| Environmental<br>Certificate of Calibration                                                                                                                                                                        | BRATION<br>DATE:<br>per 11, 2021 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Calibration Certification Information                                                                                                                                                                              |                                  |
| Cal. Date: September 11, 2020 Rootsmeter S/N: 438320 Ta: 297 °K                                                                                                                                                    |                                  |
|                                                                                                                                                                                                                    | m Hg                             |
|                                                                                                                                                                                                                    | пп                               |
| Calibration Model #: TE-5025A Calibrator S/N: 2154                                                                                                                                                                 |                                  |
| Vol. Init Vol. Final ΔVol. ΔTime ΔP ΔΗ                                                                                                                                                                             |                                  |
| Run (m3) (m3) (m3) (min) (mm Hg) (in H2O)                                                                                                                                                                          |                                  |
| 1 1 2 1 1.4510 3.3 2.00                                                                                                                                                                                            |                                  |
| 2 3 4 1 1.0340 6.4 4.00                                                                                                                                                                                            |                                  |
| 3 5 6 1 0.9260 8.0 5.00                                                                                                                                                                                            |                                  |
| 4 7 8 1 0.8780 8.9 5.50                                                                                                                                                                                            |                                  |
| 5 9 10 1 0.7250 13.0 8.00                                                                                                                                                                                          |                                  |
| Data Tabulation                                                                                                                                                                                                    |                                  |
| Vstd Qstd $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$ Qa $\sqrt{\Delta H \left(Ta/Pa\right)}$                                                                                      |                                  |
| (m3) $(x-axis)$ $(y-axis)$ $Va$ $(x-axis)$ $(y-axis)$                                                                                                                                                              |                                  |
| 0.9929 0.6843 1.4123 0.9956 0.6862 0.8868                                                                                                                                                                          |                                  |
| 0.9888 0.9563 1.9973 0.9915 0.9589 1.2541                                                                                                                                                                          |                                  |
| 0.9867 1.0656 2.2330 0.9894 1.0685 1.4021                                                                                                                                                                          |                                  |
| 0.9855 1.1225 2.3420 0.9882 1.1255 1.4705                                                                                                                                                                          |                                  |
| 0.9801 1.3519 2.8246 0.9828 1.3556 1.7735                                                                                                                                                                          |                                  |
| m= 2.11508 m= 1.32442                                                                                                                                                                                              |                                  |
| QSTD b= -0.02962 QA b= -0.01860                                                                                                                                                                                    |                                  |
| r= 0.99993 r= 0.99993                                                                                                                                                                                              |                                  |
| Calculations                                                                                                                                                                                                       |                                  |
| Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta) Va= ΔVol((Pa-ΔP)/Pa)                                                                                                                                                             |                                  |
| Qstd= Vstd/ΔTime Qa= Va/ΔTime                                                                                                                                                                                      |                                  |
| For subsequent flow rate calculations:                                                                                                                                                                             |                                  |
| $\mathbf{Qstd} = 1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right) - b\right) \qquad \mathbf{Qa} = 1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right) - b\right)$ |                                  |
| Standard Conditions                                                                                                                                                                                                |                                  |
| Tstd: 298.15 °K RECALIBRATION                                                                                                                                                                                      |                                  |
| Pstd: 760 mm Hg                                                                                                                                                                                                    | oor 1009                         |
| Key US EPA recommends annual recalibration p   ΔH: calibrator manometer reading (in H2O) 40 Code of Federal Regulations Part 50 t                                                                                  |                                  |
| ΔH: calibrator manometer reading (in H2O)40 Code of Federal Regulations Part 50 tΔP: rootsmeter manometer reading (mm Hg)Appendix B to Part 50, Reference Method                                                   |                                  |
| Ta: actual absolute temperature (°K) Determination of Suspended Particulate M                                                                                                                                      | 1                                |
| Pa: actual barometric pressure (mm Hg) the Atmosphere, 9,2,17, page 30                                                                                                                                             |                                  |
| b: intercept                                                                                                                                                                                                       |                                  |
| m: slope                                                                                                                                                                                                           |                                  |

sch Environmental, Inc.

45 South Miami Avenue

illage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009



Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

### TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

| Project : Cor                               | ntract No. HY                   | (/2019/01 - H  | ong Kong-Z    | huhai-Macac           | Bridge                                                        |            |              | Date of        | Calibration: | 20-Apr-2 |
|---------------------------------------------|---------------------------------|----------------|---------------|-----------------------|---------------------------------------------------------------|------------|--------------|----------------|--------------|----------|
| Location : Al                               | MS2                             |                |               |                       |                                                               | Next Calib | ration Date: | 19-Jul-2       |              |          |
| Brand:                                      |                                 | Tisch          |               |                       |                                                               |            | -            | Technician:    | Ting Ch      |          |
| Model:                                      |                                 | TE-5170        |               | S/N:                  | HVS-01                                                        |            |              |                |              |          |
|                                             |                                 |                |               | COND                  | ITIONS                                                        |            |              |                |              |          |
|                                             | Se                              | ea Level Pres  | sure (hPa):   | 1013.2                | Co                                                            | prrected P | ressu        | re (mm Hg):    | 760          |          |
|                                             |                                 | Tempe          | erature (°C): | 23.4                  |                                                               |            | Temp         | perature (K):  | 297          |          |
|                                             |                                 |                |               | CALIBRATI             | ON ORIFI                                                      | CE         |              |                |              |          |
|                                             |                                 | Make:          |               | Tisch                 |                                                               | Qstd S     | Slope:       |                | 2.11508      |          |
|                                             |                                 | Model:         |               | TE-5025A              |                                                               | Qstd Inter | rcept:       |                | -0.02962     |          |
|                                             | Calib                           | oration Date:  |               | 11-Sep-20             |                                                               | Expiry     | Date:        |                | 11-Sep-21    |          |
|                                             |                                 | S/N:           |               | 2154                  |                                                               |            |              |                |              |          |
|                                             |                                 |                |               |                       | RATION                                                        |            |              |                |              |          |
| Plate No.                                   | H2O (L)                         | H2O (R)        | H2O           | Qstd                  | I                                                             | IC         |              |                | LINEAR       |          |
|                                             | (in)                            | (in)           | (in)          | (m <sup>3</sup> /min) | (chart)                                                       | ``         | ,            |                | REGRESSI     | NC       |
| 18                                          | 7.00                            | -3.00          | 10.000        | 1.513                 | 60.0                                                          |            | 0.15         | Slope =        | 37.6465      |          |
| 13                                          | 6.40                            | -2.70          | 9.100         | 1.444                 | 58.0                                                          |            | 8.14         | Intercept =    | 3.2541       |          |
| 10                                          | 5.50                            | -1.50          | 7.000         | 1.268                 | 50.0                                                          |            | 0.12         | Corr. coeff.=  | 0.9987       |          |
| 7                                           | 4.00                            | -0.50          | 4.500         | 1.019                 | 42.0                                                          |            | 2.10         |                |              |          |
| 5                                           | 3.20                            | 0.30           | 2.900         | 0.821                 | 34.0                                                          | 0 3        | 4.08         |                |              |          |
|                                             |                                 |                | -a)) b]       |                       |                                                               |            |              |                |              |          |
| -                                           |                                 | /Pstd)(Tstd/T  | a))-b]        |                       | FLOW RATE CHART                                               |            |              |                |              |          |
|                                             | Pa/Pstd)(Tstd<br>dard flow rate |                |               |                       | 70.0                                                          | 00         |              |                |              |          |
|                                             | ed chart resp                   |                |               |                       |                                                               |            |              |                |              |          |
|                                             | art response                    |                |               |                       | 60.0                                                          | 00         |              |                | 1            |          |
|                                             | tor Qstd slop                   |                |               |                       |                                                               |            |              |                |              |          |
|                                             | or Qstd interc                  |                |               |                       | <u>୍</u> ର୍ ୍ର 50.0                                           |            |              |                |              |          |
|                                             |                                 | during calibra | ation (deg K) | )                     | esbouse (IC)                                                  | 00         |              | /              |              |          |
| Pa = actual                                 | pressure dur                    | ing calibratio | n (mm Hg)     |                       | bdse                                                          |            |              | <b></b>        |              |          |
| Tstd = 298 c                                | deg K                           |                |               |                       | ພິ 30.0<br>ະ                                                  | 00         |              |                |              |          |
| Pstd = 760 mm Hg                            |                                 |                |               |                       | ра<br>С 20.0                                                  |            |              |                |              |          |
| For subsequent calculation of sampler flow: |                                 |                |               |                       | 20.0<br>19                                                    |            |              |                |              |          |
| 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)          |                                 |                |               |                       | 0.06 Sctual Chart Ro<br>0.02 Chart Ro<br>0.01 Actual Chart Ro | 00         |              |                |              |          |
| m = sampler slope                           |                                 |                |               |                       |                                                               |            |              |                |              |          |
| b = sampler intercept                       |                                 |                |               |                       | 0.0                                                           |            | 0.50         | 1 000          | 1 500        | 2 000    |
| I = chart response                          |                                 |                |               |                       |                                                               | 0.000      | 0.50         | 00 1.000       | 1.500        | 2.000    |
| Tav = daily a                               | average temp                    | perature       |               |                       |                                                               |            | Stand        | lard Flow Rate | (m³/min)     |          |
| Pav = daily a                               | average pres                    | sure           |               |                       |                                                               |            | 2.0.10       |                | 、········    |          |

Tory

Wan Ka Ho **Project Consultant** 

Report Date: 22/4/2021



Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

### TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

| Project · Co                                                                  | ntract No. HY                                          | //2019/01 - H | long Kong-7   | huhai-Macac           | Bride           |        |                              | Date of        | Calibration:          | 16-Jul-21 |
|-------------------------------------------------------------------------------|--------------------------------------------------------|---------------|---------------|-----------------------|-----------------|--------|------------------------------|----------------|-----------------------|-----------|
| Project : Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macac<br>Location : AMS2 |                                                        |               |               |                       |                 | ge     |                              |                | oration Date:         |           |
| Brand: Tisch                                                                  |                                                        |               |               |                       |                 |        |                              |                | Technician:           | -         |
| Model:                                                                        |                                                        |               |               |                       |                 | -01    |                              |                | rechnician.           | ring Chan |
| woder.                                                                        |                                                        |               |               | 0/N.                  | 1100            | -01    |                              |                |                       |           |
|                                                                               |                                                        |               |               | COND                  | ITION           | IS     |                              |                |                       |           |
|                                                                               | Se                                                     | ea Level Pres | ssure (hPa):  | 1013.2                |                 | Corre  | cted Pressu                  | re (mm Hg):    | 760                   |           |
|                                                                               |                                                        | Tempe         | erature (°C): | 23.4                  |                 |        | Temp                         | perature (K):  | 297                   |           |
|                                                                               |                                                        |               |               |                       |                 |        |                              |                |                       |           |
|                                                                               | CALIBRATION ORIFICE<br>Make: Tisch Qstd Slope: 2.11508 |               |               |                       |                 |        |                              |                |                       |           |
|                                                                               |                                                        | Model:        |               | TE-5025A              |                 |        | Qstd Slope:<br>td Intercept: |                | 2.11508<br>-0.02962   |           |
|                                                                               | Calib                                                  | ration Date:  |               | 11-Sep-20             |                 |        | Expiry Date:                 |                | -0.02902<br>11-Sep-21 |           |
|                                                                               |                                                        | S/N:          |               | 2154                  |                 |        | Expiry Date.                 |                | 11 000 21             |           |
|                                                                               |                                                        |               |               | CALIB                 | RATIO           | ON     |                              |                |                       |           |
|                                                                               | H2O (L)                                                | H2O (R)       | H2O           | Qstd                  |                 | I      | IC                           |                | LINEAR                |           |
| Plate No.                                                                     | (in)                                                   | (in)          | (in)          | (m <sup>3</sup> /min) | (C              | chart) | (corrected)                  | I              | REGRESSIC             | N         |
| 18                                                                            | 7.40                                                   | -3.80         | 11.200        | 1.600                 |                 | 60.00  | 60.15                        | Slope =        | 27.7246               |           |
| 13                                                                            | 6.80                                                   | -2.90         | 9.700         | 1.490                 |                 | 56.00  | 56.14                        | Intercept =    | 14.7766               |           |
| 10                                                                            | 5.20                                                   | -2.10         | 7.300         | 1.295                 |                 | 49.00  | 49.12                        | Corr. coeff.:  | 0.9943                |           |
| 7                                                                             | 4.30                                                   | -0.30         | 4.600         | 1.030                 |                 | 43.00  | 43.10                        |                |                       |           |
| 5                                                                             | 2.80                                                   | 0.20          | 2.600         | 0.778                 |                 | 37.00  | 37.09                        |                |                       |           |
| Calculation                                                                   |                                                        |               |               |                       |                 |        |                              |                |                       |           |
| -                                                                             | Sqrt(H2O(Pa                                            |               | a))-b]        |                       | FLOW RATE CHART |        |                              |                |                       |           |
|                                                                               | Pa/Pstd)(Tstd                                          |               |               |                       |                 | 70.00  |                              |                |                       |           |
|                                                                               | dard flow rate                                         |               |               |                       |                 |        |                              |                |                       |           |
|                                                                               | ed chart resp<br>art response                          |               |               |                       |                 | 60.00  |                              |                |                       |           |
|                                                                               | tor Qstd slop                                          |               |               |                       |                 | 50.00  |                              |                |                       |           |
|                                                                               | or Qstd interc                                         |               |               |                       | <u>S</u>        | 50.00  |                              |                |                       |           |
|                                                                               | temperature                                            | -             | ation (dea K) |                       | esponse (IC)    | 40.00  |                              |                |                       |           |
|                                                                               | •                                                      | •             |               |                       | ods             |        |                              |                |                       |           |
| Pa = actual pressure during calibration (mm Hg)<br>Tstd = 298 deg K           |                                                        |               |               |                       |                 | 30.00  |                              |                |                       |           |
| Pstd = 760 mm Hg                                                              |                                                        |               |               |                       | Char            | 20.00  |                              |                |                       |           |
| For subsequent calculation of sampler flow:                                   |                                                        |               |               |                       | al C            | 20.00  |                              |                |                       |           |
| 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)                                            |                                                        |               |               |                       | Actual Chart R  | 10.00  |                              |                |                       |           |
| m = sampler slope                                                             |                                                        |               |               |                       |                 |        |                              |                |                       |           |
| b = sampler intercept                                                         |                                                        |               |               |                       |                 | 0.00   |                              | 00 1 000       | 1.500                 |           |
| I = chart response                                                            |                                                        |               |               |                       |                 | 0.     | .000 0.50                    | 00 1.000       | 1.500                 | 2.000     |
| Tav = daily average temperature                                               |                                                        |               |               |                       |                 |        | Stand                        | dard Flow Rate | (m <sup>3</sup> /min) |           |
| Pav = daily average pressure                                                  |                                                        |               |               |                       |                 |        |                              |                | ······                |           |

Tory

Wan Ka Ho Project Consultant

Report Date: 17/7/2021



Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

# TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

| Project : Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Date of Calibration: 20-Apr-21 |                |                 |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                       |     |  |
|--------------------------------------------------------------------------------------------------|----------------|-----------------|------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|-----------------------|-----|--|
| Location : A                                                                                     | MS3C           |                 | 0 0              |                       | U U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |                  | ration Date: 19-J     | •   |  |
| Brand:                                                                                           |                | Tisch           |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -              | Technician: Ting | ) Chan                |     |  |
| Model:                                                                                           |                | TE-5170         |                  | S/N:                  | HVS-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                  |                       | ,   |  |
|                                                                                                  |                |                 |                  | COND                  | ITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                  |                       |     |  |
|                                                                                                  | Se             | ea Level Pres   | sure (hPa):      | 1013.2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ected Pressu   | re (mm Ha):      | 760                   |     |  |
|                                                                                                  |                |                 | erature (°C):    | 23.4                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | perature (K):    | 297                   |     |  |
|                                                                                                  |                |                 |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                       |     |  |
| CALIBRATION ORIFICE                                                                              |                |                 |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                       |     |  |
|                                                                                                  |                | Make:           |                  | Tisch                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Qstd Slope:    |                  | 2.11508               |     |  |
|                                                                                                  | <b>•</b>       | Model:          |                  | TE-5025A              | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | std Intercept: |                  | -0.02962              |     |  |
|                                                                                                  |                | ration Date:    |                  | 11-Sep-20             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Expiry Date:   |                  | 11-Sep-21             |     |  |
|                                                                                                  |                | S/N:            |                  | 2154                  | RATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                  |                       |     |  |
|                                                                                                  | H2O (L)        | H2O (R)         | H2O              | Qstd                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IC             |                  | LINEAR                |     |  |
| Plate No.                                                                                        | (in)           | (in)            | (in)             | (m <sup>3</sup> /min) | (chart)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (corrected)    |                  |                       |     |  |
| 18                                                                                               | 7.50           | -4.80           | 12.300           | 1.676                 | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.15          | Slope =          | 32.6644               |     |  |
| 13                                                                                               | 6.40           | -3.50           | 9.900            | 1.505                 | 52.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.13          | Intercept =      | 4.0267                |     |  |
| 10                                                                                               | 5.10           | -2.40           | 7.500            | 1.312                 | 46.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46.11          | Corr. coeff.=    | 0.9956                |     |  |
| 7                                                                                                | 3.80           | -1.00           | 4.800            | 1.052                 | 38.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.09          |                  |                       |     |  |
| 5                                                                                                | 2.90           | -0.10           | 3.000            | 0.835                 | 32.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.08          |                  |                       |     |  |
| Calculation                                                                                      | is:            |                 |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •              |                  |                       |     |  |
| -                                                                                                | • • •          | /Pstd)(Tstd/T   | a))-b]           |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FI (           | OW RATE CH       |                       |     |  |
|                                                                                                  | Pa/Pstd)(Tstd  |                 |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                       |     |  |
|                                                                                                  | dard flow rate |                 |                  |                       | 70.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                  |                       |     |  |
|                                                                                                  | ed chart resp  |                 |                  |                       | 60.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                  | <b>&gt;</b>           |     |  |
|                                                                                                  | art response   |                 |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                       |     |  |
|                                                                                                  | tor Qstd slop  |                 |                  |                       | <u>ତ</u> 50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |                       | -   |  |
|                                                                                                  | or Qstd interc | •               | tions (dense IZ) |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                       |     |  |
|                                                                                                  | •              | during calibra  |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                       |     |  |
| Pa = actual<br>Tstd = 298 c                                                                      | •              | ing calibratior | n (mm ⊟g)        |                       | a<br>20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |                       | _   |  |
|                                                                                                  | -              |                 |                  |                       | Jart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                  |                       |     |  |
| Pstd = 760 mm Hg<br>For subsequent calculation of sampler flow:                                  |                |                 |                  |                       | ්ටි 20.00<br>ල                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |                       | -   |  |
| 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)                                                               |                |                 |                  |                       | 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 |                |                  |                       |     |  |
| m = sampler slope                                                                                |                |                 |                  |                       | <ul><li>↓ ↓ 0.00</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                  |                       |     |  |
|                                                                                                  | er intercept   |                 |                  |                       | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                  |                       |     |  |
| I = chart re                                                                                     | -              |                 |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000 0.5      | 00 1.000         | 1.500 2.0             | 000 |  |
|                                                                                                  | average temp   | perature        |                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ston           | dard Flow Rato   | (m <sup>3</sup> /min) |     |  |
| Pav = daily a                                                                                    | average pres   | sure            |                  |                       | Standard Flow Rate (m <sup>3</sup> /min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                  |                       |     |  |

(By

Wan Ka Ho **Project Consultant** 

Report Date: 22/4/2021



Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

# TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

| Proiect : Co                                | ntract No. HY              | //2019/01 - H  | ona Kona-Z          | huhai-Macad           | Brid           | dae     |                   | 11271 | D          | ate of  | Calibration: | 16-Jul-2 |
|---------------------------------------------|----------------------------|----------------|---------------------|-----------------------|----------------|---------|-------------------|-------|------------|---------|--------------|----------|
| Location : AMS3C                            |                            |                |                     |                       |                | .90     |                   |       |            |         | ration Date: |          |
| Brand:                                      |                            |                |                     |                       |                |         |                   |       | -          |         | Technician:  |          |
| Model:                                      |                            | TE-5170        |                     | S/N:                  | HVS            | S-02    |                   |       |            |         |              | 0 -      |
|                                             |                            |                |                     |                       |                |         |                   |       |            |         |              |          |
|                                             |                            |                | <i>"</i> <b>–</b> ) | COND                  |                |         |                   |       | ,          |         |              |          |
|                                             | Se                         | ea Level Pres  |                     | 1013.2                |                | Corre   | ected F           |       | ure (mm    | •       | 760          |          |
|                                             |                            | Tempe          | erature (°C):       | 23.4                  |                |         |                   | Tem   | perature   | e (K):  | 297          |          |
|                                             |                            |                |                     | CALIBRATI             | ON             | ORIFICE |                   |       |            |         |              |          |
|                                             |                            | Make:          |                     | Tisch                 |                |         | Qstd S            | Slope | :          |         | 2.11508      |          |
|                                             |                            | Model:         |                     | TE-5025A              |                | Qs      | td Inte           | rcept | :          |         | -0.02962     |          |
|                                             | Calib                      | ration Date:   |                     | 11-Sep-20             |                |         | Expiry            | Date  | :          |         | 11-Sep-21    |          |
|                                             |                            | S/N:           |                     | 2154                  |                |         |                   |       |            |         |              |          |
|                                             |                            |                |                     | CALIB                 | RAT            | ION     |                   |       |            |         |              |          |
| Plate No.                                   | H2O (L)                    | H2O (R)        | H2O                 | Qstd                  |                | I       | IC                |       | LINEAR     |         |              |          |
|                                             | (in)                       | (in)           | (in)                | (m <sup>3</sup> /min) | (              | (chart) | , ,               |       | REGRESSION |         |              |          |
| 18                                          | 5.90                       | -11.40         | 17.300              | 1.985                 |                | 59.00   |                   | 59.14 |            | pe =    | 30.5359      |          |
| 13                                          | 4.80                       | -10.20         | 15.000              | 1.850                 |                | 53.00   | 53.13 Intercept = |       | •          | -2.3129 |              |          |
| 10                                          | 3.70                       | -9.10          | 12.800              | 1.710                 |                | 50.00   |                   | 50.12 |            | oeff.=  | 0.9971       |          |
| 7                                           | 3.00                       | -6.40          | 9.400               | 1.467                 |                | 42.00   |                   | 12.10 |            |         |              |          |
| 5                                           | 2.10                       | -4.30          | 6.400               | 1.213                 |                | 35.00   |                   | 35.08 |            |         |              |          |
| Calculation                                 | i <b>s:</b><br>Sqrt(H2O(Pa | /Pstd)(Tstd/T  | a))-b]              |                       |                |         |                   |       |            |         |              |          |
| =                                           | Pa/Pstd)(Tstd              |                | u)) b]              |                       |                |         |                   | FL    | OW RA      | TE CH   | HART         |          |
|                                             | dard flow rate             |                |                     |                       |                | 70.00   |                   |       |            |         |              |          |
|                                             | ed chart resp              |                |                     |                       |                |         |                   |       |            |         |              |          |
|                                             | art response               |                |                     |                       |                | 60.00   |                   |       |            |         | 1            |          |
|                                             | tor Qstd slop              |                |                     |                       | 0              | 50.00   |                   |       |            |         |              |          |
| b = calibrate                               | or Qstd interc             | cept           |                     |                       | ) e            | 00.00   |                   |       |            |         |              |          |
| Ta = actual                                 | temperature                | during calibra | ation (deg K)       |                       | esponse (IC)   | 40.00   |                   |       |            | _/      |              |          |
| Pa = actual                                 | pressure dur               | ing calibratio | n (mm Hg)           |                       | espe           |         |                   |       |            | 1       |              |          |
| Tstd = 298 deg K                            |                            |                |                     |                       |                | 30.00   |                   |       |            |         |              |          |
| Pstd = 760 mm Hg                            |                            |                |                     |                       |                | 20.00   |                   |       |            |         |              |          |
| For subsequent calculation of sampler flow: |                            |                |                     |                       | Actual Chart R | 20.00   |                   |       |            |         |              |          |
| 1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)          |                            |                |                     |                       | Acti           | 10.00   |                   |       |            |         |              |          |
| m = sampler slope                           |                            |                |                     |                       |                |         |                   |       |            |         |              |          |
| b = sampler intercept                       |                            |                |                     |                       |                | 0.00    | .000              | 0.500 | ) 1.000    | 7 14    | 500 2.000    | 2.500    |
| I = chart response                          |                            |                |                     |                       |                | 0       | .000              | 0.500 | , 1.00     | J 1     | 2.000        | 2.300    |
| Tav = daily average temperature             |                            |                |                     |                       |                |         |                   | Star  | idard Flo  | w Rate  | (m³/min)     |          |
| Pav = daily average pressure                |                            |                |                     |                       |                |         |                   |       |            |         | . ,          |          |

Tory

Wan Ka Ho Project Consultant

Report Date: 17/7/2021



# CALIBRATION REPORT OF WIND METER

Project: Contract No. HY/2019/01 - Hong Kong-Zhuhai-Macao Bridge Date of Calibration: 30-Jun-2021 Location: AMS3C Next Calibration Date: 29-Dec-2021 Technician: Ting Chan **Global Water** Brand: GL500-7-2 Model: Anemometer Brand: Smart Sensor Serial No: H0423689 Model: AR816 Procedures: 1. Wind Still Test: The wind speed sensor was held by hand until stabilized. 2. Wind Speed Test: The wind meter was calibrated in-situ and compared with the Anemometer. 3. Wind Direction Test: The wind meter was calibrated in-situ and compared with a marine compass from four directions.

Wind Still Test:

| Wind Speed (m/s) |
|------------------|
| 0.00             |

Wind Speed Test:

| Global Water (m/s) | Anemometer (m/s) |
|--------------------|------------------|
| 0.7                | 0.9              |
| 2.3                | 2.4              |
| 3.2                | 3.1              |

Wind Direction Test:

|     | Marine Compass (o) |
|-----|--------------------|
| 1   | 360                |
| 70  | 71                 |
| 242 | 242                |
| 310 | 312                |

Cory

Report Date: 1/7/2021

Wan Ka Ho Project Consultant



Report no.: 940891CA202793(1)

Page 1 of 1

# CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

#### **Client Supplied Information**

Details of Unit Under Test, UUT

| Description           | : Laser dust monitor |
|-----------------------|----------------------|
| Manufacturer          | : SIBATA             |
| Model No.             | : LD-5R              |
| Serial No.            | : 761106             |
| Specification Limit   | : NA                 |
| Next Calibration Date | : 26-Nov-2021        |
|                       |                      |

### Laboratory Information

| Description          | : 1. Balance 2. TSP high volume air sampler              |                              |
|----------------------|----------------------------------------------------------|------------------------------|
| Equipment ID. / Seri | D. : 1. C-065-9 2. 4350                                  |                              |
| Date of Calibration  | 27-Nov-2020 Ambient Temperature : 25 ± 10                | °C                           |
| Calibration Location | General Chemical Laboratory of FTS and Ma Wan A1 S       | ite Boundary                 |
| Method Used          | By direct comparison the weight of dust particle trapped | in a filter paper using high |
|                      | olume sampler (TSP method) for a certain period, with    | the reading of the UUT. They |
| y en w               | hould be placed at the same location and powered on a    | and off at the same time.    |

#### Calibration Results :

| Reference concentration (mg/m <sup>3</sup> ) | Total count for 1 hour | CPM (Count per minute) |
|----------------------------------------------|------------------------|------------------------|
| 0.3486                                       | 5134                   | 85.57                  |
| 0.1257                                       | 4394                   | 73.23                  |
| 0.0943                                       | 4408                   | 73.47                  |

#### Remarks:

1. The equipment being used in this calibration is traceable to recognized National Standards.

- 2. The interpolation equation : Concentration  $(mg/m^3) = K \times [UUT reading (CPM)]$ , where K = 0.002448
- 3. Correlation coefficient (r): 0.9916

| Checked by :       | Conny | _Date :_ | 30-12-2020 | _ Certified by :_ | K.T. Leung       | _ Date : | 5-1-2021 |
|--------------------|-------|----------|------------|-------------------|------------------|----------|----------|
| CA-R-297 (22/07/20 | 09)   |          |            | Leung             | Kwok Tai (Assist | ant Mana | ger)     |

\*\* End of Report \*\*

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com



Report no.: 940891CA202730(7)

Page 1 of 1

# CALIBRATION CERTIFICATE OF DUST METER

Client : Fugro Technical Services Limited

Project : Calibration Services

#### **Client Supplied Information**

Details of Unit Under Test, UUT

| Laser dust monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SIBATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| LD-5R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 882146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22-Nov-2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| The second secon |

#### Laboratory Information

| Description           |      | : 1. Balance          |      | 2. TSP high volume air sampler                                  |
|-----------------------|------|-----------------------|------|-----------------------------------------------------------------|
| Equipment ID. / Seria | al i | no.: 1.C-065-9        |      | 2. 4350                                                         |
| Date of Calibration   | :    | 23-Nov-2020           | A    | mbient Temperature : 25 ± 10 °C                                 |
| Calibration Location  | :    | General Chemical La   | abc  | pratory of FTS and Ma Wan A1 Site Boundary                      |
| Method Used           | :    | By direct comparison  | n th | e weight of dust particle trapped in a filter paper using high  |
|                       |      | volume sampler (TSI   | Ρr   | nethod) for a certain period, with the reading of the UUT. They |
|                       |      | should be placed at t | the  | same location and powered on and off at the same time.          |

#### Calibration Results :

| Reference concentration (mg/m <sup>3</sup> ) | Total count for 1 hour | CPM (Count per minute) |
|----------------------------------------------|------------------------|------------------------|
| 0.0915                                       | 2788                   | 46.47                  |
| 0.0469                                       | 2287                   | 38.12                  |
| 0.1172                                       | 3129                   | 52.15                  |

#### **Remarks:**

1. The equipment being used in this calibration is traceable to recognized National Standards.

- 2. The interpolation equation : Concentration  $(mg/m^3) = K \times [UUT reading (CPM)]$ , where K = 0.001869
- 3. Correlation coefficient (r): 0.9990

| CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager) | Checked by :          | _ Date :_ | 15-12-2020 | _ Certified by :_ | K.T. Tenna       | Date : 15-12-2020 |
|----------------------------------------------------------|-----------------------|-----------|------------|-------------------|------------------|-------------------|
|                                                          | CA-R-297 (22/07/2009) |           |            | Leung             | Kwok Tai (Assist | ant Manager)      |

\*\* End of Report \*\*

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full.



5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 203258CA202302(1)

Page 1 of 1

# **CALIBRATION CERTIFICATE OF SOUND LEVEL METER**

**Client Supplied Information** 

Client : Fugro Technical Services Ltd.

**Project : Calibration Services** 

Details of Unit Under Test, UUT

| Description  | : | Sound Level Meter |  |
|--------------|---|-------------------|--|
| Manufacturer | : | Casella           |  |
|              |   | Meter             |  |
| Model No.    | : | CEL-63X           |  |

|              |   | Meter   | Microphone | Preamplifier |
|--------------|---|---------|------------|--------------|
| Model No.    | : | CEL-63X | CE-251     | CEL-495      |
| Serial No.   | : | 1488295 | 02795      | 003538       |
| Equipment ID | : | N-54    |            |              |
|              |   |         |            |              |

| Next Calibration Date |   | 29-Oct-2021              |
|-----------------------|---|--------------------------|
| Specification Limit   | : | EN 61672-1: 2003 Class 1 |

### Laboratory Information

Details of Reference Equipment -

| Description :        |   | B & K Acoustic Multifunction Calib | rator 4226 (Traditional fr | ee | field setting) |
|----------------------|---|------------------------------------|----------------------------|----|----------------|
| Equipment ID. :      |   | R-108-1                            |                            |    |                |
| Date of Calibration  | ; | 30-Oct-2020                        |                            |    |                |
| Calibration Location | : | Calibration Laboratory of FTS      | Ambient Temperature        | :  | 20±2 °C        |
| Method Used          |   | By direct comparison               | Relative Humidity          | :  | <80% R.H.      |

### **Calibration Results :**

| Paramet                                                                 | ters        | Mean Value (dB) | Specific | ation | Limit(dB) |
|-------------------------------------------------------------------------|-------------|-----------------|----------|-------|-----------|
|                                                                         | 4000Hz      | 1.0             | 2.6      | to    | -0.6      |
|                                                                         | 2000Hz      | -0.2            | 2.8      | to    | -0.4      |
|                                                                         | 1000Hz      | 0.0             | 1.1      | to    | -1.1      |
| A-weigthing<br>frequency<br>response<br>Differential level<br>linearity | 500Hz       | -3.3            | -1.8     | to    | -4.6      |
|                                                                         | 250Hz       | -8.7            | -7.2     | to    | -10.0     |
|                                                                         | 125Hz       | -16.2           | -14.6    | to    | -17.6     |
|                                                                         | 63Hz        | -26.1           | -24.7    | to    | -27.7     |
|                                                                         | 31.5Hz      | -38.7           | -37.4    | to    | -41.4     |
|                                                                         | 94dB-104dB  | 0.0             |          | ± 0.6 | 6         |
|                                                                         | 104dB-114dB | 0.1             |          | ± 0.6 | 6         |

#### **Remarks**:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast.
- 4. The UUT does comply with EN 61672-1: 2003 Class 1 sound level meter for the above measurement.
- 5 The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

| Checked by :         | Lilliam | Date : | 4-11-2020 | _ Certified by : _ | K.T. Toung        | _ Date : _ | 4.11.2020 |
|----------------------|---------|--------|-----------|--------------------|-------------------|------------|-----------|
| CA-R-297 (22/07/2009 | )       |        |           | Leung              | Kwok Tai (Assista | nt Manager | )         |
|                      |         |        | ** E      | nd of Report **    |                   |            |           |



Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

#### Report no.: 203258CA202083(1)

Page 1 of 1

# **CALIBRATION CERTIFICATE OF SOUND LEVEL METER**

**Client Supplied Information** 

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

| Description  | : | Sound Level Meter |
|--------------|---|-------------------|
| Manufacturer | : | Casella           |
|              |   |                   |

|                       |   | Meter                  | Microphone | Preamplifier |
|-----------------------|---|------------------------|------------|--------------|
| Model No.             | : | CEL-63X                | CE-251     | CEL-495      |
| Serial No.            | ; | 1488300                | 03456      | 002850       |
| Equipment ID          | : | N/A                    |            |              |
| Next Calibration Date | ÷ | 04-Oct-2021            |            |              |
| Specification Limit   | : | EN 61672-1: 2003 Class | 1          |              |

#### Laboratory Information

#### **Details of Reference Equipment -**

| Description :          | B & K Acoustic Multifunction Calil | prator 4226 (Traditional free field setting) |  |
|------------------------|------------------------------------|----------------------------------------------|--|
| Equipment ID. :        | R-108-1                            |                                              |  |
| Date of Calibration :  | 05-Oct-2020                        |                                              |  |
| Calibration Location : | Calibration Laboratory of FTS      | Ambient Temperature : 20±2 °C                |  |
| Method Used :          | By direct comparison               | Relative Humidity : <80% R.H.                |  |

#### **Calibration Results :**

| Parame                   | ters        | Mean Value (dB) | Specification Limit(dB) |    |       |  |
|--------------------------|-------------|-----------------|-------------------------|----|-------|--|
|                          | 4000Hz      | 0.8             | 2.6                     | to | -0.6  |  |
|                          | 2000Hz      | 1.2             | 2.8                     | to | -0.4  |  |
|                          | 1000Hz      | 0.0             | 1.1                     | to | -1.1  |  |
| A-weigthing<br>frequency | 500Hz       | -3.3            | -1.8                    | to | -4.6  |  |
| response                 | 250Hz       | -8.7            | -7.2                    | to | -10.0 |  |
|                          | 125Hz       | -16.1           | -14.6                   | to | -17.6 |  |
|                          | 63Hz        | -26.2           | -24.7                   | to | -27.7 |  |
|                          | 31.5Hz      | -39.2           | -37.4                   | to | -41.4 |  |
| Differential level       | 94dB-104dB  | 0.1             | ± 0.6                   |    |       |  |
| linearity                | 104dB-114dB | 0.0             | ± 0.6                   |    |       |  |

#### **Remarks**:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast.
- 4. The UUT does comply with EN 61672-1: 2003 Class 1 sound level meter for the above measurement.
- 5 The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

| Checked by :         | Asilliam | Date : | <u>7- 10 - 2010</u> Certified by : | KLY           | Coun & Date :    | 8.10.2020 |
|----------------------|----------|--------|------------------------------------|---------------|------------------|-----------|
| CA-R-297 (22/07/2009 | 9)       |        | Leung                              | g Kwok Tai (/ | Assistant Manage | r)        |
|                      |          |        | ** End of Report *                 |               | $\smile$         |           |

The copyright of this report is owned by Fugro Technical Services Limited. This report shall not be reproduced except in full. **T** +852 2450 8233 | **F** +852 2450 6138 | **E** matlab@fugro.com | **W** fugro.com



Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 203258CA202146(2)

# **CALIBRATION CERTIFICATE OF SOUND CALIBRATOR**

Page 1 of 1

Client : Fugro Technical Services Ltd.

**Project : Calibration Services** 

### **Client Supplied Information**

### Details of Unit Under Test, UUT

| Description           |   | : :  | Sound Calibrator          |
|-----------------------|---|------|---------------------------|
| Manufacturer          |   | : (  | Casella (Model CEL-120/1) |
| Serial No.            |   | : :  | 2383707                   |
| Equipment ID          |   | : 1  | N/A                       |
| Next Calibration Date | : | 14-( | Oct-2021                  |
| Specification Limit   | : | ΕN   | 60942: 2003 Class 1       |

# Laboratory Information

### **Details of Calibration Equipment**

| Description :                     | Reference Sound level meter   |                               |  |  |  |  |
|-----------------------------------|-------------------------------|-------------------------------|--|--|--|--|
| Equipment ID. :                   | -119-1                        |                               |  |  |  |  |
| Date of Calibration : 15-Oct-2020 |                               |                               |  |  |  |  |
| Calibration Location :            | Calibration Laboratory of FTS | Ambient Temperature : 20±2 °C |  |  |  |  |
| Method Used :                     | By direct comparison          | Relative Humidity : <80% R.H. |  |  |  |  |

# Calibration Results :

| Parameters (Setting of UUT) | Mean Value (error of measurement) | Specification Limit(dB) |  |  |
|-----------------------------|-----------------------------------|-------------------------|--|--|
| 94dB                        | 94dB -0.1 dB                      |                         |  |  |
| 114dB                       | -0.2 dB                           | ±0.4dB                  |  |  |

#### Remarks :

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The unit under test complies with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the unit-under-test and the values measured at the time of the test. Any uncertainties quoted will not include allowances for the environmental changes, variation and shock during transportation, or the capability of any other laboratory to repeat the measurement.

| Checked by :         | Lulliam | Date : | 19-10-2020 | Certified by : | K.T. Teun (      | Date :    | 19-10-2020 |
|----------------------|---------|--------|------------|----------------|------------------|-----------|------------|
| CA-R-297 (22/07/2009 | ))      |        |            | Leung          | Kwok Tai (Assist | ant Manag | ger)       |

\*\* End of Report \*\*



5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Report no.: 203258CA202018(1)

# **CALIBRATION CERTIFICATE OF SOUND CALIBRATOR**

Page 1 of 1

#### **Client Supplied Information**

Client : Fugro Technical Services Ltd.

### **Project : Calibration Services**

#### Details of Unit Under Test, UUT

| Description           | : | Sound Calibrator          |  |  |  |  |  |
|-----------------------|---|---------------------------|--|--|--|--|--|
| Manufacturer          | : | Casella (Model CEL-120/1) |  |  |  |  |  |
| Serial No.            | : | 2383982                   |  |  |  |  |  |
| Equipment ID          | : | N/A                       |  |  |  |  |  |
| Next Calibration Date | : | 28-Sep-2021               |  |  |  |  |  |
| Specification Limit   | ; | EN 60942: 2003 Class 1    |  |  |  |  |  |

#### Laboratory Information

| Description :       | Reference Sound level meter       |                              |
|---------------------|-----------------------------------|------------------------------|
| Equipment ID. :     | R-119-1                           |                              |
| Date of Calibration | : 29-Sep-2020                     | Ambient Temperature : 22 °C  |
| Calibration Locatio | n : Calibration Laboratory of FTS | Relative Humidity : 80% R.H. |
| Method Used :       | By direct comparison              |                              |

#### **Calibration Results :**

| Parameters (Setting of UUT) | arameters (Setting of UUT) Mean Value (error of measurement) |        |  |  |  |  |
|-----------------------------|--------------------------------------------------------------|--------|--|--|--|--|
| 94dB                        | -0.1 dB                                                      |        |  |  |  |  |
| 114dB                       | -0.2 dB                                                      | ±0.4dB |  |  |  |  |

### **Remarks**:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

| Checked by :         | Lilliam | Date :_ | 6-10-2020 | Certi | fied by : | :_K    | J. Lour    | NA     | Date :   | 6-1  | 0. 20 | 120 |
|----------------------|---------|---------|-----------|-------|-----------|--------|------------|--------|----------|------|-------|-----|
| CA-R-297 (22/07/2009 | )       |         |           |       | Leu       | ing Kv | wok Tai (A | ssista | int Mana | ger) |       |     |
|                      |         |         | -lash     |       |           |        |            |        |          |      |       |     |

\*\* End of Report \*\*