | CHEC               | Works Area WA4                                                                    |  |
| WDO                    | Chemical<br>Waste<br>Producer<br>Registration               | 5213-951-<br>C1186-21    | 30/3/2012    | N/A        | CHEC               | Chemical waste produced in Contract HY/2010/02                                    |  |
| WDO                    | Chemical<br>Waste<br>Producer<br>Registration               | 5213-974-<br>C3750-01    | 31/10/2012   |            | CHEC               | Registration as Chemical Waste Producer at To Kau Wan(WA4)                        |  |
| WDO                    | Chemical<br>Waste<br>Producer<br>Registration               | 5213-839-<br>C3750-02    | 13/09/2012   |            | CHEC               | Registration as<br>Chemical Waste<br>Producer at TKO<br>137(FB)                   |  |
| WDO                    | Billing Account<br>for Disposal of<br>Construction<br>Waste | 7014181                  | 05/12/2011   | N/A        | CHEC               | Waste disposal in<br>Contract HY/2010/02                                          |  |
| NCO                    | Construction<br>Noise Permit                                | GW-RS0049-<br>15         | 20/01/2015   | 17/03/2015 | CHEC               | Reclamation Works in<br>Contract HY/2010/02                                       |  |
| NCO                    | Construction<br>Noise Permit                                | GW-RS0270-<br>15         | 18/03/2015   | 20/06/2015 | CHEC               | Reclamation Works in<br>Contract HY/2010/02                                       |  |
| NCO                    | Construction<br>Noise Permit                                | GW-RE1405-<br>14         | 22/12/2014   | 21/06/2015 | CHEC               | Section of TKO Fill<br>Bank under Contract<br>HY/2010/02                          |  |

## 6.4 Implementation Status of Environmental Mitigation Measures

- 6.4.1 In response to the site audit findings, the Contractors carried out corrective actions.
- 6.4.2 A summary of the Implementation Schedule of Environmental Mitigation Measures (EMIS) is presented in Appendix C. Most of the necessary mitigation measures were implemented properly.
- 6.4.3 Training of marine travel route for marine vessels operator was given to relevant staff and relevant records were kept properly.
- 6.4.4 Regarding the implementation of dolphin monitoring and protection measures (i.e. implementation of Dolphin Watching Plan, Dolphin Exclusion Zone and Silt Curtain integrity Check), regular checking

were conducted by the experienced MMOs within the works area to ensure no dolphin was trapped by the enclosed silt curtain systems. Any dolphin spotted within the enclosed silt curtain systems was reported and recorded. Relevant procedures were followed and measures were well implemented. Silt curtain systems were also inspected timely in accordance to the submitted plan. All inspection records were kept properly.

- 6.4.5 Acoustic decoupling measures on noisy plants on construction vessels were checked regularly and the Contractor was reminded to ensure provision of ongoing maintenance to noisy plants and to carry out improvement work once insufficient acoustic decoupling measures were found.
- 6.4.6 Frequency of watering per day on exposed soil was checked; with reference to the record provided by the Contract, watering was conducted at least 8 times per day on reclaimed land. The frequency of watering is the mainly refer to water truck. Sprinklers are only served to strengthen dust control measure for busy traffic at the entrance of Portion D. As informed by the Contractor, during the malfunction period of sprinkler, water truck will enhance watering at such area. The Contractor was reminded to ensure provision of watering of at least 8 times per day on all exposed soil within the Project site and associated works areas throughout the construction phase.

## 6.5 Summary of Exceedances of the Environmental Quality Performance Limit

- 6.5.1 All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.
- 6.5.2 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 6.5.3 For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month. After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.
- 6.5.4 A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 6.5.5 Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d.
- 6.5.6 Environmental site inspection was carried out 4 times in March 2015. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.
- 6.5.7 Cumulative statistics on exceedance is provided in Appendix N.

## 6.6 Summary of Complaints, Notification of Summons and Successful Prosecutions

- 6.6.1 The Environmental Complaint Handling Procedure is annexed in Figure 6.
- 6.6.2 One (1) environmental complaint has been received in the reporting month.
- 6.6.2.1 As informed by the Contractor on 09 March 2015, there is an air quality complaint received on 06 March 2015. The complainant Mr. Fung requested for follow-up actions to be taken by relevant departments in response to his Complaint about sand and dust emission from 4-5 uncovered sand barges parking near the coastline of Tuen Mun, the complainant concerns about the health problems to residents as the sand is blown to their apartments.

## 6.6.2.2 Investigation Actions:

- Date of the observed impact was not specified by the complainant so the site activities/active construction works within the complaint period 2-6 March 2015 were reviewed.
- 1hr TSP and 24hrs TSP monitoring data within the complaint period 1- 16 March 2015 have been reviewed.
- Site inspections were conducted jointly with RSS and the Contractor on 12 March 2015.

#### 6.6.2.3 Investigation findings:

- There is no sufficient information provided by the complainant to make sure that the concerned barges are related to this project.
- Date of the observed impact was not specified by the complainant so the impact air quality monitoring (IAQM) results within the period 1- 16 March 2015 for monitoring stations close to the concerned area AQMS1, ASR1, ASR5, ASR6 and ASR10 have been reviewed, AL/LL exceedance of 24hr TSP and 1-hr was not recorded within the period 1- 16 March 2015.
- In addition, the sand delivery record from 2 to 6 March 2015 provided by the Contractor shows that there was no delivery of sand material by pelican barge from 2 to 6 March 2015.
- Furthermore, site inspections were conducted jointly with RSS and the Contractor on 12 March 2015, no generation of fugitive dust and barges loaded with sand material were observed.

- 6.6.2.4 After investigation, there is no adequate information to conclude the observed impact is related to this Contract.
- 6.6.2.5 Recommended Mitigation Measures:
- 6.6.2.6 The Contractor was advised to ensure to continue the provision of fugitive dust mitigation measures to barges loaded with filling material such as watering to sand filling material on sand barges to keep the surface of stockpile of filling material wet.
- 6.6.3 No notification of summons and successful prosecutions was received in the reporting period.
- 6.6.4 Statistics on complaints, notifications of summons and successful prosecutions are summarized in Appendix N.

## 7 FUTURE KEY ISSUES

## 7.2 Construction Programme for the Coming Months

7.2.1 As informed by the Contractor, the major works for the Project in April and May 2015 will be \*:-

#### Marine-base

- Cellular structure installation and backfilling
- Capping Beams structures
- Conforming sloping seawalls
- Surcharge remove & laying
- Marine fill
- Earthwork fill
- Deep Cement Mixing
- Jet grout columns works
- Geotechnical Instrumentation works
- Removal of Temporary Seawall
- Installations of Precast Culverts except sloping outfalls
- Maintenance of silt curtain & silt screen at sea water intake of HKIA

#### Land-base

- Maintenance works of Site Office at Works Area WA2
- Maintenance works of Public Works Regional Laboratory at Works Area WA3
- Maintenance of Temporary Marine Access at Works Area WA2

<sup>\*</sup>Construction activities in April and May 2015 will be changed subject to works progress.

### 7.3 Key Issues for the Coming Month

- 7.3.1 Key issues to be considered in the coming months:-
  - Site runoff should be properly collected and treated prior to discharge;
  - Minimize loss of sediment from filling works;
  - Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities;
  - Exposed surfaces/soil stockpiles should be properly treated to avoid generation of silty surface runoff during rainstorm;
  - Regular review and maintenance of wheel washing facilities provided at all site entrances/exits;
  - Conduct regular inspection of various working machineries and vessels within works areas to avoid any dark smoke emission;
  - Suppress dust generated from work processes with use of bagged cements, earth movements, excavation activities, exposed surfaces/soil stockpiles and haul road traffic;
  - Quieter powered mechanical equipment should be used;
  - Provision of proper and effective noise control measures for operating equipment and machinery onsite, such as erection of movable noise barriers or enclosure for noisy plants;
  - Closely check and replace the sound insulation materials regularly;
  - Better scheduling of construction works to minimize noise nuisance;
  - Properly store and label oil drums and chemical containers placed on site;
  - Proper chemicals, chemical wastes and wastes management;
  - Maintenance works should be carried out within roofed, paved and confined areas;
  - Collection and segregation of construction waste and general refuse on land and in the sea should be carried out properly and regularly; and
  - Proper protection and regular inspection of existing trees, transplanted/retained trees.
  - Control night-time lighting and glare by hooding all lights.
  - Regular review and provide maintenance to dust control measures such as sprinkler system.

#### 7.4 Monitoring Schedule for the Coming Month

7.4.1 The tentative schedule for environmental monitoring in April 2015 is provided in Appendix F.



## 8 CONCLUSIONS AND RECOMMENDATIONS

#### 8.2 Conclusions

- 8.2.1 The construction phase and EM&A programme of the Project commenced on 12 March 2012.
- 8.2.2 All 1-Hour TSP and 24-Hour TSP results were below the Action and Limit Level in the reporting month.
- 8.2.3 For construction noise, no exceedance was recorded at all monitoring stations in the reporting month.
- 8.2.4 For water quality, two (2) Action Level Exceedances of SS at IS10 and SR5 during Flood tide were recorded on 23 March 2015. No Action and Limit Level exceedances were recorded on other monitoring date in the reporting month. After investigation, there is no adequate information to conclude the recorded exceedances are related to this Contract.
- 8.2.5 A total of five sightings were made, three "on effort" and two "opportunistic". Three sightings were recorded on 19 March 2015 and two sightings were made on 30 March 2015 in NWL. A total of twelve individuals were sighted from the two impact dolphin surveys in the reporting period. Sighting details are summarised and plotted in Appendix K and Figure 5c, respectively.
- 8.2.6 Behaviour: Of the five sightings, one group was noted as feeding, three group has boat association behavior and one group was noted as travelling, locations of sighting with different behaviour are mapped in Figure 5d
- 8.2.7 As informed by the Contractor on 09 March 2015, there is an air quality complaint received on 06 March 2015. The complainant Mr. Fung requested for follow-up actions to be taken by relevant departments in response to his Complaint about sand and dust emission from 4-5 uncovered sand barges parking near the coastline of Tuen Mun, the complainant concerns about the health problems to residents as the sand is blown to their apartments. After investigation, there is no adequate information to conclude the observed impact is related to this Contract.
- 8.2.8 No notification of summons or prosecution was received in the reporting period.
- 8.2.9 Environmental site inspection was carried out 4 times in March 2015. Recommendations on remedial actions were given to the Contractors for the deficiencies identified during the site audits.

#### 8.3 Recommendations

8.3.1 According to the environmental site inspections performed in the reporting month, the following recommendations were provided:

### Air Quality Impact

- All working plants and vessels on site should be regularly inspected and properly maintained to avoid dark smoke emission.
- All vehicles should be washed to remove any dusty materials before leaving the site.
- Haul roads should be sufficiently dampened to minimize fugitive dust generation.
- Wheel washing facilities should be properly maintained and reviewed to ensure properly functioning.
- Temporary exposed slopes and open stockpiles should be properly covered.
- Enclosure should be erected for cement debagging, batching and mixing operations.
- Water spraying should be provided to suppress fugitive dust for any dusty construction activity.
- Regular review and provide maintenance to dust control measures such as sprinkler system.

### **Construction Noise Impact**

- Quieter powered mechanical equipment should be used as far as possible.
- Noisy operations should be oriented to a direction away from sensitive receivers as far as possible.
- Proper and effective noise control measures for operating equipment and machinery on-site should be provided, such as erection of movable noise barriers, enclosure for noisy plants or enhancement works to provide sufficient acoustic decoupling measure(s). Closely check and replace the sound insulation materials regularly
- Vessels and equipment operating should be checked regularly and properly maintained.
- Noise Emission Label (NEL) shall be affixed to the air compressor and hand-held breaker operating within works area.
- Acoustic decoupling measures should be properly implemented for all existing and incoming
  construction vessels with continuous and regularly checking to ensure effective implementation of
  acoustic decoupling measures.

#### Water Quality Impact

- Regular review and maintenance of silt curtain systems, drainage systems and desilting facilities in order to make sure they are functioning effectively.
- Construction of seawall should be completed as early as possible.
- Regular inspect and review the loading process from barges to avoid splashing of material.
- Silt, debris and leaves accumulated at public drains, wheel washing bays and perimeter uchannels and desilting facilities should be cleaned up regularly.
- Silty effluent should be treated/ desilted before discharged. Untreated effluent should be prevented from entering public drain channel.
- Proper drainage channels/bunds should be provided at the site boundaries to collect/intercept the surface run-off from works areas.
- Exposed slopes and stockpiles should be covered up properly during rainstorm.

### Chemical and Waste Management

- All types of wastes, both on land and floating in the sea, should be collected and sorted properly
  and disposed of timely and properly. They should be properly stored in designated areas within
  works areas temporarily.
- All chemical containers, batteries and oil drums should be properly stored and labelled.
- All plants and vehicles on site should be properly maintained to prevent oil leakage. Proper measures, like drip trays and/or bundings, should be provided for retaining leaked oil/chemical from plants.
- All kinds of maintenance works should be carried out within roofed, paved and confined areas.
- All drain holes of the drip trays utilized within works areas should be properly plugged to avoid any oil and chemical waste leakage.
- Oil stains on soil surface, accumulated oil mixture and empty chemical containers should be cleared and disposed of as chemical waste.
- Regular review should be conducted for working barges and patrol boats to ensure sufficient
  measures and spill control kits were provided on working barges and patrol boats to avoid any
  spreading of leaked oil/chemicals.

## Landscape and Visual Impact

- All existing, retained/transplanted trees at the works areas should be properly fenced off and regularly inspected.
- Control night-time lighting and glare by hooding all lights.