

RECALIBRATION DUE DATE:

October 21, 2020

Certificate of Calibration

	Calibration Certification Information							
Cal. Date:	October 22	l, 2019	Roots	meter S/N:	438320	Ta:	295	°К
Operator:	Jim Tisch					Pa:	744.2	mm Hg
Calibration	Model #:	TE-5025A	Calil	brator S/N:	2456			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	1
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1		3.2	2.00	
	2	3	4	1	1.0180	6.3	4.00	1
	3	5	6	1	0.9030	7.9	5.00	1
	4	7	8	1	0.8620	8.8	5.50]
	5	9	10	1	0.7120	12.6	8.00]
			C	Data Tabula	ition]
			(/ Pa	V Tetd \				
	Vstd	Qstd	√∆H(<u>Patd</u>)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9849	0.6936	1.400	and the second se	0.9957	0.7012	0.8904	
	0.9808	0.9635	1.989	92	0.9915	0.9740	1.2592	1
	0.9787	1.0838	2.224	40	0.9894	1.0957	1.4078	1
	0.9775	1.1340	2.332	25	0.9882	1.1464	1.4765	1
	0.9724	1.3658	2.813		0.9831	1.3807	1.7808]
		m=	2.087			m=	1.30746	
	QSTD	b=	-0.035		QA	b=	-0.02244	
		r=	0.999	989		r= 0.999		
		A) / 1//D A D)	1	Calculatio				
			/Pstd)(Tstd/Ta	a)	Va= ΔVol((Pa-ΔP)/Pa) Qa= Va/ΔTime			
	Qsta=	Vstd/∆Time						
			For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	1/m ((√∆H(·	Pa <u>Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√∆⊦	l(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:						RECA	IBRATION	
Pstd:		mm Hg				mmonde	nual rocalibratio	n nor 1000
H. calibrat	Key						nual recalibrations	
	or manometer reading (in H2O) ter manometer reading (mm Hg)						Regulations Part S Reference Meth	
		perature (°K)			2000 - 00- 0 000000000000000000000000000	a and a sub-state and a sub-	ended Particulate	
and the second state of th		essure (mm l	Hg)					
: intercept					LITE	e Aunosphe	re, 9.2.17, page 3	50
n: slope								

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project : Cor	ntract No. HY	//2019/01 - H	ong Kong-Z	huhai-Macad	Brid	dge		Date	e of C	Calibration:	5-Feb-2
Location : Al			0 0			0				ation Date:	
Brand:		Tisch								echnician:	•
Model:		TE-5170		S/N:	HVS	S-01					
				COND	οιτιο	NS					
	Se	ea Level Pres	sure (hPa):	1020.6		Corre	ected Press	sure (mm H	g):	766	
		Tempe	erature (°C):	17.5			Tei	mperature (ł	<):	291	
				CALIBRATI	ON	ORIFICE					
		Make:		Tisch			Qstd Slop	e:		2.08799	
		Model:		TE-5025A		Qs	std Intercep	ot:	-	-0.03545	
	Calib	oration Date:		21-Oct-19			Expiry Dat	e:	2	21-Oct-20	
		S/N:		2456							
				CALIB	RAT	ION					
Plate No.	H2O (L)	H2O (R)	H2O	Qstd		I	IC			LINEAR	
	(in)	(in)	(in)	(m ³ /min)	((chart)	(correcte	,		EGRESSI	
18	11.00	-8.90	19.900	2.189		63.00	64.0			24.9577	
13	8.70	-7.70	16.400	1.988		58.00	58.9			8.7600	
10	7.60	-6.30	13.900	1.832		52.00	52.8		ff.=	0.9950	1
7	4.40	-4.30	8.700	1.453		44.00	44.7				
5	2.70	-3.30	6.000	1.209		39.00	39.6	4			
			- \ \ 1								
_		/Pstd)(Tstd/T	a))-b]				F	LOW RATE	E CH	ART	
	Pa/Pstd)(Tstd					70.00					
	dard flow rate										
	ed chart resp					60.00					<u> </u>
	art response										
	tor Qstd slop				Ξ	50.00					
	or Qstd interc	during calibra	tion (dog K)		esponse (IC)	40.00					
	•	ing calibration	· • • ,		pod	40.00					
ra = actuar		ing calibration	Res	30.00							
	-		art								
Pstd = 760 mm Hg For subsequent calculation of sampler flow:						20.00					
-			Actual Chart R	10.00							
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b) m = sampler slope						10.00					
•	er slope er intercept					0.00					
= chart re	-						0.000 0.50	00 1.000	1.50	2.000	2.500
	average temp	perature					_		_	o	
-	average temp						Sta	andard Flow F	≀ate (ı	m³/min)	
uv – uany c	average pres	Juic									

(By

Wan Ka Ho Project Consultant

Report Date: 14/2/2020

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project : Cor	ntract No. HY	//2019/01 - H	ong Kong-Z	huhai-Macad	Brid	ge		Date of	f Calibration	: 5-Feb-20
Location : Al	MS3C							Next Calib	oration Date	: 4-May-2
Brand:		Tisch							Technician	: Sam Fo
Model:		TE-5170		S/N:	HVS	-02				
				COND	ITION	NS				
	Se	ea Level Pres	sure (hPa):	1020.6		Corre	ected Pressu	ire (mm Hg):	766	
		Tempe	erature (°C):	17.5			Tem	perature (K):	291	
				CALIBRATI	ON C	RIFICE	E			
		Make:		Tisch			Qstd Slope:		2.08799	
		Model:		TE-5025A		Qs	std Intercept:		-0.03545	
	Calib	ration Date:		21-Oct-19			Expiry Date:		21-Oct-20	
		S/N:		2456						
				CALIB	RATI	ON		1		
Plate No.	H2O (L)	H2O (R)	H2O	Qstd		I	IC		LINEAF	
	(in)	(in)	(in)	(m ³ /min)	(0	chart)	(corrected)		REGRESSI	
18	11.40	-7.30	18.700	2.122		59.00	59.97	Slope =	25.0744	
13	9.10	-6.70	15.800	1.952		53.00	53.87	Intercept =	6.1741	
10	7.30	-5.30	12.600	1.745		50.00	50.82	Corr. coeff.=	0.9962	2
7	4.70	-4.20	8.900	1.469		42.00	42.69			
5	2.60	-3.00	5.600	1.169		35.00	35.58			
		/Pstd)(Tstd/T	a))-b]							
-	a/Pstd)(Tstd		a))-b]				FL	OW RATE C	HART	
	dard flow rate					70.00				
	ed chart resp									
	art response					60.00				
	tor Qstd slope					F0.00				
	or Qstd interc				9	50.00				
		during calibra	ation (dea K))	esponse (IC)	40.00		/		
	•	ing calibration			ods			•		
Tstd = 298 c	•	5	. 37		t Re	30.00				
Pstd = 760 r	-				har	20.00				
For subsequent calculation of sampler flow:						20.00				
-	298/Tav)(Pa	-		Actual Chart R	10.00					
m = sample	,,	· <u> </u>								
	r intercept				0.00					
I = chart re						0	0.000 0.500	1.000 1	.500 2.000	2.500
	average temp	perature					Ston	dard Flow Rate	(m ³ /min)	
Pav = daily a	average pres	sure			Otan		2 (m /mm)			

Tory

Wan Ka Ho Project Consultant

Report Date: 14/2/2020

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Proiect : Cor	ntract No. HY	//2019/01 - H	ona Kona-Z	huhai-Macad	Brid	dae		Date o	f Calibration:	5-Feb-2
Location : Al						-9-			bration Date:	
Brand:		Tisch							Technician:	-
Model:		TE-5170		S/N:	HVS	S-03				
				COND	ΙΤΙΟ	NS				
	Se	ea Level Pres	sure (hPa):	1020.6			ected Press	ure (mm Hg):	766	
		Tempe	erature (°C):	17.5			Tem	perature (K):	291	
				CALIBRATI	ON	ORIFICE				
		Make:		Tisch			Qstd Slope	:	2.08799	
		Model:		TE-5025A		Qs	std Intercept	:	-0.03545	
	Calib	oration Date:		21-Oct-19			Expiry Date	:	21-Oct-20	
		S/N:		2456						
				CALIB	RAT	ION		-		
Plate No.	H2O (L)	H2O (R)	H2O	Qstd		Ι	IC		LINEAR	2
	(in)	(in)	(in)	(m³/min)	((chart)	(corrected		REGRESSI	
18	10.90	-7.80	18.700	2.122		64.00	65.06		29.8113	
13	8.30	-6.50	14.800	1.890		58.00	58.96			
10	6.40	-5.40	11.800	1.689		52.00	52.86		0.9996	i
7	4.40	-4.00	8.400	1.428		44.00	44.73			
5	2.70	-2.80	5.500	1.159		36.00	36.59			
Calculation										
_		/Pstd)(Tstd/T	a))-b]				FL	OW RATE C	HART	
	Pa/Pstd)(Tstd					70.00				
	dard flow rate					, 0.00				
	ed chart resp					60.00				
	art response									
	tor Qstd slop				0	50.00				
	or Qstd interc	•			esponse (IC)	40.00				
	•	during calibra	, e ,		lod	40.00		•		
		ing calibration	n (mm Hg)	Res	30.00					
std = 298 c	-			art						
Pstd = 760 mm Hg For subsequent calculation of sampler flow:						20.00				
-	(298/Tav)(Pa		pier now:	Actual Chart R	10.00					
n = sample	. , .	v//00/]-D)		Ă	10.00					
•	er slope er intercept					0.00				
 = sample = chart re 	-						.000 0.500) 1.000 1	.500 2.000	2.500
	average temp	orature							_	
-	average temp						Star	idard Flow Rate	e (m³/min)	
av – ually a	average pies	Suic								

Tory

Wan Ka Ho Project Consultant

Report Date: 14/2/2020

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 940891CA200109(6)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description	: Laser dust monitor
Manufacturer	: SIBATA
Model No.	: LD-3B
Serial No.	: 296094
Specification Limit	: NA
Next Calibration Date	: 21-Oct-2020

Laboratory Information

Description	:	TSP high volume air sampler				
Serial No.	:	4350				
Date of Calibration	:	22-Oct-2019	Ambient Temperature : 25 °C			
Calibration Location	:	Ma Wan A1 Site Boundary				
Method Used	:	By direct comparison the weight of dust particle trapped in a filter paper using high				
		volume sampler (TSP method) for a certain period, with the reading of the UUT. They				
		should be placed at the same location and powered on and off at the same time.				

Calibration Results :

Reference concentration (mg/m ³)	Total count for 1 hour	CPM (Count per minute)
0.1287	3416	56.93
0.0888	2995	49.92
0.1141	3284	54.73

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

- 2. The interpolation equation : Concentration $(mg/m^3) = K \times [UUT reading (CPM)]$, where K = 0.002052
- 3. Correlation coefficient (r): 0.9983

Checked by :	Date : 10 - 2- 2010 Certified by : KT/Joung Date :/0 - 2 - 2020
CA-R-297 (22/07/2009)	Leung Kwok Tai (Assistant Manager)

** End of Report **

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 940891CA200109(4)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description	: Laser dust monitor
Manufacturer	: SIBATA
Model No.	: LD-3B
Serial No.	: 597310
Specification Limit	: NA
Next Calibration Date	: 21-Oct-2020

Laboratory Information

Description	;	TSP high volume air sampler				
Serial No.	:	4350				
Date of Calibration	:	22-Oct-2019	Ambient Temperature : 25 °C			
Calibration Location	:	Ma Wan A1 Site Boundary				
Method Used	:	By direct comparison the weight of dust particle trapped in a filter paper using high				
		volume sampler (TSP method) for a certain period, with the reading of the UUT. They				
		should be placed at the same location and powered on and off at the same time.				

Calibration Results :

Reference concentration (mg/m ³)	Total count for 1 hour	CPM (Count per minute)
0.1287	3608	60.13
0.0888	3311	55.18
0.1141	3533	58.88

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

- 2. The interpolation equation : Concentration (mg/m³) = K x [UUT reading (CPM)], where K = 0.001904
- 3. Correlation coefficient (r): 0.9922

____ Date : _____ Date : _____ Certified by : _____ Tumg_ Date : ______ Leung Kwok Tai (Assistant Manager) Checked by : CA-R-297 (22/07/2009)

** End of Report **

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.

T +852 2450 8233 | F +852 2450 6138 | E matlab@fugro.com | W fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Tel : +852 2450 8233 : +852 2450 6138 Fax E-mail : matlab@fugro.com Website : www.fugro.com

Report no.: 940891CA195965(3)

Page 1 of 1

CALIBRATION CERTIFICATE OF DUST METER

: Fugro Technical Services Limited Client

Project : Calibration Services

Client Supplied Information

Details of Unit Under Test, UUT

Description	: Laser dust monitor
Manufacturer	: SIBATA
Model No.	: LD-5R
Serial No.	: 466711
Specification Limit	: NA
Next Calibration Date	: 11-Jul-2020

Laboratory Information

Description	;	Reference balance	
Equipment ID.	;	R-053-12	
Date of Calibration	ł	12-Jul-2019	Ambient Temperature : 22 °C
Calibration Location	8 2	Calibration Laboratory of FTS	3
Method Used	:	By direct comparison the wei	ght of dust particle trapped in a filter paper using high
		volume sampler (TSP metho	d) for a certain period, with the reading of the UUT. They
		should be placed at the same	e location and powered on and off at the same time.

Calibration Results :

Reference concentration (mg/m ³)	Total count for 1 hour	CPM (Count per minute)		
0.0678	2060	34.33		
0.0424	1095	18.25		
0.0364	757	12.62		

Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The interpolation equation : Concentration (mg/m³) = K x [UUT reading (CPM)], where K = 0.002248

3. Correlation coefficient (r) : 0.9974

 Commy
 Date : 19 - 7 - 2019
 Certified by : KJ Loung Date : 30 - 7 - 3019

 D09)
 Leung Kwok Tai (Assistant Manager)

 Checked by : CA-R-297 (22/07/2009)

This report shall not be reproduced except in full with prior written approval from the Company.

^{**} End of Report **

CALIBRATION REPORT OF WIND METER

Project: Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge			ii-Macao Bridge	Date of Calibration:	5-Feb-2020
Location:	AMS3C			Next Calibration Date:	4-Jul-2020
Brandi	Global Water			Technician:	Sam Fong
Brand:		C/NI-	4047002400		
Model:	GL500-7-2	S/N:	1847003409		
			Anemometer		
Brand:	Benetech		Anemometer		
Model:	GM816	Equipment ID:	08		
Woder.	GMOTO	Equipment ib.	00		
			Procedures:		
1.	Wind Still Test:	The wind speed s	sensor was held by hand until	stabilized.	
1.	Wind Still Test:	The wind speed s	sensor was held by hand until	stabilized.	
1. 2.	Wind Still Test: Wind Speed Test:	•	sensor was held by hand until vas calibrated in-situ and com		ter.
2.	Wind Speed Test:	The wind meter v	vas calibrated in-situ and com	pared with the Anemome	
		The wind meter v	2	pared with the Anemome	

Wind Still Test:

Wind Speed (m/s)
0.00

Wind Speed Test:

Global Water (m/s)	Anemometer (m/s)		
2.3	2.6		
3.0	2.8		
3.4	3.0		

Wind Direction Test:

	Marine Compass (o)
252	250
72	70
0	357
340	341

- Cory

Report Date: 14/2/2020

Wan Ka Ho Project Consultant

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No. : 183057CA195782(1)

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description :	Anemometer
Manufacturer :	Benetech
Model No.	GM816
Serial No.	N/A
Equipment ID.:	WS-08
Next Calibration Date :	17-Jun-2020

Laboratory Information

Details of Reference Equipment -

Description :	Reference Anemometer			
Equipment ID.:	R-101-4			
Date of Calibration :	18-Jun-2019	Ambient Temperature	:	22 °C
Calibration Location	Calibration Laboratory o	f FTS		
Method Used : R-C-2	79			

Calibration Results :

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
2.05	1.0	-1.1
4.08	3.1	-1.0
6.07	4.8	-1.3
8.03	6.7	-1.3
10.14	8.8	-1.3

Remark :

1. The equipment being used in this calibration is traceable to recognized National Standards.

Checked by: William Date: 20-6-2019 Certified by: Kit Loung Date: 24-6-2019 Leung Kwok Tai (Assistant Manager) CA-R-297 (22/07/2009)

** End of Report **

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong Page 1 of 1

Report no.: 183057CA200018

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Sound Level Meter		
Manufacturer	:	Casella		
		Meter	Microphone	Preamplifier
Model No.	;	CEL-63X	CE-251	CEL-495
Serial No.	:	1488279	03876	002752
Equipment ID	:	N-52		
Next Calibration Date	:	12-Jan-2021		
Specification Limit	:	EN 61672: 2003 Type 1		

Laboratory Information

Details of Reference Equipment -

Description :	B & K Acoustic Multifunction Calib	prator 4226 (Traditional free fi	eld set	tting)
Equipment ID. :				07
Date of Calibration :	13-Jan-2020			
Calibration Location :	Calibration Laboratory of FTS	Ambient Temperature :	22	°C
Method Used :	By direct comparison			

Calibration Results :

Parameters		Mean Value (dB)	Specific	cation	Limit(dB)
	4000Hz	1.4	2.6	to	-0.6
	2000Hz	1.3	2.8	to	-0.4
A	1000Hz	0.0	1.1	to -1.1 to -4.6	
A-weigthing frequency	500Hz	-3.4	-1.8	to	-4.6
response	250Hz	-8.8	-7.2	to	-10.0
-	125Hz	-16.3	-14.6	to	-17.6
	63Hz	-26.3	-24.7	to	-27.7
	31.5Hz	-39.0	-37.4	to	-41.4
Differential level	94dB-104dB	0.0		± 0.6	
linearity	104dB-114dB	0.0		± 0.6	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 4. The UUT complies with EN 61672: 2003 Type 1 sound level meter for the above measurement.
- 5 The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by :	Lilliam	Date :	20-1-2020	_Certified by : _	KT Lung	Date :	21-1-2020
CA-R-297 (22/07/200	9)			Leung H	Kwok Tai (Assistan	t Manager))
		** End of Report **					

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Page 1 of 1

Report no.: 183057CA196350

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Address : Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Sound Level Meter		
Manufacturer	:	Casella		
		Meter	Microphone	Preamplifier
Model No.	:	CEL-63X	CE-251	CEL-495
Serial No.	:	1488289	02789	004065
Next Calibration Date	÷	23-Oct-2020		

Specification Limit : EN 61672: 2003 Type 1

Laboratory Information

Details of Reference Equipment -

Description:B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)Equipment ID.:R-108-1Date of Calibration :24-Oct-2019Ambient Temperature : 22

Calibration Location : Calibration Laboratory of FTS

Method Used : By direct comparison

Calibration Results :

Parame	ters	Mean Value (dB)	Specific	Specification Limit(d		
	4000Hz	2.1	2.6	to	-0.6	
	2000Hz	1.6	2.8	to	-0.4	
	1000Hz	0.1	1.1	to	-1.1	
A-weighting frequency response	500Hz	-3.3	-1.8	to	-4.6	
	250Hz	-8.7	-7.2	to	-10.0	
response	125Hz	-16.2	-14.6	to	-17.6	
	63Hz	-26.2	-24.7	to	-27.7	
	31.5Hz	-38.9	-37.4	to	-41.4	
Differential level linearity	94dB-104dB	0.0		± 0.6	3	
	104dB-114dB	0.0		± 0.6	6	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.
- 5 The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by :	William	Date : 1-11- 2019	_ Certified by : _	KT. Jour	Date :	1.11-2019
CA-R-297 (22/07/200	09)		Leu	ng Kwok Tai (A	sistant Man	ager)
		** E	End of Report **	V		

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 183057CA200018(1)

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Page 1 of 1

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

;	Sound Calibrator
:	Casella (Model CEL-120/1)
÷	2383886
:	N/A
:	12-Jan-2021
:	EN 60942: 2003 Type 1

Laboratory Information

Description	:	Reference Sound level r	meter			
Equipment ID.	:	R-119-1				
Date of Calibrat	tion	13-Jan-2020	Ambient Temperature :	22	°C	
Calibration Location : Calibration Laboratory of FTS						
Method Used	:	By direct comparison				

Calibration Results :

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)
94dB	-0.2 dB	
114dB	-0.1 dB	±0.4dB

Remarks :

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by :	William	Date :	20-1-2020	_ Certified by :_	KIJoung	Date : 21-1-2020
CA-R-297 (22/07/2009	1)			Leun	g Kwok Tai (Assist	ant Manager)

** End of Report **

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tol Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1 of 1

Report no.: 183057CA195873(2)

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	1	Sound Calibrator
Manufacturer	:	Casella (Model CEL-120/1)
Serial No.	:	4358250
Equipment ID	:	N-33
Next Calibration Date	:	25-Jul-2020
Specification Limit	:	EN 60942: 2003 Type 1

Laboratory Information

Description	12	Reference Sound leve	el meter		
Equipment ID.	:	R-119-1			
Date of Calibrat	tion	: 26-Jul-2019	Ambient Temperature :	22	°C
Calibration Location : Calibration Laboratory of FTS					
Method Used	:	By direct comparison			

Calibration Results :

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)
94dB	0.0 dB	±0.4dB
114dB	0.0 dB	±0.40D

Remarks :

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

William Date: 26-7-2019 Certified by: F J Jerus Date: 76-7-2019 Checked by : CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)

** End of Report **

This report shall not be reproduced except in full with prior written approval from the Company.