Dragages -China Harbour-VSL JV

Contract HY/2011/09

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report

July 2013 (Version 2.0)

Certified By

Dr. H.F. Chan

Environmental Team Leader

(Date: 15 August 2013)

REMARKS:

The information supplied and contained within this report is, to the best of our knowledge, correct at the time of printing.

CINOTECH accepts no responsibility for changes made to this report by third parties

CINOTECH CONSULTANTS LTD

Room 1710, Technology Park, 18 On Lai Street, Shatin, NT, Hong Kong Tel: (852) 2151 2083 Fax: (852) 3107 1388 Email: info@cinotech.com.hk

TABLE OF CONTENTS

	Pa	ıge
EXI	ECUTIVE SUMMARY	1
Intro	oduction	1
	ironmental Monitoring and Audit Progress	
Brea	aches of Action and Limit Levels	1
	ıre Key Issues	
1	INTRODUCTION	5
- D		
	pose of the report	
Siru	cture of the report	
2	CONTRACT INFORMATION	7
Bac	kground	7
Con	tract Organisation	8
Con	struction Programme	9
Sum	mary of Construction Works Undertaken During Reporting Month	10
	us of Environmental Licences, Notification and Permits	
3	AIR QUALITY MONITORING	13
	nitoring Requirements	
	nitoring Location	
	nitoring Equipment	
	nitoring Parameters, Frequency and Duration	
	nitoring Methodology and QA/QC Procedure	
	our and 24-hour TSP Air Quality Monitoring	
	S Installation	
	ers Preparation	
	rating/Analytical Proceduresults and Observations	
	nt and Action Plan	
4	NOISE MONITORING	
	nitoring Requirements	
Mor	nitoring Location	17
	nitoring Equipment	
	nitoring Parameters, Frequency and Duration	
	nitoring Methodology and QA/QC Procedures	
	ntenance and Calibration	
	ults and Observations	
Eve	nt and Action Plan	19
5	WATER QUALITY MONITORING	20
Mor	nitoring Requirements	20
	nitoring Locations	
	nitoring Equipment	
	nitoring Parameters, Frequency	
	nitoring Methodology	
	rumentation	
	rating/Analytical Procedures	
	oratory Analytical Methods	
	QC Requirements	
	ntenance and Calibration	
Resi	ults and Observations	25
Eve	nt and Action Plan	26

6 DOLPHIN-RELATED MONITORING	27
Monitoring Requirements	27
DOLPHIN MONITORING (LINE-TRANSECT VESSEL SURVEY)	27
Monitoring Requirements	27
Monitoring Location	
Monitoring Frequency	28
Monitoring Day	
Monitoring Results	28
CONSTRUCTION-PHASE UNDERWATER NOISE MONITORING	29
Monitoring Requirements.	
Monitoring Location	
Monitoring Day	
Monitoring Equipment	
Monitoring Results	
Event and Action Plan	
DOLPHIN BEHAVIOUR MONITORING (ACOUSTIC)	31
Monitoring Requirements	
Monitoring Location	
Monitoring Day	
Monitoring Results	31
LAND-BASED DOLPHIN BEHAVIOUR AND MOVEMENT MONITOR	ZING 32
Monitoring Requirements	32
Monitoring Location	
Monitoring Frequency	
Monitoring Day	
Monitoring Results	
7 ENVIRONMENTAL SITE INSPECTION	
Site Audits	
Implementation Status of Environmental Mitigation Measures	
Advice on the Solid and Liquid Waste Management Status	
8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)	
Summary of Exceedances.	
Summary of Environmental Complaint	
Summary of Notification of Summons and Successful Prosecution	
9 FUTURE KEY ISSUES	37
Key Issues in the Coming Month	
Monitoring Schedule for the Next Month	
Construction Programme for the Next Month	
10 CONCLUSIONS AND RECOMMENDATIONS	38
Conclusions	
Recommendations	38

LIST OF TABLES

Table I	Summary Table for Monitoring Activities in the Reporting Month
Table II	Summary Table for Events Recorded in the Reporting Month
Table 2.1	Key Contacts of the Contract
Table 2.2	Status of Environmental Licences, Notification and Permits
Table 3.1	Location for Air Quality Monitoring Locations
Table 3.2	Air Quality Monitoring Equipment
Table 3.3	Impact Dust Monitoring Parameters, Frequency and Duration
Table 3.4	Summary Table of 1-hour TSP Monitoring Results during the Reporting Month
Table 3.5	Summary Table of 24-hour TSP Monitoring Results during the Reporting
	Month
Table 3.6	Observation at Dust Monitoring Stations
Table 4.1	Noise Monitoring Equipment
Table 4.2	Noise Monitoring Parameters, Frequency and Duration
Table 4.3	Summary Table of Noise Monitoring Results during the Reporting Month
Table 4.4	Observation at Noise Monitoring Stations
Table 5.1	Location for Marine Water Quality Monitoring Locations
Table 5.2	Water Quality Monitoring Equipment
Table 5.3	Water Quality Monitoring Parameters and Frequency
Table 5.4	Methods for Laboratory Analysis for Water Samples
Table 5.5	Summary of Water Quality Exceedances
Table 6.1	Co-ordinates of transect lines in WL survey area
Table 6.2	Dolphin encounter rates (sightings per 100 km of survey effort) in July's
	surveys
Table 6.3	Co-ordinates of underwater noise monitoring stations
Table 6.4	Summary Table of Underwater Noise Monitoring Results during the Reporting
	Month
Table 7.1	Observations and Recommendations of Site Audit

LIST OF FIGURE

Figure 1a-d	Site Layout Plan
Figure 2	Project Organisation for Environmental Works
Figure 3	Locations of Air Quality, Noise and Wind Monitoring Stations
Figure 4	Locations of Water Quality Monitoring Stations
Figure 5	Location of Underwater Noise Monitoring Stations
Figure 6	Location of Dolphin Behaviour Monitoring Stations

LIST OF APPENDICES

Annandiy A	Construction Programma
Appendix A	Construction Programme
Appendix B	Action and Limit Levels
Appendix C	Copies of Calibration Certificates
Appendix D	Environmental Monitoring Schedules
Appendix E	1-hour TSP Monitoring Results
Appendix F	24-hour TSP Monitoring Results
Appendix G	Noise Monitoring Results
Appendix H	Water Quality Monitoring Results
Appendix I-1	Dolphin Monitoring Report (Line Transect)
Appendix I-2	Underwater Noise Monitoring Results
Appendix I-3	Dolphin Acoustic Behaviour Monitoring
Appendix I-4	Land-based Dolphin Behaviour and Movement Monitoring
Appendix J	Wind Data
Appendix K	Event Action Plans
Appendix L	Summary of Exceedance
Appendix M	Site Audit Summary
Appendix N	Updated Environmental Mitigation Implementation Schedule
Appendix O	Waste Generation in the Reporting Month
Appendix P	Complaint Log

EXECUTIVE SUMMARY

Introduction

1. This is the 6th monthly Environmental Monitoring and Audit (EM&A) Report prepared by Cinotech Consultants Limited for the project "Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract"). This report documents the findings of EM&A Works conducted in July 2013.

Environmental Monitoring and Audit Progress

2. A summary of the monitoring activities in this reporting month is listed in **Table I** below:

Table I Summary Table for Monitoring Activities in the Reporting Month

Parameter(s)	Date(s)
1-hr TSP Monitoring	4 th , 10 th , 16 th , 22 th and 26 th July 2013
24-hr TSP Monitoring	4 th , 10 th , 16 th , 22 th and 26 th July 2013
Noise Monitoring	2 nd , 8 th , 17 th , 23 rd and 29 th July 2013
Water Quality Monitoring	2 nd , 4 th , 6 th , 8 th , 10 th , 12 th , 15 th , 17 th , 19 th , 22 th , 24 th , 26 th , 29 th and 31 st July 2013
Dolphin Monitoring (Line-transect Vessel Surveys)	5 th and 10 th July 2013
(1)Construction-phase underwater Noise Monitoring	11 th , 12 th , 15 th , 16 th , 17 th , 18 th , 19 th , 22 nd , 23 rd and 24 th July 2013
(1)Dolphin Behaviour Monitoring	8 th , 9 th , 10 th , 11 th , 12 ^t h, 13 th , 15 ^t h, 17 th , 18 th , 19 th , 23 rd , 24 th and 29 th July 2013
(1)Land-based Dolphin Behaviour and Movement Monitoring	9 th , 11 th , 12 th , 15 th , 16 th , 17 th , 18 th , 22 nd , 23 rd , 24 th , 25 th and 26 th July 2013
Environmental Site Inspection	2 nd , 9 th , 16 th , 23 th and 30 th July 2013
Archaeological Site Inspection	(2)N/A

Remark: ⁽¹⁾Dolphin-related monitoring was conducted in the reporting month. According to the EM&A Manual for HKLR, the dolphin-related monitoring was conducted during the bored piling activities which presented in **Appendix A**.

Breaches of Action and Limit Levels

3. Summary of the environmental exceedances of the reporting month is tabulated in **Table II**.

⁽²⁾ No archaeological site inspection was conducted in the reporting month.

Table II Summary Table for Events Recorded in the Reporting Month

Environmental Monitoring	Parameter	No. of Exceedance		No. of Exceedance related to the Construction Activities of this Contract	
		Action Level	Limit Level	Action Level	Limit Level
Air Quality	1-hr TSP	0	0	0	0
All Quality	24-hr TSP	0	0	0	0
Noise	$L_{eq(30 min)}$	0	0	0	0
	Dissolved Oxygen (DO) (Surface & Middle)	0	0	0	0
Water Quality	Dissolved Oxygen (DO) (Bottom)	0	0	0	0
Water Quality	Turbidity	0	0	0	0
	Suspended Solids (SS)	3	1	0	0
Undewater Noise	RMS sound pressure level re 1μPa	0	0	0	0

1-hour TSP Monitoring

4. All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

24-hour TSP Monitoring

5. All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Noise

6. All construction noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Construction Underwater Noise

7. All construction underwater noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.

Water Quality

8. All water quality monitoring was conducted as scheduled in the reporting month. There are three Action Level and one Limit Level exceedances for suspended solids were recorded.

9. According to the investigation, no pollution discharge from the marine works and no exceedances were recorded at the impact stations (i.e. IS1 to IS4) which are close to construction site. Therefore, all exceedances are considered not due to the Contract.

Complaint Log

10. One environmental complaint was received in the reporting month.

Notification of Summons and Successful Prosecutions

11. No notification of summons and successful prosecution was received in the reporting month

Reporting Changes

12. This report has been developed in compliance with the reporting requirements for the subsequent monthly EM&A Report as required by the EM&A Manual for Hong Kong Link Road (EM&A Manual).

Future Key Issues

13. Major site activities for the coming reporting month will include:

WA4

- Fabrication of rebar cages
- Fabrication of temporary piling platforms

WA7

- Fabrication of rebar cages
- Loading and Unloading

Portion A (Land Section)

- Site formation and clearance
- Slewing the tele-communication cable and Airport Authority (AA)'s COM cable
- Set up of barriers
- Laying piling platforms.
- Pre-drilling work

Portion C

- Land piling
- Tree felling/transplant
- Water main diversion

Airport Channel

- Piling jacket and permanent casing
- Pile excavation by Reverse Circulation Drilling (RCD) method
- Pile excavation by Kelly method
- Piling works for temporary jetty
- Installation of permanent casing
- Setting up of silt-curtain

Section between HKSAR Boundary and Scenic Hill

Monthly EM&A Report – July 2013

Western Water

- Pre-drilling Work
- Setting up of silt-curtain
- Platform installation for pre-drilling works and bored piling works
- Installation of temporary casings for the piling platform
- Installation of permanent casing
- Bored piling works
- Piling Jacket and permanent casing

1 INTRODUCTION

1.1 Cinotech Consultants Limited (Cinotech) was appointed by Dragages -China Harbour-VSL JV (hereinafter called "the Contractor") as the Environmental Team (ET) to undertake the Environmental Monitoring and Audit (EM&A) programme during construction phase of the Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill" (hereinafter called the "Contract") in accordance with EP Conditions 2.1.

Purpose of the report

1.2 This is the 6th EM&A report which summarises the impact monitoring results and audit findings for the EM&A programme in July 2013.

Structure of the report

- 1.3 The structure of the report is as follows:
 - Section 1: **Introduction -** purpose and structure of the report.
 - Section 2: **Contract Information** summarises background and scope of the Contract, site description, project organization and contact details, construction programme, the construction works undertaken and the status of Environmental Permits/Licenses during the reporting month.
 - Section 3: **Air Quality Monitoring** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 4: **Noise Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 5: **Water Quality Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels, monitoring results and Event / Action Plans.
 - Section 6: **Dolphin-Related Monitoring -** summarises the monitoring parameters, monitoring programmes, monitoring methodologies, monitoring frequency, monitoring locations, Action and Limit Levels and monitoring results.
 - Section 7: **Environmental Site Inspection -** summarises the audit findings of the weekly site inspections undertaken within the reporting month.
 - Section 8: **Environmental Non-conformance** summarises any monitoring exceedance, environmental complaints, environmental summons and successful prosecutions within the reporting month.
 - Section 9: **Future Key Issues -** summarises the impact forecast and monitoring schedule for the next three months.

Section 10: Conclusions and Recommendation

Monthly EM&A Report – July 2013

2 CONTRACT INFORMATION

Background

- 2.1 The proposed Hong Kong Zhuhai Macao Bridge Hong Kong Link Road (HKLR) is 12km long connecting the Hong Kong-Zhuhai-Macao Bridge (HZMB) at the HKSAR Boundary with the Hong Kong Boundary Crossing Facilities (HKBCF) situated at the north eastern waters of the Hong Kong International Airport, opening a new and direct connection route between Hong Kong, Macao and the Western Pearl River Delta.
- 2.2 The HKLR comprises a 9.4km long viaduct section from the HKSAR boundary to Scenic Hill on the Airport Island; a 1km tunnel section to the reclamation formed along the east coast of the Airport Island and a 1.6km long at-grade road section on the reclamation connecting to the HKBCF. The tunnel section of HKLR will pass under Scenic Hill, Airport Road and Airport Railway to minimize the environmental and visual impacts to Tung Chung residents.
- 2.3 An application (No ESB-110/2003) for an Environmental Impact Assessment (EIA) Study Brief under Section 5(1) of the Environmental Impact Assessment Ordinance (EIAO) was submitted by Highways Department (the Project Proponent) on 8 October 2003 with a Project Profile (No. No. PP-201/2003) for the Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection. The Hong Kong Zhuhai Macao Bridge Hong Kong Section and North Lantau Highway Connection has subsequently been renamed as HKLR. EPD issued an EIA Study Brief (No: ESB-110/2003) in November 2003 to the Project Proponent to carry out an EIA study.
- 2.4 An EIA Study (Reg. No. AEIAR-144/2009) has been undertaken to provide information on nature and extent of environmental impacts arising from the construction and operation of HKLR. The Environmental Permit was issued on 4 November 2009 (Permit No. EP-352/2009). Pursuant to Section 13 of the EIAO, the Director of Environmental Protection amends the Environmental Permit (No. EP-352/2009) based on the Application No. VEP-339/2011 and the environmental Permit (Permit No. EP-352/2009/A) was issue on 9 November 2011 for HKLR to the Highways Department as the Permit Holder. Subsequently, the Director of Environmental Protection amends the Environmental Permit (No. EP-352/2009/A) based on the Application No. VEP-409/2013 and the environmental Permit (Permit No. EP-352/2009/B) was issue on 1 August 2013.
- 2.5 **Figure 1a-d** shows the layout of the Contract and the scope of the Contract works comprises the following major items:
 - a dual 3-lane carriageway in the form of viaduct from the HKSAR boundary (connecting with the HZMB Main Bridge) to the Scenic Hill (connecting with the tunnel under separate Contract No. HY/2011/03), of approximately 9.4km in length with a hard shoulder for each bound of carriageway and a utilities trough on the outer edge of each bound of viaducts;
 - a grade-separated turnaround facility located near San Shek Wan, composed of sliproads in the form of viaduct with single-lane carriageway bifurcated from the HKLR mainline with an elevated junction above the mainline;
 - provision of ancillary facilities including, but not limited to, meteorological enhancement measures including the provisioning of anemometers and

- modification of the wind profiler station at hillside of Sha Lo Wan, provisioning of a compensatory marine radar, and provisioning of security systems; and
- associated civil, structural, geotechnical, marine, environmental protection, landscaping, drainage and highways electrical and mechanical (E&M) works, street lightings, traffic aids and sign gantries, marine navigational aids, ship impact protection system, water mains and fire hydrants, lightning protection system, structural health monitoring and maintenance management system (SHM&MMS), supervisory control and data acquisition (SCADA) system, as well as operation and maintenance provisions of viaducts, provisioning of facilities for installation of traffic control and surveillance system (TCSS), provisioning of facilities for installation of telecommunication cables/equipments and reprovisioning works of affected existing facilities/utilities.

Contract Organisation

- 2.6 Different parties with different levels of involvement in the Contract organization include:
 - Supervising Officer's Representative (SOR) Ove Arup & Partners Hong Kong Limited (ARUP)
 - Contractor Dragages China Harbour-VSL JV (DCVJV)
 - Environmental Team (ET) Cinotech Consultants Ltd. (Cinotech)
- 2.7 The proposed project organization and lines of communication with respect to the onsite environmental management structure are shown in **Figure 2**. The key personnel contact names and numbers are summarized in **Table 2.1.**

Table 2.1 Key Contacts of the Contract

Party	Position	Position	Phone No.	Fax No.	
SOR	CRE	Mr. Michael Chan	3767 5803	3767 5922	
(ARUP)		Mr. Colin Meadows	3767 5801	3/0/3922	
ENPO/IEC	Environmental Project Office Leader	Mr. Y. H Hui	3465 2888	3465 2899	
(Environ)	Independent Environmental Checker	Mr. Antony Wong	3465 2888	3465 2899	
	Deputy Project Director	Mr. W.K Poon	3121 6638	2121 ((00	
Contractor (DCVJV)	Environmental Officer	Mr. CHU Chung Sing	3121 6672	3121 6688	
	24-hour Hotline		6898 6161		
ET (Cinotech)	Environmental Team Leader	Dr. H.F Chan	2151 2088	3107 1388	

2.8 ENVIRON Hong Kong Ltd. (Environ) is employed by the Highways Department as the Independent Environmental Checker (IEC) and Environmental Project Office (ENPO) for the Project.

Cinotech

Construction Programme

2.9 A copy of Contractor's construction programme is provided in **Appendix A**.

Summary of Construction Works Undertaken During Reporting Month

- 2.10 The major site activities undertaken in the reporting month included:
 - (a) Land piling works are in progress with 5 piles concreted in Portion C in this reporting period;
 - (b) Piling equipment was started mobilizing to seawall in Portion A. Water treatment system is on site;
 - (c) Installation of piling platform along seawall is in progress and 4 nos. of platforms will be completed in this reporting period;
 - (d) First batch of formworks for column of land viaduct was delivered to Portion C. Trial panel will be fabricated;
 - (e) Diversion to existing 1350mm drainage pipe and the 600mm water main for construction of piling works of P106 to P108 is ready but still pending for tree felling permit and works permit from AA;
 - (f) Installation of water-filled barrier and site clearance in Portion A along seawall was commenced with 70% completed. Forming of site access along the top of the existing seawall are in progress;
 - (g) One wheel washing bay for hual road at Portion A (near SE Quay) was completed and in use;
 - (h) Tracing of AA COM cables alignment and terminals was completed. A report will be submitted;
 - (i) Marine landing access establishment work near P82 was commenced;
 - (j) Piling works for the temporary jetty at P69 P70 continued and 32% of piling completed;
 - (n) Pile excavation by RCD method at P53 was commenced and down to rockhead continued at P50, P72 & P73 in July;
 - (o) 14 nos. piles excavation by RCD method were concreted in July 13;
 - (p) Pile excavation by Kelly method at P74, P78, P0 and P20. 3 nos. pile at P74, 5 no. of pile at P78 and 1 no. of pile at P0 were cast in July;
 - (q) Temporary piles for P46, P47 were extracted;
 - (r) Installation of temporary casings for the piling platform at P43 and P45 are in progress;
 - (s) Piling platform at P19 was installed;
 - (t) 4th BG arrived and installation at P20 was completed.

Status of Environmental Licences, Notification and Permits

2.11 A summary of the relevant permits, licences, and/or notifications on environmental protection for this Contract is presented in **Table 2.2**.

Table 2.2 Status of Environmental Licences, Notification and Permits

D ://I: N	Valid	Status				
Permit / License No.	From To					
Environmental Permit (EP)						
EP-352/2009/A	09/11/2011	N/A	Valid			
EP-352/2009/B	01/08/2013	N/A	Valid			
Consruction Noise Permit (CNP)	<u> </u>	<u> </u>				
P48-P52: GW-RS0171-13	24/02/2013(07:00)	23/08/2013(23:00)	Valid			
P50-P52:GW-RS0180-13	24/02/2013(23:00)	23/08/2013(07:00)	Superseded by CNP			
			No. GW-RS0792-13			
WA7: GW-RS0125-13	28/02/2013(19:00)	27/08/2013(23:00)	Valid			
Pier 0: GW-RS0353-13	07/04/2013(07:00)	06/10/2013(23:00)	Valid			
Pier 0: GW-RS0361-13	07/04/2013(23:00)	06/10/2013(23:00)	Valid			
P19-P20: GW-RS0370-13	17/04/2013(23:00)	16/10/2013(23:00)	Valid			
Waters in works area Portion A:	22/04/2013(07:00)	21/10/2013 (23:00)	Valid			
GW-RS0426-13						
WA4: GW-RW0274-13	30/04/2013(19:00)	29/10/2013 (23:00)	Superseded by CNP			
			No. GW-RW0496-13			
WA3B: GW-RS0499-13	15/05/2013 (00:00)	14/11/2013 (24:00)	Valid			
<u>P106-P114:</u> GW-RS0553-13	23/05/2013(19:00)	22/11/2013 (23:00)	Valid			
P67-P74: GW-RS0571-13	25/05/2013(01:30)	31/08/2013 (07:00)	Valid			
P43-P47: GW-RS0580-13	27/05/2013(19:00)	26/11/2013(23:00)	Valid			
<u>P17-P19:</u> GW-RS0596-13	10/06/2013(19:00)	09/12/2013(23:00)	Valid			
P71-P73: GW-RS0636-13	17/06/2013(19:00)	28/07/2013(23:00)	Valid			
P83: GW-RS0648-13	21/06/2013(19:00)	16/12/2013(24:00)	Valid			
<u>P69-P70:</u> GW-RS0664-13	24/06/2013(19:00)	23/12/2013(23:00)	Valid			
WA4B: GW-RW0427-13	27/06/2013(00:00)	26/12/2013(24:00)	Valid			
<u>WA7:</u> GWRW0484-13	15/07/2013(23:00)	14/01/2014(07:00)	Valid			
WA4: GWRW0496-13	19/07/2013(19:00)	18/01/2014(23:00)	Valid			
<u>P50-P64:</u> GWRS0792-13	24/07/2013(23:00)	24/01/2014(07:00)	Valid			
Notification pursuant to Air Pollut	ion Control (Constru	ction Dust) Regulation	n			
345773	04/06/2012	N/A	Receipt acknowledged by EPD			
Billing Account for Construction V	Vaste Disposal					
A/C# 7015341	13/06/2012	N/A	Valid			
(Construction Site)						
A/C# 7016948	15/05/2013	31/08/2013	Valid			
(Vessel Disposal)						
Registration of Chemical Waste Pr	oducer					
WPN 5213-951-D2499-01	18/07/2012	N/A	Valid			
Effluent Discharge License under	Water Pollution Cont	rol Ordinance				
WA6A(DCVJV site office): WT00014053-2012	12/09/2012	30/09/2017	Valid			

D 11/11 21	Valid	Period	Q
Permit / License No.	From To		Status
WA6B (SOR site office):	30/10/2012	31/10/2017	Valid
WT00014447-2012			
<u>WA3:</u> WT00015118-2013	30/01/2013	31/01/2018	Valid
Portion C: WT00015356-2013	22/02/2013	28/02/2018	Valid
Portion A: WT00016076-2013	21/05/2013	31/05/2018	Valid
Marine Dumping Permit			
Dumping of Phase 1 marine sediment at South Cheung Chau: EP/MD/13-125	11/04/2013	10/10/2013	Valid
Dumping of Phase 2a marine sediment at South Cheung Chau: EP/MD/13-142	23/04/2013	22/10/2013	Valid
Dumping of Phase 2b, 2c and 2d marine sediment at South Cheung Chau: EP/MD/14-003	23/04/2013	22/10/2013	Valid
Dumping of Phase 1 (Type 1D and Type 2) marine sediment at East Sha Chau: EP/MD/14-017	03/06/2013	02/07/2013	Expired
Dumping of Phase 2a (Type 1D and Type 2)marine sediment at East Sha Chau: EP/MD/14-016	03/06/2013	02/07/2013	Expired
Dumping of Phase Phase 2b,2c and 2d (Type 1D and Type 2) marine sediment at East Sha Chau: EP/MD/14-015	03/06/2013	02/07/2013	Expired
Dumping of Phase 1 (Type 1D and Type 2) marine sediment at East Sha Chau EP/MD/14-031	03/07/2013	02/08/2013	Valid
Dumping of Phase 2a (Type 1D and Type 2) marine sediment at East Sha Chau EP/MD/14-030	03/07/2013	02/08/2013	Valid
Dumping of Phase Phase 2b, 2c and 2d (Type 1D and Type 2) marine sediment at East Sha Chau EP/MD/14-029	03/07/2013	02/08/2013	Valid

3 AIR QUALITY MONITORING

Monitoring Requirements

- 3.1 In accordance with the EM&A Manual, impact 1-hour TSP and 24-hour TSP monitoring were conducted to monitor the air quality for the Contract. **Appendix B** shows the established Action/Limit Levels for the air quality monitoring works.
- 3.2 Impact 1-hour TSP monitoring was conducted for at least three times every 6 days, while impact 24-hour TSP monitoring was conducted for at least once every 6 days at 2 air quality monitoring stations.

Monitoring Location

3.3 Impact air quality monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 3.1** describes the locations of the air quality monitoring stations.

 Table 3.1
 Location for Air Quality Monitoring Locations

Monitoring Stations	Location
AMS1	Sha Lo Wan
AMS4	San Tau

Monitoring Equipment

3.4 **Table 3.2** summarizes the equipment used in the impact air monitoring programme. Copies of calibration certificates are attached in **Appendix C**.

Table 3.2 Air Quality Monitoring Equipment

Equipment	Model and Make	Quantity
HVS Sampler	TISCH Model: TE-5170	2
Calibrator	TISCH Model: TE-5025A	2
Wind Anemometer	DAVIS Model: Vantage PRO2 6152CUK	1

Monitoring Parameters, Frequency and Duration

3.5 **Table 3.3** summarizes the monitoring parameters and frequencies of impact dust monitoring during the course of the Contract activities. The air quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 3.3 Impact Dust Monitoring Parameters, Frequency and Duration

Parameters	Frequency
1-hr TSP	Three times / 6 days
24-hr TSP	Once / 6 days

Monitoring Methodology and QA/QC Procedure

1-hour and 24-hour TSP Air Quality Monitoring

Instrumentation

3.6 High Volume Samplers (HVS) completed with appropriate sampling inlets were employed for air quality monitoring. Each sampler was composed of a motor, a filter holder, a flow controller and a sampling inlet and its performance specification complies with that required by USEPA Standard Title 40, Code of Federation Regulations Chapter 1 (Part 50).

HVS Installation

- 3.7 The following guidelines were adopted during the installation of HVS:
 - Sufficient support was provided to secure the sampler against gusty wind.
 - No two samplers were placed less than 2 meters apart.
 - The distance between the sampler and an obstacle, such as buildings, was at least twice the height that the obstacle protrudes above the sampler.
 - A minimum of 2 meters of separation from walls, parapets and penthouses was required for rooftop samples.
 - A minimum of 2 meters separation from any supporting structure, measured horizontally was required.
 - No furnaces or incineration flues were nearby.
 - Airflow around the sampler was unrestricted.
 - The samplers were more than 20 meters from the drip line.
 - Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.
 - Permission must be obtained to set up the samples and to obtain access to the monitoring stations; and
 - A secured supply of electricity is needed to operate the samplers.

Filters Preparation

- 3.8 Filter paper of size 8" X 10" was used. A HOKLAS accredited laboratory, ETS Testconsult Limited (ETS), was responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for Cinotech's monitoring team.
- 3.9 All filters, which were prepared by ETS, were equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature was around 25 °C and not variable by more than ±3 °C; the relative humidity (RH) was < 50% and not variable by more than ±5%. A convenient working RH was 40%.
- 3.10 ETS has comprehensive quality assurance and quality control programmes.

Operating/Analytical Procedures

3.11 Operating/analytical procedures for the air quality monitoring were highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS was properly set (between 1.1 m³/min. and 1.4 m³/min.) in accordance with the manufacturer's instruction to within the range recommended in USEPA Standard Title 40, CFR Part 50.
- The power supply was checked to ensure the sampler worked properly.
- On sampling, the sampler was operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame was then removed by loosening the four nuts and carefully a weighted and conditioned filter was centered with the stamped number upwards, on a supporting screen.
- The filter was aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame was tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid was closed and secured with the aluminum strip.
- The timer was then programmed. Information was recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter was removed and sent to the ETS for weighing. The elapsed time was also recorded.
- Before weighing, all filters were equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results were returned to Cinotech for further analysis of TSP concentrations collected by each filter.

Maintenance/Calibration

- 3.12 The following maintenance/calibration was required for the HVS:
 - The high volume motors and their accessories were properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking were made to ensure that the equipment and necessary power supply are in good working condition.
 - All HVS were calibrated (five point calibration) using Calibration Kit prior to the commencement of the baseline monitoring and thereafter at bi-monthly intervals.

Results and Observations

3.13 The monitoring results for 1-hour TSP and 24-hour TSP are summarized in **Table 3.4** and 3.5 respectively. Detailed monitoring results and graphical presentations of 1-hour and 24-hour TSP monitoring results are shown in **Appendices E and F** respectively.

Table 3.4 Summary Table of 1-hour TSP Monitoring Results during the Reporting Month

	1 0			
Monitoring	Concentration (μg/m3)		Action	Limit Level,
Station	Average	Range	Level, μg/m ³	$\mu g/m^3$
AMS1	33	15 - 51	381	500
AMS4	37	23 - 56	352	300

Table 3.5 Summary Table of 24-hour TSP Monitoring Results during the Reporting Month

Monitoring Station Concentration (µg/m3)		Action	Limit Level,	
Station	Average	Range	Level, μg/m ³	μg/m ³
AMS1	15	6 - 20	170	260
AMS4	18	8 - 25	171	260

- 3.14 All 1-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.15 All 24-hour TSP monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 3.16 According to our field observations, the major dust source identified at the designated air quality monitoring stations in the reporting month are as follows:

Table 3.6 Observation at Dust Monitoring Stations

Monitoring Station	Major Dust Source
AMS1	N/A
AMS4	N/A

- 3.17 The wind speed and wind direction were recorded by the installed Wind Anemometer set at AMS4. The location is shown in **Figure 3**.
- 3.18 The wind data for the reporting month is summarized in **Appendix J**.

Event and Action Plan

3.19 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

4 NOISE MONITORING

Monitoring Requirements

4.1 In accordance with EM&A Manual, two noise monitoring stations, namely NMS1 and NMS4 were selected for impact monitoring for the Contract. Impact noise monitoring was conducted for at least once per week during the construction phase of the Contract. **Appendix B** shows the established Action and Limit Levels for the noise monitoring works.

Monitoring Location

4.2 Impact noise monitoring was conducted at the 2 monitoring stations under the Contract, as shown in **Figure 3**. **Table 4.1** describes the locations of the air quality monitoring stations.

Table 4.1 Location for Air Quality Monitoring Locations

Monitoring Stations	Location
NMS1	Sha Lo Wan
NMS4	San Tau

Monitoring Equipment

4.3 **Table 4.2** summarizes the noise monitoring equipment. Copies of calibration certificates are provided in **Appendix C**.

Table 4.2 Noise Monitoring Equipment

Equipment	Model and Make	Qty.
Integrating Sound Level Meter	SVAN 957	2
Calibrator	SV 30A	2

Monitoring Parameters, Frequency and Duration

4.4 **Table 4.3** summarizes the monitoring parameters, frequency and total duration of monitoring. The noise monitoring schedule is shown in **Appendix D**.

Table 4.3 Noise Monitoring Parameters, Frequency and Duration

Monitoring Stations	Parameter	Period	Frequency
NMS1 NMS4	$\begin{array}{c} L_{10}(30 \text{ min.}) \text{ dB(A)} \\ L_{90}(30 \text{ min.}) \text{ dB(A)} \\ L_{eq}(30 \text{ min.}) \text{ dB(A)} \text{ (as} \\ \text{six consecutive } L_{eq, 5 \text{min}} \\ \text{readings)} \end{array}$	0700-1900 hrs on normal weekdays	Once per week

Monitoring Methodology and QA/QC Procedures

- The microphone head of the sound level meter was positioned 1m exterior of the noise sensitive facade and lowered sufficiently so that the building's external wall acts as a reflecting surface.
- The battery condition was checked to ensure the correct functioning of the meter.
- Parameters such as frequency weighting, the time weighting and the measurement time were set as follows:

frequency weightingtime weightingFast

time measurement : $L_{eq}(30 \text{ min.}) \text{ dB(A)}$ (as six consecutive $L_{eq, 5min}$ readings) during non-restricted hours (i.e. 0700-1900 hrs on normal weekdays)

- Prior to and after each noise measurement, the meter was calibrated using a Calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement was more than 1.0 dB, the measurement would be considered invalid and repeat of noise measurement would be required after recalibration or repair of the equipment.
- During the monitoring period, the L_{eq} , L_{90} and L_{10} were recorded. In addition, site conditions and noise sources were recorded on a standard record sheet.
- Noise measurement was paused temporarily during periods of high intrusive noise (e.g. dog barking, helicopter noise) if possible and observation was recorded when intrusive noise was not avoided.
- Noise monitoring was cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s. The wind speed shall be checked with a portable wind speed meter capable of measuring the wind speed in m/s.

Maintenance and Calibration

- 4.5 The microphone head of the sound level meter and calibrator were cleaned with a soft cloth at quarterly intervals.
- 4.6 The sound level meter and calibrator were checked and calibrated at yearly intervals.
- 4.7 Immediately prior to and following each noise measurement the accuracy of the sound level meter shall be checked using an acoustic calibrator generating a known sound pressure level at a known frequency. Measurements may be accepted as valid only if the calibration levels from before and after the noise measurement agree to within 1.0 dB.

Results and Observations

4.8 The noise monitoring results are summarized in **Table 4.4**. Detailed monitoring results and graphical presentations of noise monitoring are shown in **Appendices G**.

Monthly EM&A Report – July 2013

Table 4.4 Summary Table of Noise Monitoring Results during the Reporting Month

Manitaring Station	Noise Level, L _{eq (30min)} dB(A)		Limit Laval
Monitoring Station	Average	Range	Limit Level
NMS1	68	64 – 69	75 dB(A)
NMS4	58	56 – 59	/3 ub(A)

Remark: +3dB(A) Façade correction included

- All noise monitoring was conducted as scheduled in the reporting month. No Action/Limit Level exceedance was recorded.
- 4.10 According to our field observations, the major noise source identified at the designated noise monitoring stations in the reporting month are as follows:

Table 4.5 Observation at Noise Monitoring Stations

Monitoring Station	Major Noise Source
NMS1	Air traffic & marine traffic noise
NMS4	Air traffic & marine traffic noise

Event and Action Plan

4.11 Should non-compliance of the criteria occur, action in accordance with the Action Plan in Appendix K shall be carried out.

5 WATER QUALITY MONITORING

Monitoring Requirements

- 5.1 According to EM&A Manual, impact water quality monitoring shall be carried out three days per week during the construction period. The interval between two sets of monitoring will not be less than 36 hours.
- 5.2 Replicate in-situ measurements and samples collected from each independent sampling event shall be collected to ensure a robust statistically interpretable database.
- 5.3 Impact water quality monitoring was conducted two times per monitoring day during mid ebb (within ± 1.75 hours of the predicted time) and mid flood tides (within ± 1.75 hours of the predicted time) at three depths (i.e. 1m below surface, mid-depth and 1m above seabed, except where the water depth less than 6m, mid-depth station may be omitted. Should the water depth be less than 3m, only the mid-depth station was monitored) Dissolved oxygen, Suspended solids (SS), turbidity, pH, salinity and temperature were monitored in accordance with the requirements set out in the EM&A Manual.
- 5.4 The proposal for changing Action and Limit Levels for water quality monitoring was submitted to EPD on 15 March 2013. No objection was received from EPD according to the letter (ref. (10) in Ax(3) to EP2/G/A/129pt.4) dated 25 March 2013. Therefore, the updated Action and Limit Levels for water quality monitoring was used for comparison starting from 25 March 2013.
- 5.5 **Appendix B** shows the established Action/Limit Levels for the water quality monitoring works.

Monitoring Locations

5.6 Impact water quality monitoring was conducted at 14 monitoring stations under the Contract which are summarized in **Table 5.1**. The monitoring station is also shown in **Figure 4**.

Table 5.1 Location for Marine Water Quality Monitoring Locations

Manitaring Stations	Coor	dinates
Monitoring Stations	Easting	Northing
IS1	803474	815060
IS2	804851	815715
IS3	806502	815743
IS4	807008	816986
CS1	801784	812711
CS2	805849	818780
SR1	803126	812379
SR2	807856	816953
SR3	810525	816456
SR6	805837	821818
ST1	802677	816006
ST2	804055	818840

Manitaring Stations	Coor	dinates
Monitoring Stations	Easting	Northing
ST3	800667	810126
SRA	809872	817152

Monitoring Equipment

Instrumentation

5.7 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Dissolved Oxygen (DO) and Temperature Measuring Equipment

- 5.8 The instrument for measuring dissolved oxygen and temperature was portable and weatherproof complete with cable, sensor, comprehensive operation manuals and use DC power source. It was capable of measuring:
 - a dissolved oxygen level in the range of 0-20 mg/L and 0-200% saturation; and
 - a temperature of 0-45 degree Celsius.
- 5.9 It has a membrane electrode with automatic temperature compensation complete with a cable.
- 5.10 Sufficient stocks of spare electrodes and cables were available for replacement where necessary.
- 5.11 Salinity compensation was built-in in the DO equipment.

Turbidity

5.12 Turbidity was measured in situ by the nephelometric method. The instrument was portable and weatherproof using a DC power source complete with cable, sensor and comprehensive operation manuals. The equipment was capable of measuring turbidity between 0-1000 NTU. The probe cable was not less than 25m in length. The meter was calibrated in order to establish the relationship between NTU units and the levels of suspended solids. The turbidity measurement was carried out on split water sample collected from the same depths of suspended solids samples.

Sampler

5.13 A water sampler, consisting of a transparent PVC or glass cylinder of a capacity of not less than two litres which can be effectively sealed with cups at both ends was used. The water sampler has a positive latching system to keep it open and prevent premature closure until released by a messenger when the sampler was at the selected water depth.

Water Depth Detector

5.14 A portable, battery-operated echo sounder was used for the determination of water depth

at each designated monitoring station.

<u>pH</u>

5.15 The instrument was consisting of a potentiometer, a glass electrode, a reference electrode and a temperature-compensating device. It was readable to 0.1pH in a range of 0 to 14. Standard buffer solutions of at least pH 7 and pH 10 were used for calibration of the instrument before and after use.

Salinity

5.16 A portable salinometer capable of recording salinity within the range of 0-40 ppt was used for salinity measurements.

Monitoring Position Equipment

5.17 A hand held Differential Global Positioning System (DGPS) was used during water quality monitoring to ensure the monitoring vessel is at the correct location before taking measurements.

Sample Container and Storage

5.18 Following collection, water samples for laboratory analysis were stored in high density polythene bottles (250ml/1L) with no preservatives added, packed in ice (cooled to 4°C without being frozen) and kept in dark during both on-site temporary storage and shipment to the testing laboratory. The samples were delivered to the laboratory as soon as possible and the laboratory determination works were started within 24 hours after collection of the water samples. Sufficient volume of samples was collected to achieve the detection limit.

Calibration of In Situ Instruments

- 5.19 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme. Responses of sensors and electrodes were checked with certified standard solutions before each use. Wet bulb calibration for a DO meter was carried out before measurement at each monitoring event.
- 5.20 For the on site calibration of field equipment (Multi-parameter Water Quality System), the BS 1427:2009, "Guide to on-site test methods for the analysis of waters" was observed.
- 5.21 Sufficient stocks of spare parts were maintained for replacements when necessary. Backup monitoring equipment was also being made available so that monitoring can proceed uninterrupted even when some equipment was under maintenance, calibration, etc.
- 5.22 The equipment used for impact water quality monitoring is shown in **Table 5.2** and copies of the calibration certificates are shown in **Appendix C**. All the monitoring

equipment complied with the requirements set out in the EM&A Manual.

Table 5.2 Water Quality Monitoring Equipment

Equipment	Model and Make	Qty
Sonar Water Depth Detector	Garmin Fishfinder 140	2
Monitoring Position Equipment	KODEN DGPS	
Wollitoring Fosition Equipment	(KGP913MKIID, GA-08 & BA-03)	2
Multi-parameter Water Quality	YSI 6820-C-M	2
System	1 S1 0820-C-IVI	
Water Sampler	Kahlsico Water-Bottle Model 135DW 150	2

Monitoring Parameters, Frequency

5.23 **Table 5.3** summarizes the monitoring parameters, monitoring period and frequencies of the water quality monitoring. The water quality monitoring schedule for the reporting month is shown in **Appendix D**.

Table 5.3 Water Quality Monitoring Parameters and Frequency

1 abic 5.5	water Quarty Monitoring rarameters and Frequency					
Monitoring Stations	Parameters, unit	Depth	Frequency			
IS1, IS2, IS3 IS4, CS1, CS2, SR1, SR2, SR3, SR6, ST1, ST2, ST3, SRA	 Temperature(°C) pH(pH unit) turbidity (NTU) water depth (m) salinity (ppt) dissolved oxygen (DO) (mg/L and % of saturation) suspended solids (SS) (mg/L) 	 3 water depths: 1m below sea surface, mid-depth and 1m above sea bed. If the water depth is less than 3m, mid-depth sampling only. If water depth less than 6m, mid-depth may be omitted. 	Impact monitoring: 3 days per week, at mid-flood and mid-ebb tides during the construction period of the Contract			

5.24 Monitoring location/position, time, water depth, sampling depth, pH, salinity, DO saturation, water temperature, tidal stages, weather conditions and any special phenomena or work underway nearby were recorded.

Monitoring Methodology

Instrumentation

5.25 A multi-parameter meters (Model YSI 6820-C-M) were used to measure DO, turbidity, salinity, pH and temperature.

Operating/Analytical Procedures

5.26 The monitoring stations were accessed by the guide of a hand-held Differential Global Positioning System (DGPS) during water quality monitoring in accordance with the EM&A Manual. The depth of the monitoring location was measured using depth meter in order to determine the sampling depths. Afterwards, the probes of the in-situ

measurement equipment were lowered to the predetermined depths (1 m below water surface, mid-depth and 1 m above seabed) and the measurements were carried out accordingly.

- 5.27 At each measurement, two consecutive measurements of DO concentration, DO saturation, salinity, turbidity, pH and temperature were taken. The probes were retrieved out of the water after the first measurement and then re-deployed for the second measurement. Where the difference in the value between the first and second readings of each set was more than 25% of the value of the first reading, the reading was discarded and further readings were taken.
- 5.28 Water sampler was lowered into the water to the required depths of sampling. Upon reaching the pre-determined depth, a messenger to activate the sampler was then released to travel down the wire. The water sample was sealed within the sampler before retrieving. At each station, water samples at three depths (1 m below water surface, middepth and 1 m above seabed) were collected accordingly. Water samples were stored in a cool box and kept at less than 4°C but without frozen and sent to the laboratory as soon as possible. In addition, field information as described in Section 5.23 was also recorded.

Laboratory Analytical Methods

5.29 The testing of all parameters was conducted by CMA Testing and Certification Laboratories (HOKLAS Registration No.004) and comprehensive quality assurance and control procedures in place in order to ensure quality and consistency in results. The testing method, reporting limit and detection limit are provided in **Table 5.4**.

Table 5.4 Methods for Laboratory Analysis for Water Samples

		<i>y</i>	
Determinant	Instrumentation	Analytical Method	Detection Limit
Suspended Solid (SS)	Weighing	APHA 21e 2540D	0.5 mg/L

QA/QC Requirements

Decontamination Procedures

5.30 Water sampling equipment used during the course of the monitoring programme was decontaminated by manual washing and rinsed clean seawater/distilled water after each sampling event. All disposal equipment was discarded after sampling.

Sampling Management and Supervision

5.31 All sampling bottles were labelled with the sample I.D (including the indication of sampling station and tidal stage e.g. IS1_me_a), laboratory number and sampling date. Water samples were dispatched to the testing laboratory for analysis as soon as possible after the sampling. All samples were stored in a cool box and kept at less than 4°C but without frozen. All water samples were handled under chain of custody protocols and relinquished to the laboratory representatives at locations specified by the laboratory.

5.32 The laboratory determination works were started within 24 hours after collection of the water samples.

Quality Control Measures for Sample Testing

- 5.33 The samples testing were performed by CMA Testing and Certification Laboratories.
- 5.34 The following quality control programme was performed by the CMA Testing and Certification Laboratories for every batch of 20 samples:
 - ♦ One set of quality control (QC) samples.

Maintenance and Calibration

5.35 All in situ monitoring instruments were checked, calibrated and certified by a laboratory accredited under HOKLAS or other international accreditation scheme before use, and subsequently re-calibrated at 3 monthly intervals throughout all stages of the water quality monitoring programme.

Results and Observations

- 5.36 The monitoring results and graphical presentation of water quality at the monitoring stations is shown in **Appendix H.**
- 5.37 The summary of exceedance record in reporting month is shown in **Appendix L** and summarized in the **Table 5.5**

Monthly EM&A Report – July 2013

Table 5.5 Summary of Water Quality Exceedances

Station	Exceedance Level	DO (Surface	& Middle)	DO(Botto	m)	Turbidity		SS		Total N	lumber edances
	Level	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood	Mid- Ebb	Mid- Flood
IS1	Action Level Limit Level									0	0
IS2	Action Level Limit Level									0	0
IS3	Action Level Limit Level									0	0
IS4	Action Level Limit Level									0	0
SR1	Action Level Limit Level									0	0
SR2	Action Level Limit Level									0	0
SR3	Action Level Limit Level									0	0
SR6	Action Level Limit Level								08/07/2013	0	0
ST1	Action Level Limit Level									0	0
ST2	Action Level								08/07/2013 24/07/2013	0	2
	Limit Level Action Level							24/07/2013		0	0
ST3	Limit Level									0	0
SRA	Action Level Limit Level									0	0
Total	Action Level Limit Level	0	0	0	0	0	0	0	3		

- 5.38 All water quality monitoring was conducted as scheduled in the reporting month. There are three Action Level and one Limit Level exceedances for suspended solids were recorded.
- 5.39 According to the investigation, no pollution discharge from the marine works and no exceedances were recorded at the impact stations (i.e. IS1 to IS4) which are close to construction site. Therefore, all exceedances are considered not due to the Contract.

Event and Action Plan

5.40 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

6 DOLPHIN-RELATED MONITORING

Monitoring Requirements

- 6.1 According to Section 10 of the EM&A Manual, four kinds of ecological monitoring works are required during the construction phase, namely dolphin monitoring, construction-phase underwater noise monitoring, dolphin behavior monitoring and land-based dolphin behavior and movement monitoring.
- 6.2 The monitoring work shall be undertaken by suitably qualified specialist(s), (i.e. dolphin specialist and bio-acoustician), who shall have sufficient (at least 5-10 years) relevant post-graduate experience and publication in the respective aspects. They should be approved by Agriculture, Fisheries and Conservation Department (AFCD) and Environmental Protection Department (EPD).

Dolphin Monitoring (Line-transect Vessel Survey)

Monitoring Requirements

- 6.3 According to EM&A Manual Section 10.3.2, a dolphin monitoring programme should be set up to verify the predictions of impacts and to ensure that there are no unforeseen impacts on the dolphin population during construction phase.
- 6.4 Following the requirement in the EM&A Manual Section 10.4.1, the dolphin monitoring should adopt line-transect vessel survey method, and cover the following line-transect survey areas as in AFCD annual marine mammal monitoring programme.

Monitoring Location

6.5 For this contract, dolphin monitoring will be carried out in the West Lantau (WL) along the line transect as depicted in **Figure 1** of **Appendix I-1**. The co-ordinates of all transect lines are shown in **Table 6.1**.

Table 6.1 Co-ordinates of transect lines in WL survey area

	Line No.	Easting	Northing	Line No.		Easting	Northing
1	Start Point	803750	818500	7	Start Point	800200	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802940	815500	8	End Point	799750	809450
3	Start Point	802550	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450
4	Start Point	803120	813600	10	Start Point	801500	807450
4	End Point	801640	813600	10	End Point	799600	807450
5	Start Point	801100	812450	11	Start Point	800300	806500

		,		-
Monthly	y EM&A	Report -	- July	2013

	Line No.	Easting	Northing	Line No.		Easting	Northing
5	End Point	802900	812450	11	End Point	801750	806500
6	Start Point	802400	811500	12	Start Point	801760	805450
6	End Point	800660	811500	12	End Point	800700	805450

Monitoring Frequency

6.6 Dolphin transect survey was carried out at least twice a month (i.e. complete all the transect lines of West Lantau survey area twice per month) throughout the construction period.

Monitoring Day

6.7 Dolphin monitoring was carried out on 5th and 10th July 2013. The dolphin monitoring schedule for the reporting period is shown in **Appendix D**.

Monitoring Results

- 6.8 From these surveys, a total of 60.3 km of survey effort was collected, with 100.0% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) Out of the 60.3 km of survey effort, the total survey effort conducted on primary lines (the vertical lines perpendicular to the coastlines) was 40.2 km.
- 6.9 15 groups of 63 Chinese White Dolphins were sighted from primary lines. These sightings were evenly distributed throughout the WL survey area, which was very different from previous months of monitoring when most sightings were made at the middle and southern portions of the survey area. Notably, two dolphin sightings were made near the HKLR09 alignment.
- 6.10 Dolphin encounter rates deduced from the survey effort and on-effort sighting data made under favourable conditions (Beaufort 3 or below) are shown in **Table 6.2**.

Table 6.2 Dolphin encounter rates (sightings per 100 km of survey effort) in July's surveys

		Encounter rate (STG)	Encounter rate (ANI)	
		(no. of on-effort dolphin	(no. of dolphins from all on-	
		sightings per 100 km of	effort sightings per 100 km of	
		survey effort)	survey effort)	
		Primary Lines Only	Primary Lines Only	
WL	Set 1: July 5 th	38.7	159.5	
WL	Set 2: July 10 th	35.8	153.5	

- 6.11 A total of 28 re-sightings of known individual Chinese White Dolphins were made during the July's surveys.
- 6.12 No adverse impact on Chinese white dolphins was noticeable from general observations.
- 6.13 Evaluation of impacts on dolphins due to construction work will be conducted in the

Monthly EM&A Report – July 2013

quarterly EM&A report.

6.14 Detailed monitoring methodology and results can be found in **Appendix I-1**.

Construction-phase Underwater Noise Monitoring

Monitoring Requirements

- 6.15 According to EM&A Manual Section 10.3.3 and 10.4.2, construction-phase underwater noise monitoring has to be carried out to verify the assessment outcome in the EIA and to collect field data of this construction activity. The actual underwater noise level of bored piling will be monitored during the pile construction in the waters to the west of the Airport for HKLR.
- 6.16 Following the requirement in the EM&A Manual Section 10.6.2, construction-phase underwater noise monitoring will be constructed for 10 days from the start of the bored piling activities for the first three pier sites during the bored piling process in the first three sits in the waters to the west of Airport.

Monitoring Location

- 6.17 The equipment was positioned at an appropriate and safe distance from a barge (about 100m away from the center of the pier) where the piling work was carried out at the pier site to monitor the underwater noise during the bored piling activities. After anchoring, the boat would drift within the radius of the anchor (about 5m), which was unavoidable.
- 6.18 In July 2013, bored piling work was carried out at Pier site no. 0. The approximate locations of the monitoring stations are depicted in **Figure 5**. The co-ordinates of the monitoring station are shown in **Table 6.3**.

Table 6.3 Co-ordinates of underwater noise monitoring stations

Pier No.	Station	Easting	Northing	
0	R3	802556	815708	

6.19 Due to programme change, the first three piers were changed to P48, P52 and P0 instead of P20, P47 or P49 proposed in the methodology statement. While the location of impact monitoring has changed, the position of the station remained around 100m away from the piers as proposed. The change in monitoring location will not affect comparison against Action and Limit level.

Monitoring Day

6.20 R3 was monitored on 11th, 12th, 15th-19th and 22nd-24th July 2013. A total of 10 days of underwater noise monitoring were conducted at R3 during the bored piling activities for P0. The underwater noise monitoring schedule for the reporting period is shown in **Appendix D**. Since the commencement of the underwater noise monitoring, a total of 30-day results from the start of the bored piling activities for the first three pier sites were collected.

Monitoring Equipment

6.21 PAM004, a proprietary product of Sea Mammal Research Unit (SMRU), was adopted for impact underwater noise monitoring. It is the same equipment used in baseline monitoring. While this is different from the system proposed in the method statement, the difference in sensitivity and pre-amplifier gain will not affect the monitoring results. Therefore, this still allows compatible comparison of the measurement. Copies of calibration certificates are provided in **Appendix C**.

Monitoring Methodology

- 6.22 The data recorded by PAM004 were transmitted to a receiving station on a boat via cable. The data were viewed on a laptop computer in real time by an operator from Cinotech who has been well trained and technically supported by SMRU for the operation.
- 6.23 The RMS sound pressure level re 1μ Pa were checked against the Action Level and Limit Level (170 and 180 dB re 1μ Pa respectively).

Monitoring Results

6.24 The underwater noise monitoring results are summarized in **Table 6.4**. Hourly average RMS and graphical presentations of underwater noise monitoring are shown in **Appendix I-2**. The averaging period was in general from 9am to 6pm, depending on the availability of the data as the monitoring might have temporarily paused due to bad weather or to give way for barge movement.

Table 6.4 Summary Table of Underwater Noise Monitoring Results during the Reporting Month

Date	Pier Station		Underwa	Period		
Date	No.	Station	Max	Average	Min	renou
11-Jul-13	0	R3	156.8	139.8	117.7	10-18
12-Jul-13	0	R3	164.6	139.7	115.4	9-18
15-Jul-13	0	R3	161.6	135.3	119.7	9-18
16-Jul-13	0	R3	153.9	133.6	120.5	9-18
17-Jul-13	0	R3	149.8	134.4	120.1	9-18
18-Jul-13	0	R3	149.9	138.4	122.5	9-18
19-Jul-13	0	R3	159.1	138.8	120.3	9-18
22-Jul-13	0	R3	155.2	140.0	122.2	9-18
23-Jul-13	0	R3	154.8	141.9	122.4	9-18
24-Jul-13	0	R3	155.1	141.2	120.8	9-18

Remarks: All underwater noise monitoring was conducted during the bored piling activities Frequency: 70 Hz – 125 kHz

- 6.25 As shown in the table above, no Action/Limit Level exceedance was recorded.
- 6.26 A total of 30-day results from the start of the bored piling activities for the first three pier sites were collected, further analysis on PSD and within audiological range of frequencies of Chinese white dolphin will be carried out and presented in a separate report.

Event and Action Plan

6.27 Should non-compliance of the criteria occur, action in accordance with the Action Plan in **Appendix K** shall be carried out.

Dolphin Behaviour Monitoring (Acoustic)

Monitoring Requirements

6.28 According to EM&A Manual Section 10.3.4, acoustic behavior and movement of Chinese White Dolphin near the bored piling sites should be monitored during bridge construction.

Monitoring Location

- 6.29 The dedicated acoustic surveys with calibrated hydrophone deployment were conducted in the western side of Lantau Island during the construction phase. The research vessel followed a predefined route for systematic search effort in West Lantau waters to cover the HKLR alignment in Northwest and West Lantau waters (in particular the area near the first three bored piling sites), where dolphins will be potentially disturbed by the bored piling works.
- 6.30 The EARs were deployed at two locations: 1) near the bridge alignment (N22°17.222, E113°53.016), about 500 m from the first three bored piling sites (Site B2), and 2) at a less disturbed site away from the bridge alignment as control site, off Fan Lau (N22°11.827, 113°50.648; Site B1). EAR B2 was in water depth 4 m, and EAR B1 in 7 m.

Monitoring Day

6.31 In July 2013, a total of 12 days of acoustic monitoring surveys were conducted on the 9th, 11th, 12th, 15th, 16th, 17th, 18th, 22nd, 23rd, 24th, 25th and 26th, when bored piling activities were concurrently conducted. The schedule is shown in **Appendix D**.

Monitoring Results

- 6.32 In July, 783.8 km of survey effort were conducted to search for dolphins in the western and northwestern waters of Lantau. A total of 46 groups, numbering 170 dolphins, were sighted during these surveys. In addition, 52 sound samples with 4.2 hours of recordings were taken from some of these dolphin groups. Moreover, the EARs were deployed since early July 2013 at Fan Lau (site B1) and near the bridge alignment (Site B2), which will be recovered at the end of the construction phase monitoring.
- 6.33 Detailed monitoring methodology and results can be found in **Appendix I-3**.

Land-based Dolphin Behaviour and Movement Monitoring

Monitoring Requirements

- 6.34 According to EM&A Manual Section 10.3.5, land-based theodolite tracking has to be carry out to study dolphin behaviour near bored piling work site, and examine their north-south movement across the bridge alignment during after bridge construction.
- 6.35 Following the requirement in the EM&A Manual Section 10.4.3 and 10.6.3, the monitoring should be conducted at the three pier sites for 30 days from the start of bored piling activities in the waters to the west of Airport.

Monitoring Location

6.36 A theodolite tracking station was set up in Sham Wat located along the northwest coast of Lantau Island (22°16.10' N. and 113°52.32' E) as depicted in **Figure 6**.

Monitoring Frequency

6.37 Thirty days of monitoring would be carried out during the construction phase. Additional land-based dolphin behavior and movement monitoring (twice per month) throughout the construction period will be commenced subject to the detailed analysis of 30 days monitoring results.

Monitoring Day

6.38 In July 2013, a total of 13 sessions with 74.1 hours of theodolite tracking were conducted from Shum Wat shore-based station on the 8th, 9th, 10th, 11th, 12th, 13th, 15th, 17th, 18th, 19th, 23rd, 24th and 29th, when bored piling activities were concurrently conducted. The schedule is shown in **Appendix D**.

Monitoring Results

- 6.39 More than 93% of effort was conducted in favourable weather conditions during those days. Dolphins were successfully tracked from shore on 12 of the 13 days of efforts, and a total of 57 dolphin groups were tracked. A total of 1,536 fixes of their positions were collected, and another 2,174 fixes were also made from locations of various vessels (e.g. fishing boats, high-speed ferries), to examine the level of vessel traffic in the study area. At the end of the construction phase monitoring period, the data will be used for the analyses on movement pattern, speed, reorientation rate, linearity, interbreath interval, and north-south movement of Chinese White Dolphins.
- 6.40 Detailed monitoring methodology and results can be found in **Appendix I-4**.

7 ENVIRONMENTAL SITE INSPECTION

Site Audits

- 7.1 Site audits were carried out by ET on weekly basis to monitor the timely implementation of proper environmental management practices and mitigation measures in the Contract site. The summaries of site audits are attached in **Appendix M**.
- 7.2 Site audits were conducted on 2nd, 9th, 16th, 23rd and 30th July 2013 by ET after the commencement of construction works for the Contract. A joint site audit with the representative with IEC, ER, the Contractor and the ET was carried out on 30th July 2013. The details of observations during site audit can refer to **Table 7.1**.
- 7.3 According to EP condition 4.7 and EM&A Manual, periodic monitoring (every three months) of construction works shall be conducted to ensure the avoidance of any impacts on Sha Lo Wan (West) Archaeological Site. Access to Sha Lo Wan (West) Archaeological site for works areas and storage of construction equipment is not allowed. The 2nd inspection to the Sha Lo Wan (West) Archaeological Site was conducted on 18th June 2013 and next inspection will be conducted in September 2013.

Implementation Status of Environmental Mitigation Measures

- 7.4 According to the EIA Study Report, Environmental Permit and the EM&A Manual, the mitigation measures detailed in the documents are recommended to be implemented during the construction phase. An updated summary of the EMIS is provided in **Appendix N**.
- 7.5 Regular marine travel route for marine vessels were implemented properly in accordance with the submitted plan and relevant records were kept properly.
- 7.6 Acoustic decoupling measures for the stationary equipment (generators, winch generators and air compressors) mounted on boards were adopted according to the approved Acoustic Decoupling Measures Plan.
- 7.7 Dolphin exclusion zone was implemented by ET's trained dolphin observer in accordance with EP Condition 3.4. In addition, dolphin exclusion zone and dolphin watching plan according to EM&A Manual, Section 10.2.12 and EP Condition 3.5 was implemented by DCVJV's trained dolphin watcher.
- 7.8 Spill kits and booms are ready on site for the event of accidental spillage of oil or other hazardous chemicals from construction activities including vessels operating for the Contract.
- 7.9 During site inspections in the reporting month, no non-conformance was identified. The observations and recommendations made during the audit sessions are summarized in **Table 7.1**.

Table 7.1 Observations and Recommendations of Site Audit

Parameters	Date	Observations and Recommendations	Follow-up
			Rectification/improvement
	02/07/2013	To review the sedimentation process of the surface runoff at Portion C.	was observed during the follow-up audit session on 9
		the surface funori at i ortion C.	July 2013.
-		To clear the water at wheel washing bay	Rectification/improvement
	09/07/2013	at Portion C.	was observed during the
			follow-up audit session on
Water Quality			16 July 2013.
" uter Quality		To clear the sand and silt settled at the	Rectification/improvement
	09/07/2013	drain at Portion C.	was observed during the
			follow-up audit session on 16 July 2013.
-		To clear the sediment at the deck of flap-	Rectification/improvement
	4 < 10 = 10 0 1 0	top work barge at P50.	was observed during the
	16/07/2013		follow-up audit session on
			23 July 2013.
Ecology	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
		To the leaf the single constraint of D50 to	Rectification/improvement
Air Quality	16/07/2013	To check the air compressor at P50 to avoid emitting grey smoke.	was observed during the follow-up audit session on
		avoid childing grey smoke.	23 July 2013.
			Rectification/improvement
Noise	16/07/2013	To close the door of air compressor	was observed during the
Noise	10/07/2013	which is in operation at P50.	follow-up audit session on
			23 July 2013.
	23/07/2013	To seal the hole of the drip tray near the office containers at Portion C.	Follow-up action was needed for the item.
-		To remove the construction materials	Follow-up action was
	23/07/2013	which were placed at near the tree at	needed for the item.
		Portion C.	
		Clear the deposit silt and sediment at the	Rectification/improvement
	23/07/2013	site exit and drainage channel at Portion C.	was observed during the follow-up audit session on
			30 July 2013.
Waste / Chemical		Clear the oil stain at near the Pontoon at	Rectification/improvement
Management	23/07/2013	WA4.	was observed during the
	23/07/2013		follow-up audit session on 30 July 2013.
		To remove the construction materials	Follow-up action was
	30/07/2013	which were placed at near the tree at	needed for the item.
		Portion C.	
	30/07/2013	Clear the deposit silt and sediment at the	Follow-up action was
-		drainage channel at Portion C. To seal the hole of the drip tray near the	needed for the item. Follow-up action was
	30/07/2013	office containers at Portion C.	Follow-up action was needed for the item.
Landscape &	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Visual Impact			
Other(s)	N/A ⁽¹⁾	N/A ⁽¹⁾	N/A ⁽¹⁾
Cultural Havitaga			
Heritage (Sha Lo Wan	(2)	(2)	(2)
(Sha Lo Wan (West)	$N/A^{(2)}$	N/A ⁽²⁾	N/A ⁽²⁾
Archaeological			
Site)			

Remark: N/A⁽¹⁾ No major environmental deficiency was identified during the site inspection in the reporting month.

 $N/A^{(2)}$ No archaeological site inspection was conducted in the reporting month.

Advice on the Solid and Liquid Waste Management Status

- 7.10 According to the Contractor, 12,438m³ inert C&D materials were generated during the reporting month.
- 7.11 The Contractor was advised to minimize the wastes generated through the recycling or reusing. All mitigation measures stipulated in approved waste management plan shall be fully implemented.
- 7.12 The amount of wastes generated by the activities of the Contract during the reporting month is shown in **Appendix O**.

8 ENVIRONMENTAL NON-CONFORMANCE (EXCEEDANCES)

Summary of Exceedances

- 8.1 Summary of exceedance is provided in **Appendix** L.
- 8.2 No Action/Limit Level exceedance was recorded for air quality, construction noise and underwater noise.
- 8.3 All water quality monitoring was conducted as scheduled in the reporting month. There are three Action Level and one Limit Level exceedances for suspended solids were recorded.
- 8.4 According to the investigation, no pollution discharge from the marine works and no exceedances were recorded at the impact stations (i.e. IS1 to IS4) which are close to construction site. Therefore, all exceedances are considered not due to the Contract.

Summary of Environmental Complaint

8.5 One environmental related complaint was received in the reporting month. The Complaint Log is attached in **Appendix P**.

Summary of Notification of Summons and Successful Prosecution

8.6 There was no prosecution or notification of summons received since the Contract commencement.

9 FUTURE KEY ISSUES

Key Issues in the Coming Month

9.1 Major site activities for the coming reporting month will include:

WA4

- Fabrication of rebar cages
- Loading and unloading
- Setup of casting yard

WA7

- Preparation for bored piling
- Fabrication of rebar cages
- Loading and Unloading

Portion A (Land Section)

- Site clearance and formation
- Timber Scaffolding
- Pre-drilling work
- Set-up facilities for marine delivery of concrete from land plants
- Slewing of the tele-communication & AA COM cables

Portion C

- Erection of hoarding & fencing
- Pre-drilling work
- Protection work to the fuel pipes
- Backfilling works
- Fabrication of reinforcement cage and piling jacket, setting up for land piling work

Western Water

- Pre-drilling Work
- Loading and Unloading
- Setting up of silt-curtain
- Platform installation for pre-drilling works
- Installation of temporary casings for the piling platform
- Installation of permanent casing
- Bored piling works

Monitoring Schedule for the Next Month

9.2 The tentative environmental monitoring schedule for the next month is shown in **Appendix D**.

Construction Programme for the Next Month

9.3 A tentative construction programme is provided in **Appendix A**.

10 CONCLUSIONS AND RECOMMENDATIONS

Conclusions

- 10.1 The Environmental Monitoring and Audit (EM&A) Report presents the EM&A works undertaken in July 2013 in accordance with EM&A Manual.
- 10.2 No Action/Limit Level exceedance was recorded for air quality, construction noise and underwater noise.
- 10.3 For water quality monitoring, there is three Action Level and one Limit Level exceedances for suspended solids were recorded.
- 10.4 According to the investigation, no pollution discharge from the marine works and no exceedances were recorded at the impact stations (i.e. IS1 to IS4) which are close to construction site. Therefore, all exceedances are considered not due to the Contract.
- 10.5 Dolphin transect survey was carried out on 5th and 10th July 2013. No adverse impact on Chinese White Dolphins was noticeable from general observations.
- 10.6 Dolphin Behaviour Monitoring (Acoustic) was carried out on 9th, 11th, 12th, 15th, 16th, 17th, 18th, 22nd, 23rd, 24th, 25th and 26th July 2013.
- 10.7 Land-based Dolphin Behaviour and Movement Monitoring was conducted on 8th, 9th, 10th, 11th, 12th, 13th, 15th, 17th, 18th, 19th, 23rd, 24th and 29th July 2013.
- 10.8 Environmental site inspection was conducted on 2nd, 9th, 16th, 23rd and 30th July 2013 by ET in the reporting month. All deficiencies identified during the site inspection have already rectified / improved during the follow-up audit session.
- 10.9 There was one environmental complaint, no notification of summons and successful prosecution received.
- 10.10 The ET will keep track on the EM&A programme to ensure compliance of environmental requirements and the proper implementation of all necessary mitigation measures.

Recommendations

10.11 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

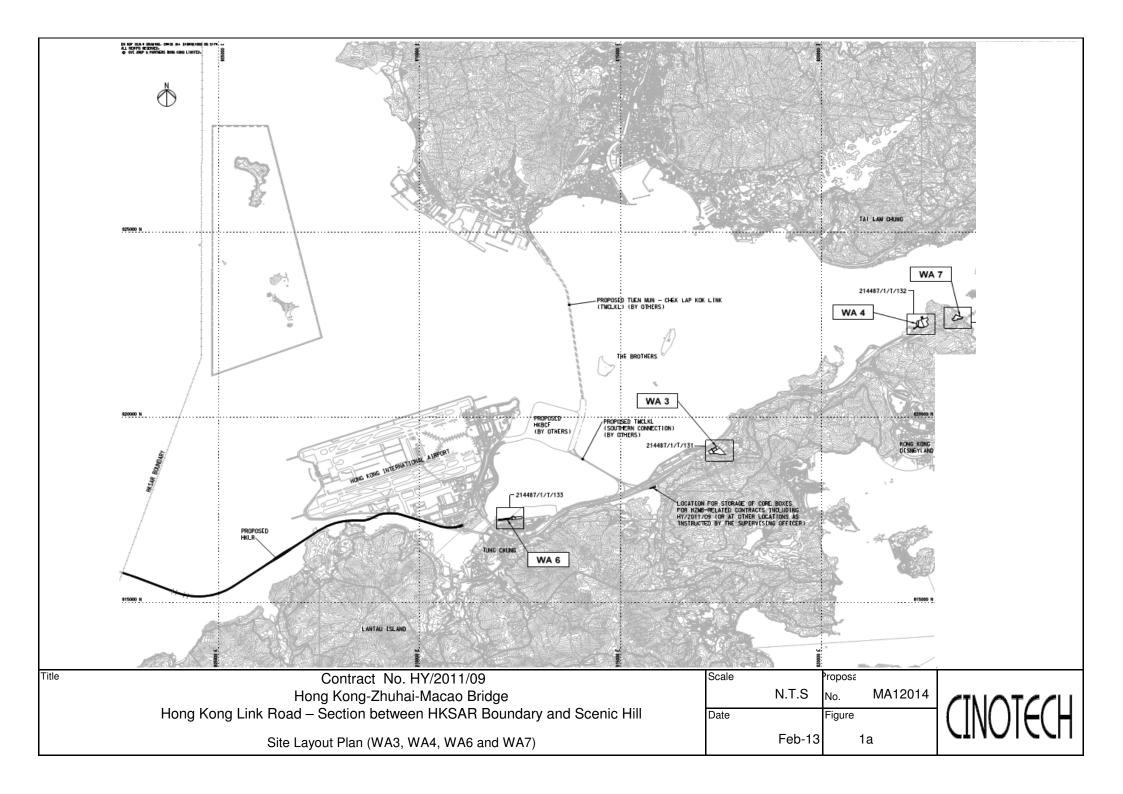
- To regularly maintain the quality of machinery and vehicles on site.
- To implement dust suppression measures on all haul roads, stockpiles, dry surfaces and excavation works.
- To provide hoarding along the entire length of that portion of the site boundary.

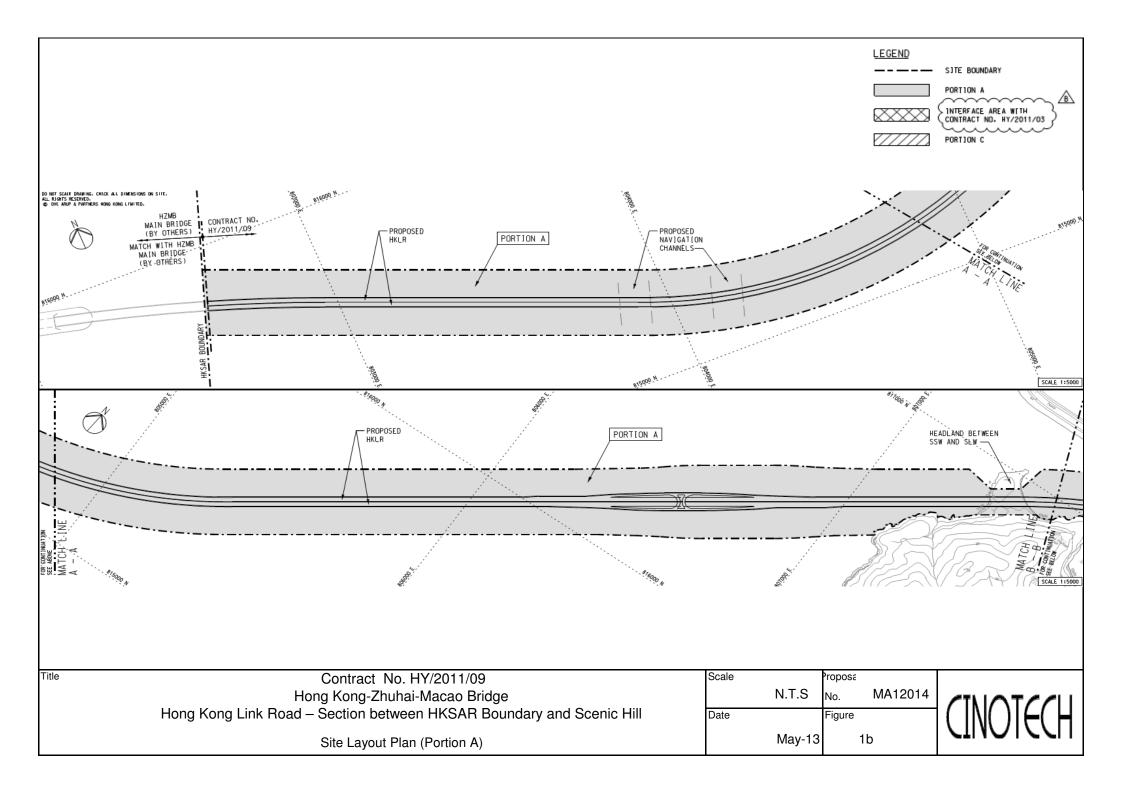
Noise Impact

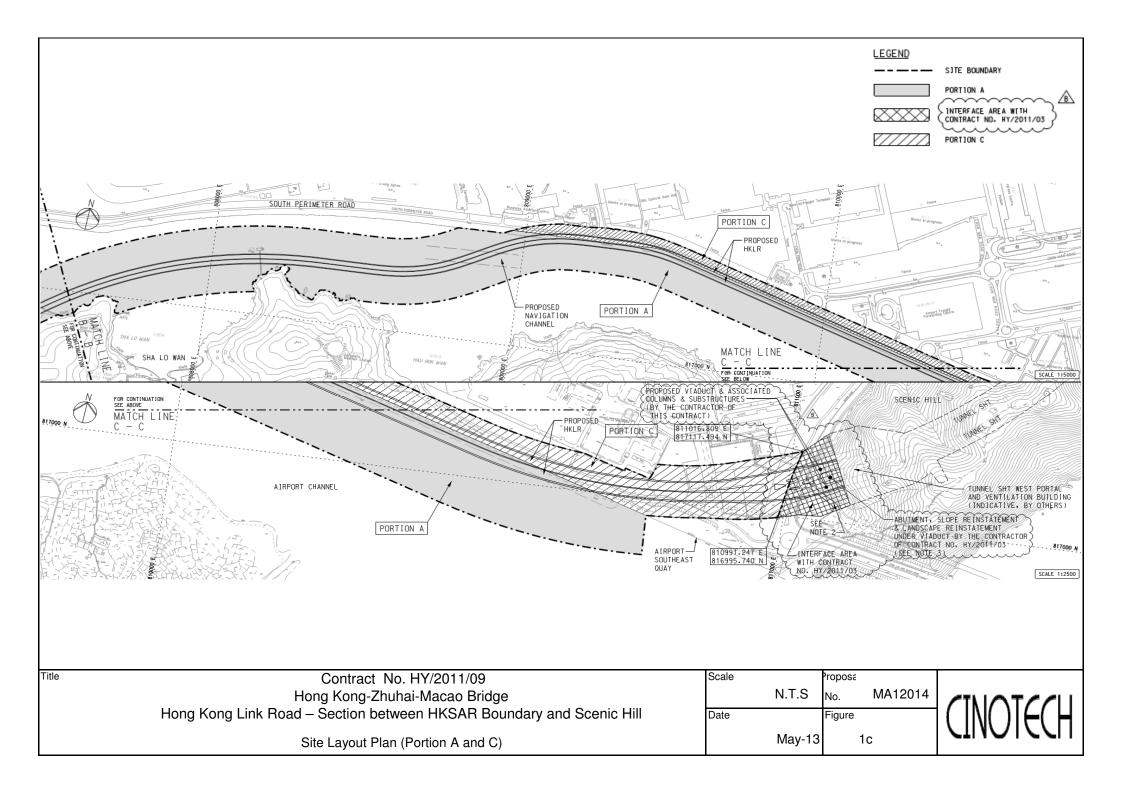
- To inspect the noise sources inside the site.
- To space out noisy equipment and position the equipment as far away as possible from sensitive receivers.
- To provide temporary noise barriers for operations of noisy equipment near the noise sensitive receivers, if necessary.

Water Impact

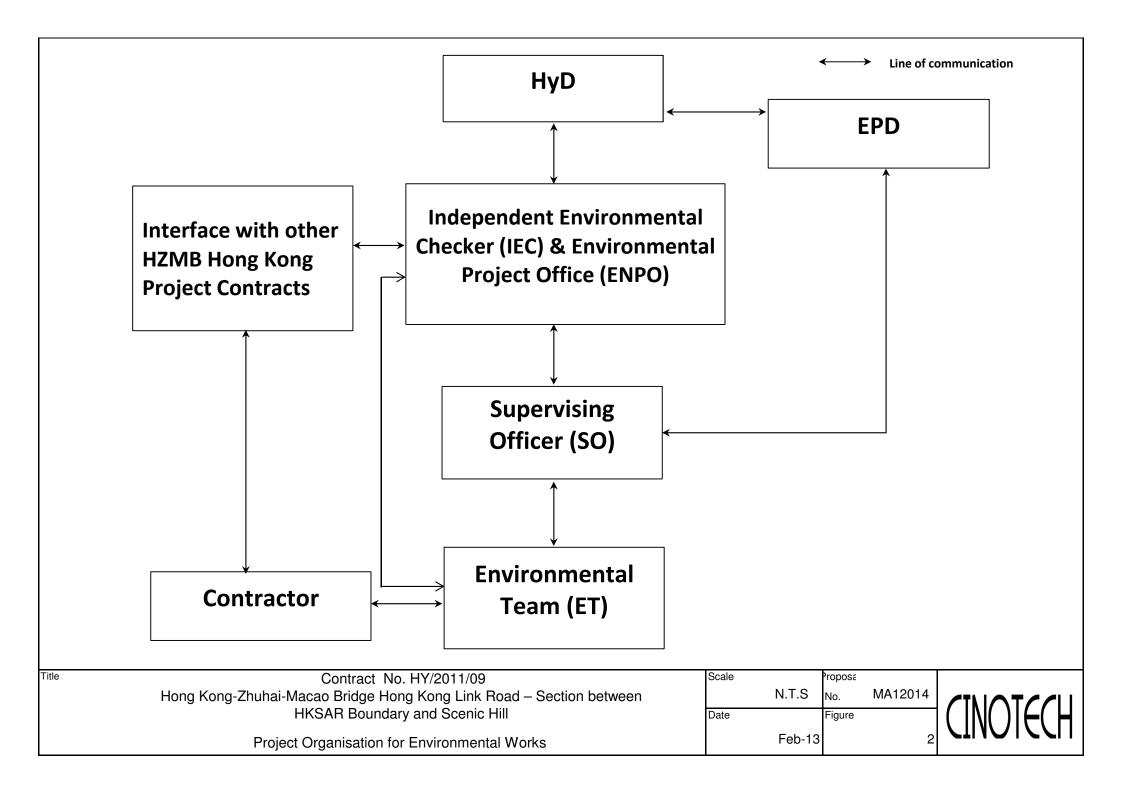
- To prevent any surface runoff discharge into any stream course and sea.
- To review and implement temporary drainage system.
- To identify any wastewater discharges from site.
- To ensure properly maintenance for de-silting facilities.
- To clear the silt and sediment in the sedimentation tanks.
- To review the capacity of de-silting facilities for discharge.
- To divert all the water generated from construction site to de-silting facilities with enough handling capacity before discharge.
- To avoid accumulation of stagnant and ponding water on site.

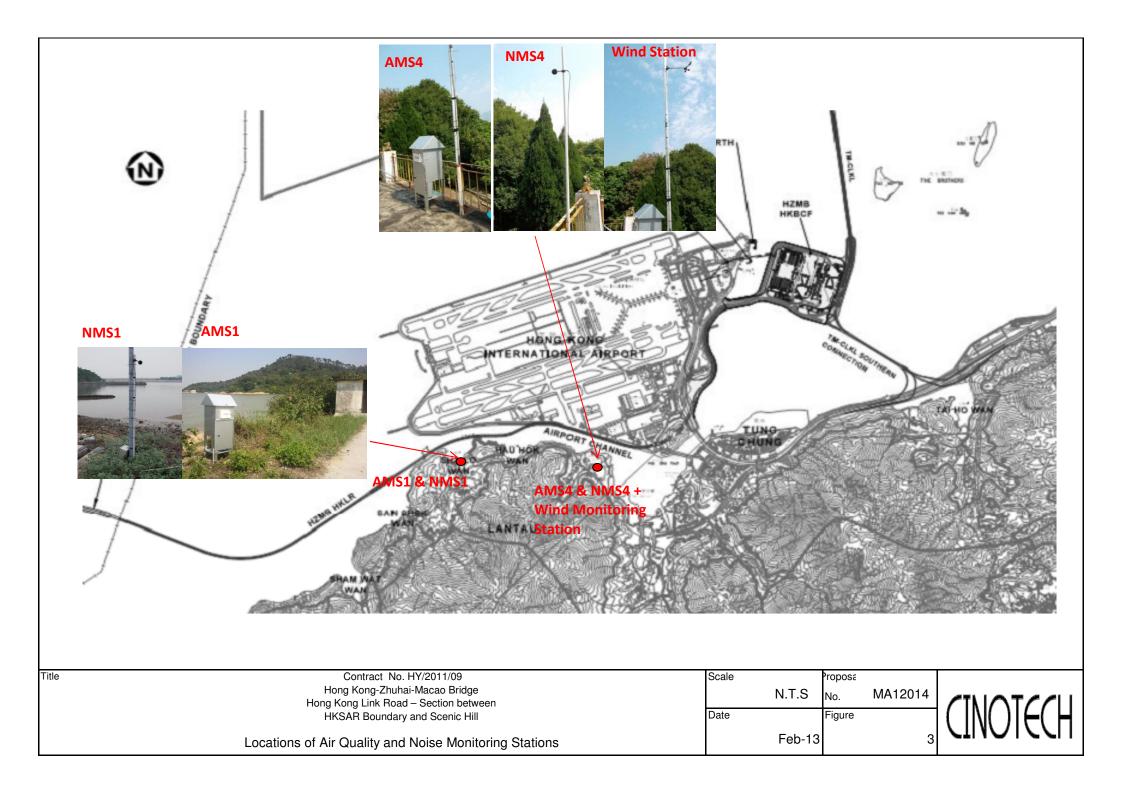

Ecology Impact

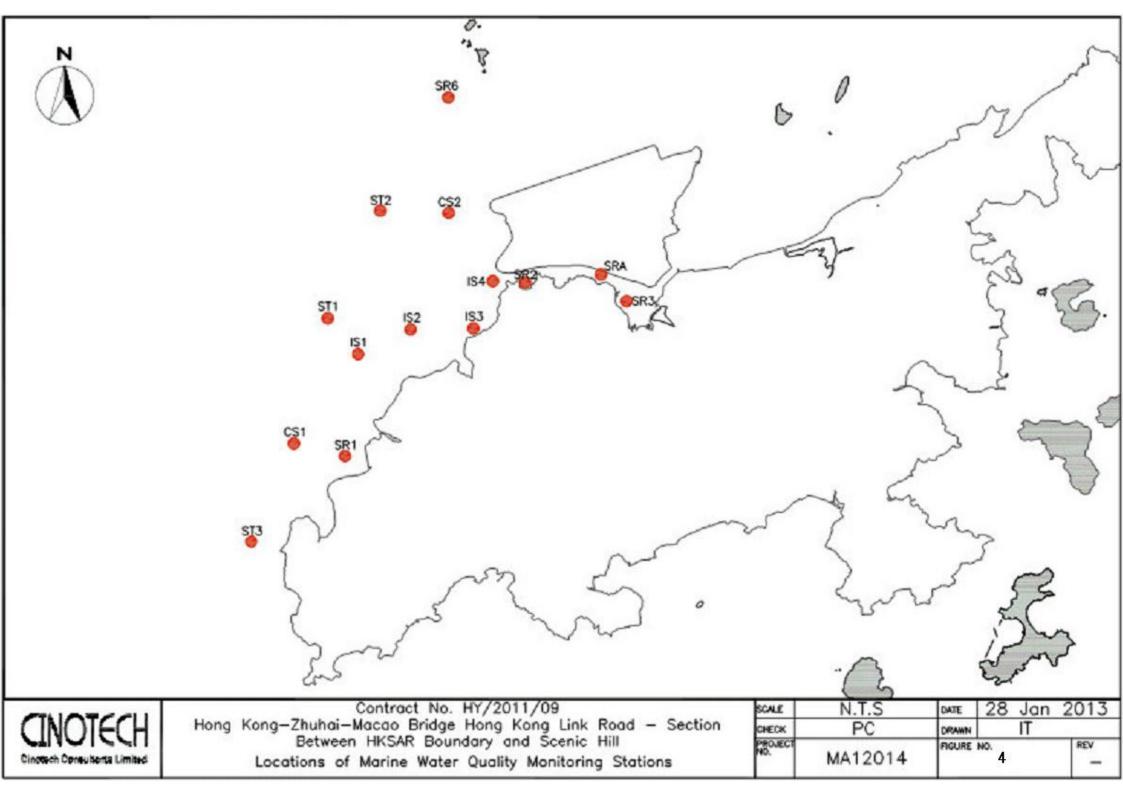

- To implement Spill Response Plan in the event of accidental spillage of or other hazardous chemicals.
- To implement Dolphin Exclusion Zone during the installation of bored pile casing located in the waters to the west of Airport.
- To implement Dolphin Watching Plan after the bored piling casing is installed.
- To ensure the acoustically-decoupled measures were implemented for air compressors and other noisy equipment mounted on construction vessels according to acoustic decoupling measures plan.

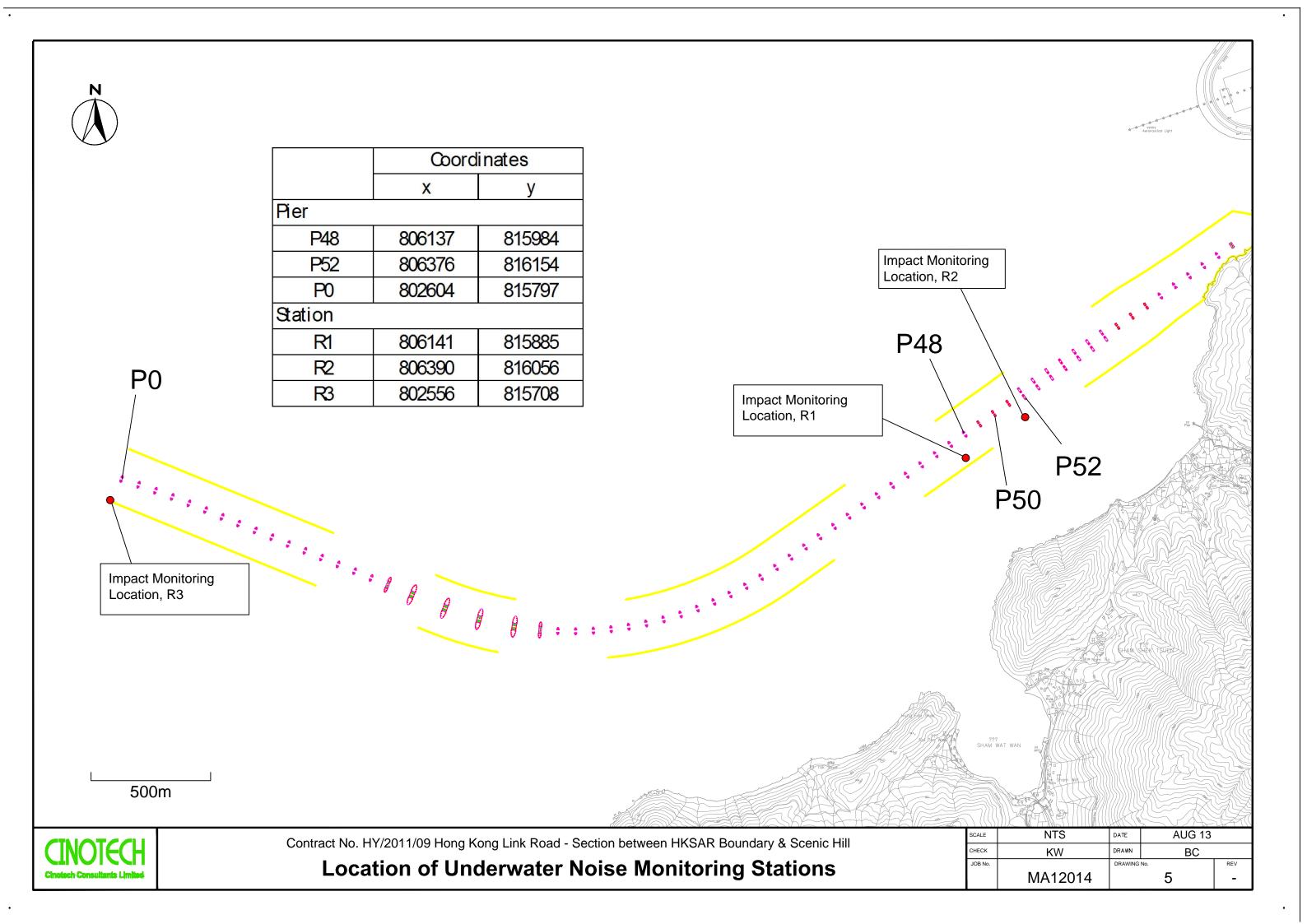

Waste/Chemical Management

- To check for any accumulation of waste materials or rubbish on site.
- To ensure the performance of sorting of C&D materials at source (during generation):
- To carry out inspection of dump truck at site exit to ensure inert and non-inert C&D materials are properly segregated before removing off site.
- To avoid any discharge or accidental spillage of chemical waste or oil directly from the site.
- To avoid improper handling or storage of oil drum on site.


FIGURE(S)

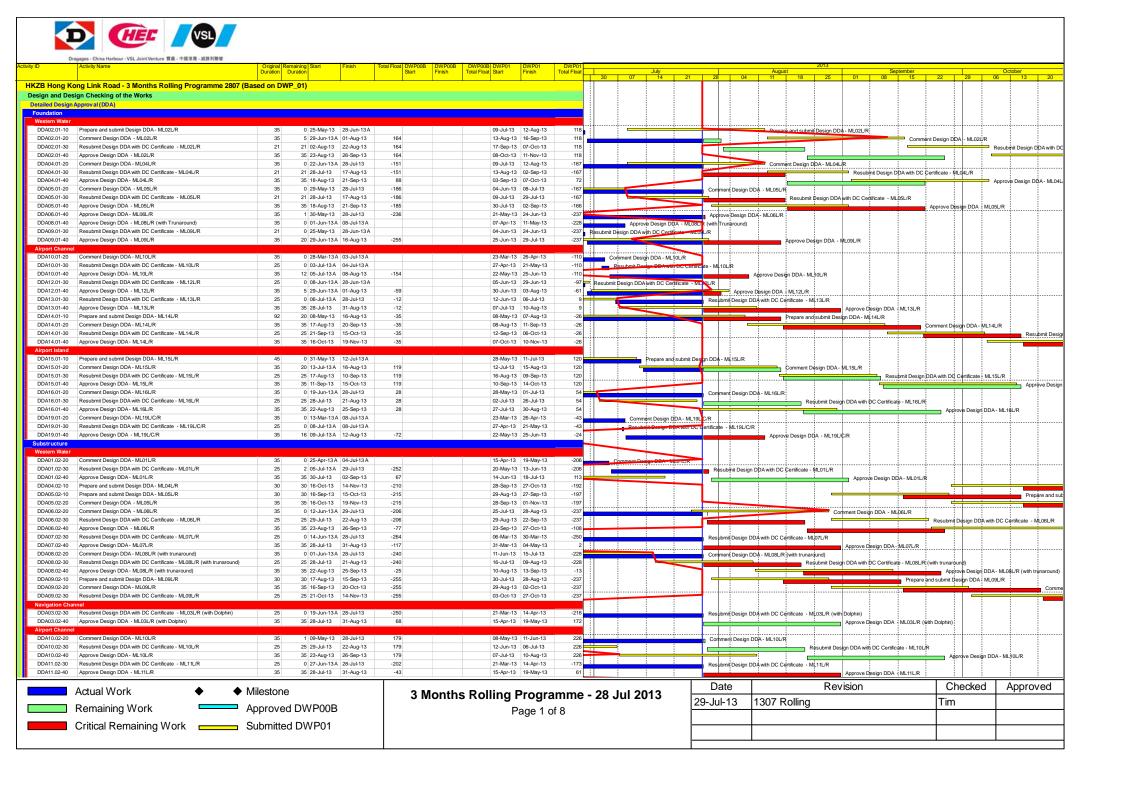


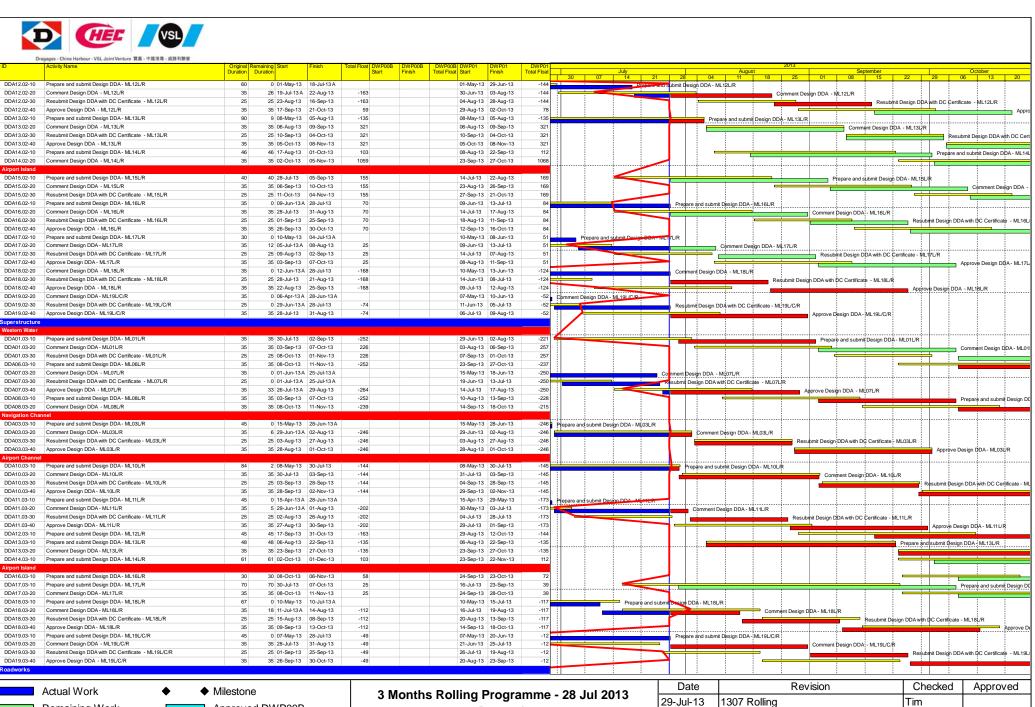




APPENDIX A CONSTRUCTION PROGRAMME

Bored Piling Activities at P0, P48, P50 & P52 conducted in July 2013

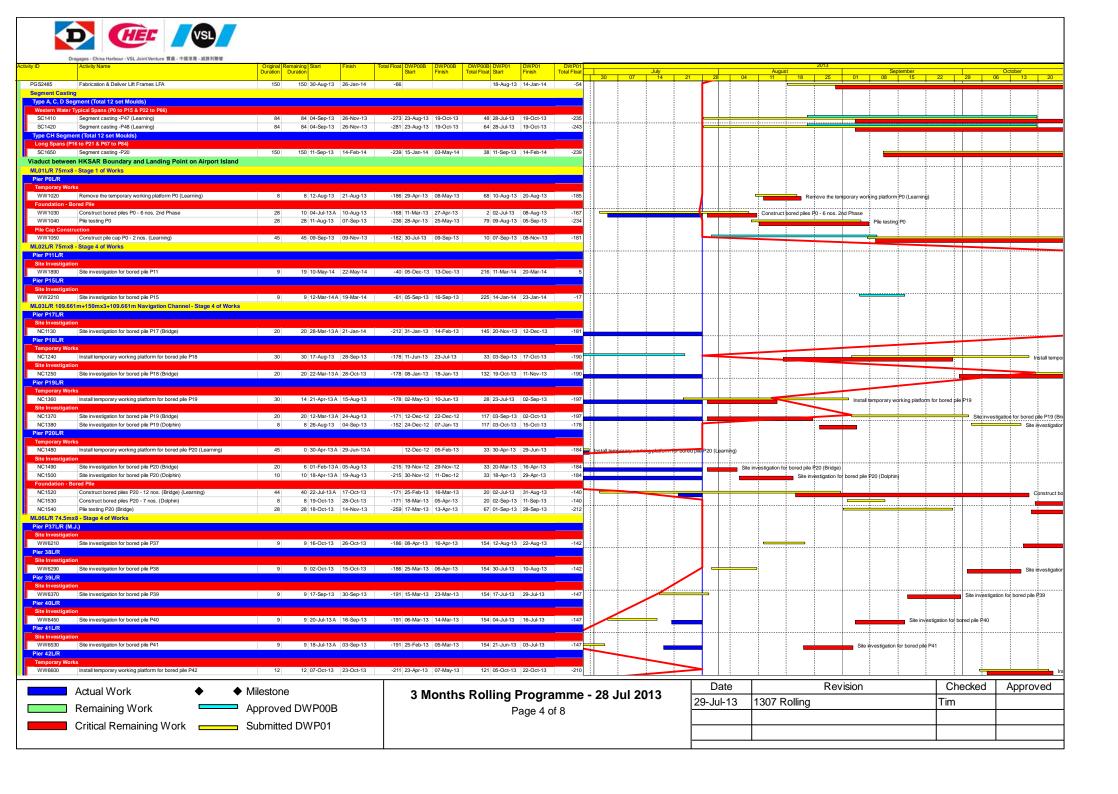

Date	Location	Bored Piling Activities
8-Jul-13	Pier 0	P0-R1 Bored pile excavation works by BG40.
	Night	P0-R1 Excavation works reached Founding Level by BG40.
		P0-L3 Excavation works by BG40.
	Pier 50	Excavation for bored pile P50-R2 by RCD.
		Splicing of permanent casing to bored pile P50-R3.
	Night	Set up RCD to bored pile P50-R1.
	Pier 52	Set up RCD to bored pile P52-L4.
		Excavation for bored pile P52-L1 by RCD.
	Night	Set up RCD to bored pile P52-L4.
		Excavation for bored pile P52-L1 by RCD.
9-Jul-13	Pier 0	P0-R1 Air-lifting & preparation work for Koden test.
	Night	Tidy up and maintenance drilling bit.
	Pier 50	Excavation for bored pile P50-R1 by RCD.
		Set up RCD to bored pile P50-R3.
	Night	Excavation for bored pile P50-R1 by RCD.
		Set up RCD to bored pile P50-R3.
	Pier 52	Set up RCD and excavation for bored pile P52-R4.
	Night	Installation of steel cage for bored pile P52-L4.
10-Jul-13	Pier 0	P0-R1 Remedial works
	Night	Tidy up and maintenance drilling bit.
	Pier 50	Excavation for bored pile P50-R4 by RCD.
	Night	Excavation for bored pile P50-R4 by RCD.
	Pier 52	Concreting to bored pile P52-L4.
	Night	Excavation for bored pile P52-R4 by RCD.
		Shifting of RCD from bored pile P52-R4 to P52-R2.
		Concreting to bored pile P52-L4.
11-Jul-13	Pier 0	P0-R1 placing concrete for Remedial works.
	Night	P0-R1 placing concrete for Remedial works.
		Tidy up and maintenance work.
	Pier 50	Excavation for bored pile P50-R4 by RCD.
		Splicing of permanent casing to bored pile P50-R2.
	Night	Excavation for bored pile P50-L1 by RCD.
	Pier 52	Air-lifting, Koden test and installation of steel cage for bored pile P52-R4.
	Night	Installation of steel cage for bored pile P52-R4.
12-Jul-13	Pier 0	P0-R1 Remedial works
	Night	Tidy up and maintenance work.
	Pier 50	Excavation for bored pile P50-L1 by RCD.
	Night	Excavation for bored pile P50-L1 by RCD.
	Pier 52	Installation of steel cage and concreting to bored pile P52-R4.
	Night	Concreting to bored pile P52-R4.
10 T1 10	D: 0	Excavation for bored pile P52-L1 by RCD.
13-Jul-13	Pier 0	Tidy up & maintenance on CP1 platform.
	Night	P0-L3 excavation works by BG40.
	Pier 50	Installation of steel cage for bored pile P50-R4.
	Night	No site activity. Excavation for bored pile P52-L1 by RCD.
	Pier 52 Night	Excavation for bored pile P52-L1 by RCD. Excavation for bored pile P52-R2 by RCD.
14-Jul-13	Pier 0	No site activity on Sunday.
14-Jul-13		No site activity on Sunday. No site activity on Sunday.
	Night Pier 50	Installation of steel cage for bored pile P50-R4.
		Installation of steel cage for bored pile P50-R4. Installation of steel cage for bored pile P50-R4.
	Night Pier 52	No site activity on Sunday.
	Night	No site activity on Sunday. No site activity on Sunday.
	TAIRIII	The site activity on Sunday.

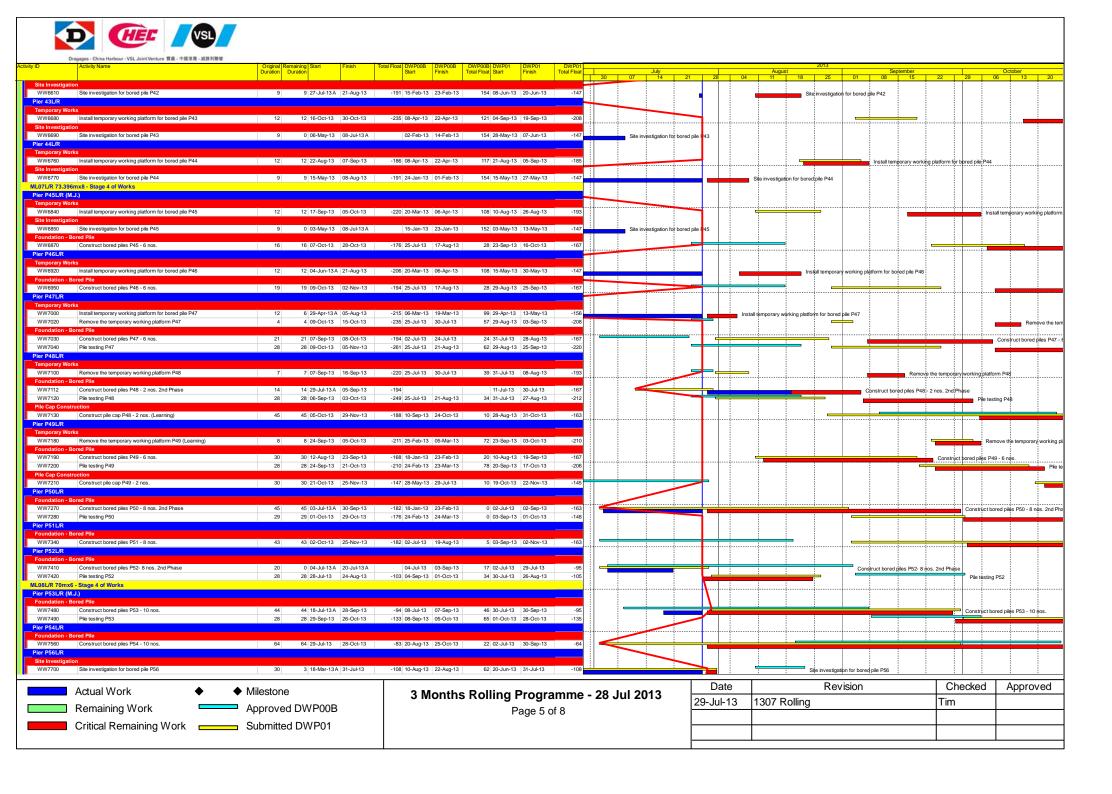

Bored Piling Activities at P0, P48, P50 & P52 conducted in July 2013

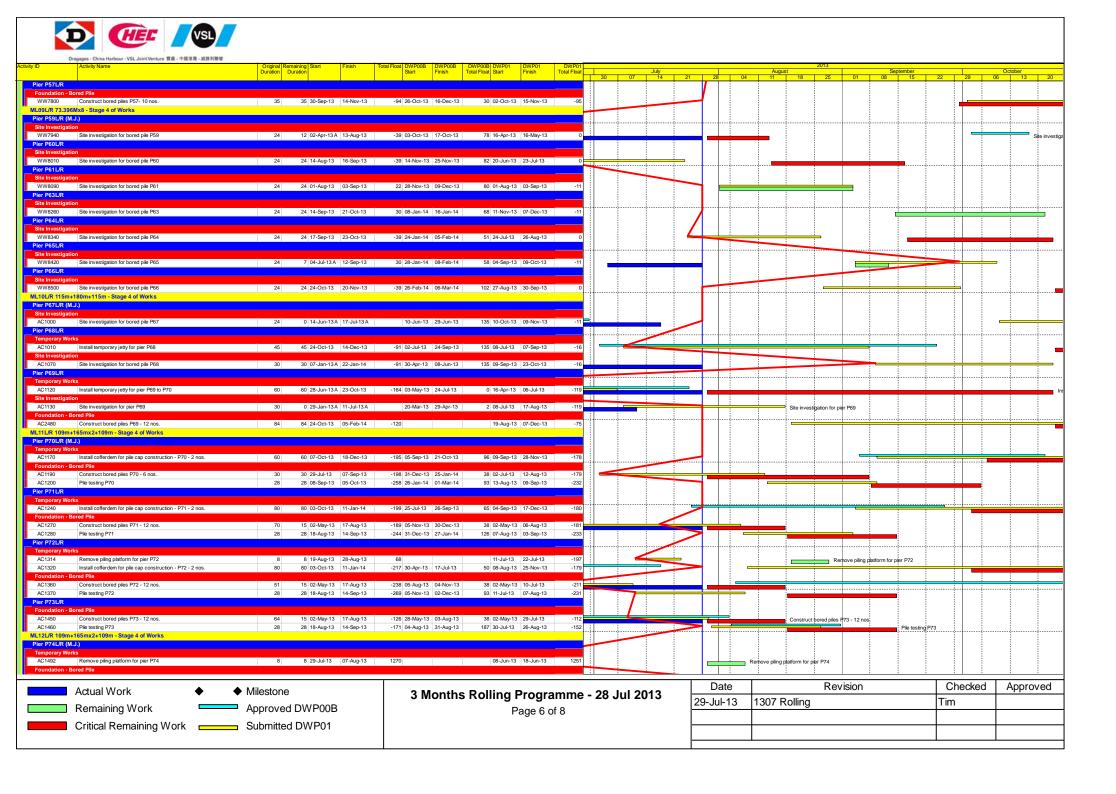
Date	Location	Bored Piling Activities
15-Jul-13	Pier 0	P0-R1 excavation works by BG40.
	Night	P0-R1 excavation works by BG40.
	Pier 50	Installation of steel cage and concreting to bored pile P50-R4.
	Night	Concreting to bored pile P50-R4.
		General cleaning and tidying on barge.
	Pier 52	Excavation for bored pile P52-R2 by RCD.
	Night	Installation of steel cage for bored pile P52-L1.
16-Jul-13	Pier 0	P0-L3 excavation works by BG40.
		P0-R1 placing concrete for Remedial works.
	Night	Tidy up and maintenance drilling bit.
	Pier 50	Installation of steel cage for bored pile P50-L1.
		Set up RCD to bored pile P50-R1.
	Night	Installation of steel cage for bored pile P50-L1.
	Pier 52	Installation of steel cage and concreting to bored pile P52-L1.
	Night	Concreting to bored pile P52-L1.
		Set up RCD to bored pile P52-R2.
17-Jul-13	Pier 0	P0-L3 excavation works by BG40.
		P0-R1 Re-excavation works for infill concrete by BG40.
	Night	P0-R1 Re-excavation works for infill concrete by BG40.
	Pier 50	Installation of steel cage for bored pile P50-L1.
	Night	Installation of steel cage and tremie pipe for concreting for bored pile P50-L1.
	Pier 52	Set up RCD to bored pile P52-L3.
	Night	Preparation work of installation of steel cage for bored pile P52-R2.
18-Jul-13	Pier 0	P0-R1 Re-excavation works for infill concrete by BG40.
	Night	P0-R1 Re-excavation works for infill concrete by BG40.
	Pier 50	Concreting to bored pile P50-L1.
	Night	No site activity.
	Pier 52	Set up RCD to bored pile P52-L3.
		Installation of rebar cage for bored pile P50-R2.
	Night	Air-lifting for bored pile P52-L3.
		Installation of rebar cage for bored pile P52-R2.
19-Jul-13	Pier 0	P0-R1 Re-excavation works for infill concrete by BG40.
	Night	P0-R1 Re-excavation works for infill concrete by BG40.
	Pier 50	Excavation for bored pile P50-R1 and P50-R3 by RCD.
	Night	Excavation for bored pile P50-L3 by RCD.
	Pier 52	Installation of rebar cage for bored pile P52-R2 and P52-L3.
	Night	Installation of rebar cage for bored pile P52-R2 and P52-L3.
22-Jul-13	Pier 0	P0-R1 Re-excavation works for infill concrete by BG40.
	Night	P0-R1 Re-excavation works for infill concrete by BG40.
	Pier 50	Excavation for bored pile P50-R1 by RCD.
		Installation of rebar cage and concreting to bored pile P50-L3.
	Night	Excavation for bored pile P50-R1 by RCD.
		Concreting to bored pile R50-L3.
	Pier 52	Preparation work for removal of Jacket Platform (LHS and RHS).
	Night	No site activity.
23-Jul-13	Pier 0	P0-R1 Re-excavation works for infill concrete by BG40.
		P0-L3 Excavation works by BG40.
	Night	P0-L3 Excavation works by BG40.
	Pier 50	Excavation for bored pile P50-R1 by RCD.
	Night	Excavation for bored pile P50-R1 by RCD.
	Pier 52	Preparation work for removal of Jacket Platform (LHS and RHS).
	Night	No site activity.

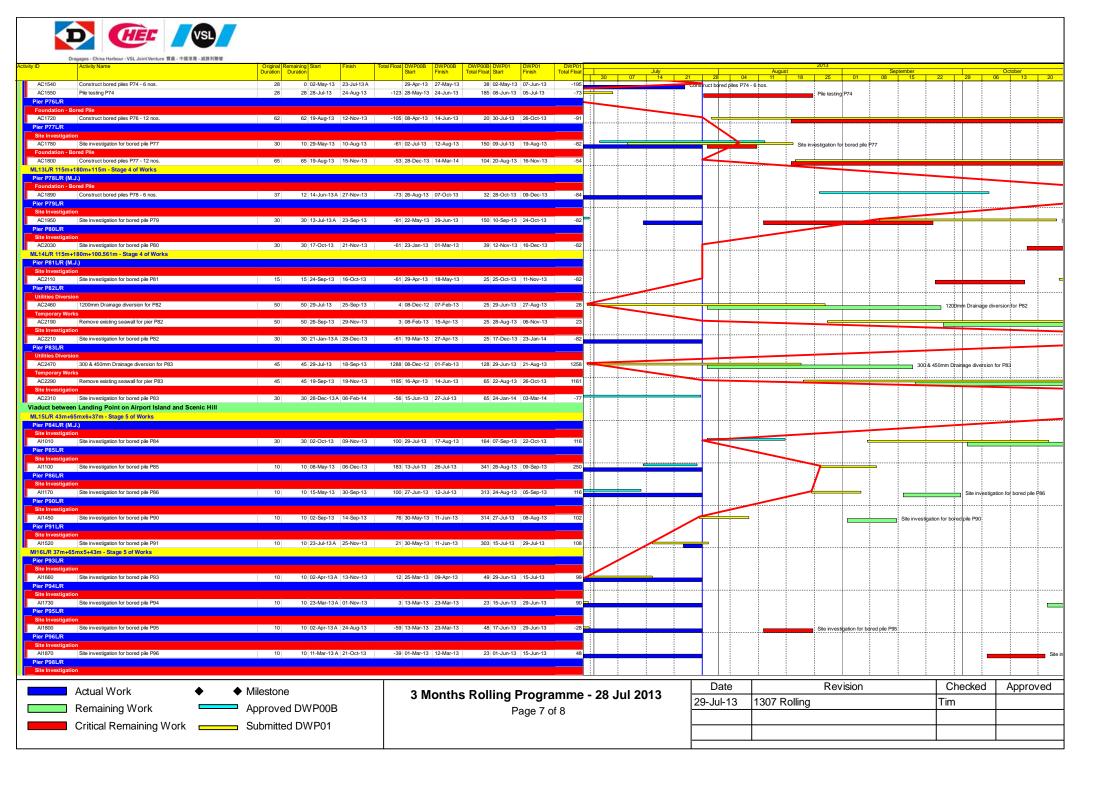
Bored Piling Activities at P0, P48, P50 & P52 conducted in July 2013

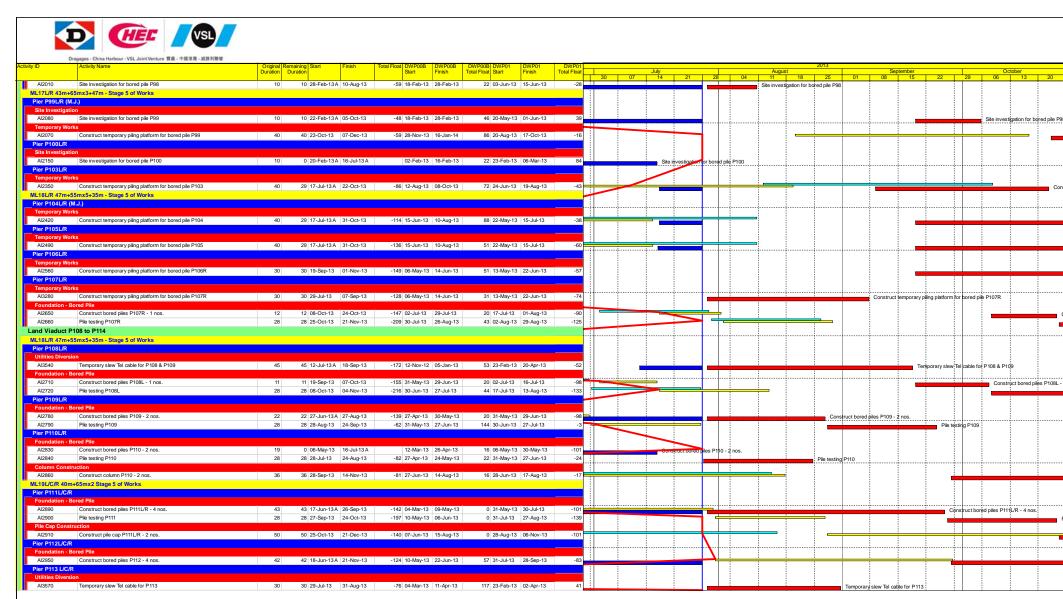
Date	Location	Bored Piling Activities
24-Jul-13	Pier 0	P0-R1 Re-excavation works by BG40.
	Night	P0-R1 Exchange bentonite.
	Pier 50	Excavation for bored pile P50-R3 by RCD.
	Night	Excavation for bored pile P50-R3 by RCD.
	Pier 52	Preparation work for removal of Jacket Platform (LHS and RHS).
	Night	No site activity.
25-Jul-13	Pier 0	P0-R1 air-lifting.
	Night	P0-R1 Exchange bentonite.
	Pier 50	Excavation for bored pile P50-R3 by RCD.
		Installation of rebar cage to bored pile P50-R1.
	Night	Installation of rebar cage to bored pile P50-R1.
	Pier 52	Removal of pin piles of Jacket Platform (LHS and RHS).
		No site activity.
26-Jul-13	Pier 0	P0-R1 air-lifting.
	Night	P0-R1 installation works of steel cage.
	Pier 50	Excavation for bored pile P50-R2 by RCD.
		Installation of rebar cage to bored pile P50-R1.
	Night	Excavation for bored pile P50-R3 by RCD.
		Installation of rebar cage to bored pile P50-R1.
	Pier 52	Removal of pin piles of Jacket Platform (LHS and RHS).
		No site activity.
29-Jul-13	Pier 0	P0-R1 installation works of steel cage.
	Night	P0-R1 installation works of steel cage.
	Pier 48	P48-L3 Excavation work by BG40.
	Night	No site activity.
	Pier 50	Splicing of permanent casing and set up RCD for bored pile P50-R3.
	Night	Excavation for bored pile P50-R3 by RCD.






DDA1903-30 Resulmit Design DDA with DC Certificate - ML19L/CR 25 25 (01-Sep-13 25-Sep-13 4-9) 29-Jul-13 1-12 29




Secretary (1975) 1975 1975	SS and EAM	pare and submit Design DDA - TCSS & E&M mment Design DDA - TCSS & E&M submit Design DDA with DC Certificate - TCSS & E&M rorove Design DDA - TCSS & E&M pare and submit Design DDA - Geotechnical Works mment Design DDA - Geotechnical Works submit Design DDA - Geotechnical Works submit Design DDA - Geotechnical Works with the GEO for Approval- Geotechnical Works mit to GEO for Approval- Geotechnical Works pare and submit Design DDA - Landscaping mment Design DDA - Landscaping submit DBA - Landscaping mment Design DDA - SHM/MMS submit DBA - SHM/MMS submit DBA - SHM/MMS menent Design DDA - SHM/MMS more DBA - SHM/MMS more DBBA - SHM/M	90 35 35 35 80 35 21 35 60 90 35 35 35 35 35 35 35 35 35	0 25-Apr-13A 28-Jul-1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 35 06-Oct-13 09-Nov- 0 20-Apr-13A 22-Jun- 5 29-Jun-13A 01-Aug- 21 02-Aug-13 22-Aug- 35 23-Aug-13 26-Sep- 60 27-Sep-13 25-Nov- 1 23-Feb-13A 28-Jul-1 35 29-Jul-13 01-Sep- 35 02-Sep-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13A 28-Jul-1 35 28-Jul-13 31-Aug-	3 35 35 35 35 35 35 35 35 35 35 35 35 35		25-Apr-13 23 24-Jul-13 27 28-Aug-13 01 02-Oct-13 05 30-Apr-13 18 19-Jul-13 22 23-Aug-13 12 13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-May-13 27 28-Jun-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	3-Jul-13 3-Aug-13Cet-13Nov-13 3-Jul-13 3-Jul-13 3-Sep-13Oct-13Dec-13May-13Aug-13Aug-13Aug-13Aug-13Sep-13	39 39 39 39 39 1078 1078 1078 1078 1078 1078 1078 1178 11		Pri	epare and	gn DDAr Roa submit Design	dworks DDA-TCSS & E&	Comment Design DDA	Geotechnical Wor Resu nent Design DDA	rks bronit Design DDA wi	t DC Certificate	- Geotechnical WorksAppr Appr Resubmil Design DDAw
STATES	DAEM-10 Preper DAEM-1	mment Design DDA - TGSS & E&M submit Design DDA - TGSS & E&M submit Design DDA - TGSS & E&M pare and submit Design DDA - Gentleriate - TGSS & E&M pare and submit Design DDA - Geotechnical Works mment Design DDA - Geotechnical Works submit Design DDA - Geotechnical Works submit Design DDA - Geotechnical Works pare and submit Design DDA - Landscaping mment Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (35 35 35 36 80 35 21 35 60 90 35 35 35 35 35 35 35 35	35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Nov- 35 06-Oct-13 09-Nov- 0 20-Apr-13 A 28-Jun- 5 29-Jun-13 A 01-Aug- 21 02-Aug-13 26-Sep- 35 23-Aug-13 26-Sep- 1 23-Feb-13 A 28-Jul- 1 23-Feb-13 A 28-Jul- 1 23-Feb-13 A 28-Jul- 35 29-Jul-13 01-Sep- 35 02-Sep-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul- 1 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 36 28-Jul-13 31-Aug- 37 32-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	13 35 13 35 13 35 13 35 13 35 13 35 13 35 13 1099 13 1099 13 1099 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 150 150 150 150 150 150 150 150 150 15		24-Jul-13 27 28-Aug-13 01 02-Oct-13 05 30-Apr-13 18 19-Jul-13 22 23-Aug-13 12 13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	Aug-13 Oct-13 Nov-13 Jul-13 Jul-13 Aug-13 Sep-13 Oct-13 Dec-13 May-13 Aug-13 Sep-13 Aug-13 Aug-13 Aug-13 Aug-13 Aug-13	1078 1078 1078 1078 1078 1078 915 915 915 915 915 915	Plepar	Property of the submitted of the submitt	epare and	submit Design	DDA -TCSS & E&	comment Design DDA-	Geotechnical Wor Resu nent Design DDA	rks bronit Design DDA wi	t DC Certificate	- Geotechnical WorksAppr Appr Resubmil Design DDAw
Section Sec	DAEM-20 Common Action	mment Design DDA - TGSS & E&M submit Design DDA - TGSS & E&M submit Design DDA - TGSS & E&M pare and submit Design DDA - Gentleriate - TGSS & E&M pare and submit Design DDA - Geotechnical Works mment Design DDA - Geotechnical Works submit Design DDA - Geotechnical Works submit Design DDA - Geotechnical Works pare and submit Design DDA - Landscaping mment Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (35 35 35 36 80 35 21 35 60 90 35 35 35 35 35 35 35 35	35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Nov- 35 06-Oct-13 09-Nov- 0 20-Apr-13 A 28-Jun- 5 29-Jun-13 A 01-Aug- 21 02-Aug-13 26-Sep- 35 23-Aug-13 26-Sep- 1 23-Feb-13 A 28-Jul- 1 23-Feb-13 A 28-Jul- 1 23-Feb-13 A 28-Jul- 35 29-Jul-13 01-Sep- 35 02-Sep-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul- 1 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 36 28-Jul-13 31-Aug- 37 32-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-	13 35 13 35 13 35 13 35 13 35 13 35 13 35 13 1099 13 1099 13 1099 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 13 921 150 150 150 150 150 150 150 150 150 15		24-Jul-13 27 28-Aug-13 01 02-Oct-13 05 30-Apr-13 18 19-Jul-13 22 23-Aug-13 12 13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	Aug-13 Oct-13 Nov-13 Jul-13 Jul-13 Aug-13 Sep-13 Oct-13 Dec-13 May-13 Aug-13 Sep-13 Aug-13 Aug-13 Aug-13 Aug-13 Aug-13	1078 1078 1078 1078 1078 1078 915 915 915 915 915 915	Plepar	re and submin	O O O	A - Geolechn	cal Works C	comment Design DDA-	Geotechnical Wor Resu nent Design DDA	rks bronit Design DDA wi	t DC Certificate	- Geotechnical WorksAppr Appr Resubmil Design DDAw
Company Com	DAEM-30 Resu DAEM-40 Appro- DAEM-40 Appro- DAGE-0-10 Prepa- DAGE-0-20 Comm DAGE-0-30 Resu DAL-2-10 Prepa- DAL-2-10 Prepa- DAL-2-10 Comm DAL-2-30 Resu DAL-2-30 Resu DASHM-30 Septimized DAGE-0-30 Resu DASHM-30 Resu DASHM-30 Resu DASHM-30 Resu DASHM-30 Resu DASHM-30 Septimized DAGE-0-30 Subriting DAGE-0-30	submit Design DDA- TCSS & E&M pare and submit Design DDA- Geotechnical Works mment Design DDA- Geotechnical Works submit Design DDA- Geotechnical Works submit Design DDA- Geotechnical Works submit Design DDA- Geotechnical Works mit Design DDA- Geotechnical Works mit to GEO for Approval- Geotechnical Works pare and submit Design DDA- Landscaping submit Design DDA- Landscaping submit Design DDA- Landscaping mment Design DDA- Landscaping mment Design DDA- Landscaping mment Design DDA- SHM/MMS submit Design DDA- SHM/MMS submit Design DDA- SHM/MMS pare Design DDA- SHM/MMS mment Design DDA- SHM/MMS prove Design DDA- SHM/MMS mment Design DDA- Remaining Works (barrier walls/ anemometers.MD' submit Design DDA- Semaining Works (barrier walls/ anemometers.MD')	35 35 35 80 35 21 35 60 90 90 35 35 35 35 35 35 35 35	35 01-Sep-13 05-Oct- 35 06-Oct-13 09-Nov- 0 20-Apr-13A 22-Jun- 5 29-Jun-13A 01-Aug- 21 02-Aug-13 22-Aug- 35 23-Aug-13 22-Sep- 60 27-Sep-13 25-Nov- 1 23-Feb-13A 28-Jul-13 01-Sep- 35 02-Sep-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13A 28-Jul-1 35 28-Jul-13 31-Aug-	13		28-Aug-13 01 02-Oct-13 05 30-Apr-13 18 19-Jul-13 22 23-Aug-13 12 13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-Hay-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	I-Oct-13 I-O	1078 1078 1078 1078 1078 1078 915 915 915 915 915 915	Pepar				DDA Landscapir	g Comm	Geotechnical Wor Resu nent Design DDA	rks bronit Design DDA wi	t DC Certificate	- Geotechnical WorksAppr Appr Resubmil Design DDAw
March Mar	DAEM-40 Approached to a control of the control of t	pare and submit Design DDA - Geotechnical Works mment Design DDA - Geotechnical Works ment Design DDA - Geotechnical Works strove Design DDA - Geotechnical Works prove Design DDA - Geotechnical Works mit to GEO for Approval - Geotechnical Works pare and submit Design DDA - Landscaping mment Design DDA - Landscaping submit Design DDA - Landscaping submit Design DDA - Landscaping mment Design DDA - Landscaping submit Design DDA - ShMMMIS submit Design DDA - ShMMMIS submit Design DDA - ShMMMIS more Design DDA - ShMMMIS more Design DDA - ShMMMIS more Design DDA - ShMMMIS submit Design DDA - ShMMMIS more Design DDA - ShMMMIS more Design DDA - ShMMMIS more Design DDA - Remaining Works (barrier walls/ anemometers.MD's submit Design DDA - Remaining Works (barrier walls/ anemometers.MD's mit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mission mission	35 80 35 21 35 60 90 35 35 35 35 35 35 35 35	35 06-Oct-13 09-Nov- 0 20-Apr-13A 28-Jun- 5 29-Jun-13A 01-Aug- 21 02-Aug-13 22-Aug- 35 23-Aug-13 25-Nov- 1 23-Fab-13A 28-Juh- 1 23-Fab-13A 28-Juh- 1 23-Fab-13A 28-Juh- 1 23-Fab-13A 28-Juh- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Juh- 1 31-Aug- 35 01-Sep-13 06-Oct- 0 23-Mar-13A 28-Juh- 35 28-Juh-13 31-Aug- 36 28-Juh-13 31-Aug- 37 38-Juh-13 31-Aug- 38 28-Juh-13 31-Aug- 38 28-Juh-13 31-Aug- 38 28-Juh-13 31-Aug- 38 28-Juh-13 31-Aug- 39 38 28-Juh-13 31-Aug- 39 38 28-Juh-13 31-Aug- 30 38 28-Juh-13 31-Aug- 30 38 28-Juh-13 31-Aug- 30 38 38 38 38 38 38 38 38 38 38 38 38 38	133 35 134 13 1099 13 1099 13 1099 13 1099 13 1099 13 921 13 921 13 921 13 921 13 921 13 1150 13 1150 13 1150 13 70		02-Oct-13 05 30-Apr-13 18 19-Jul-13 22 23-Aug-13 12 13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	5-Nov-13 3-Jul-13 3-Jul-13 2-Sep-13 2-Sep-13 3-Dec-13 3-May-13 3-May-13 3-Sep-13 3-Aug-13 3-Sep-13	1078 1078 1078 1078 1078 1078 915 915 915 915 915 915	Pepar				DDA Landscapir	g	Resunent Design DDA-	Landscaping	t DC Certificate	- Geotechnical WorksAppr Appr Resubmil Design DDAw
## STATE 19 19 19 19 19 19 19 1	Acceptance Acc	pare and submit Design DDA- Geotechnical Works mment Design DDA- Geotechnical Works submit Design DDA- Geotechnical Works submit Design DDA with DC Certificate- Geotechnical Works mrit to GEO for Approval- Geotechnical Works mrit to GEO for Approval- Geotechnical Works pare and submit Design DDA- Landscaping mment Design DDA- Landscaping submit Design DDA- Landscaping mment Design DDA- Landscaping mment Design DDA- Landscaping mment Design DDA- SHM/MMS submit Design DDA- With DC Certificate - SHM/MMS rove Design DDA- SHM/MMS mment Design DDA- SHM/MMS mment Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers	35 21 35 60 90 35 35 35 35 35 35 35 35	5 29-Jun-13A 01-Aug- 21 02-Aug-13 22-Aug- 35 23-Aug-13 26-Sep- 60 27-Sep-13 25-Nov- 1 23-Feb-13A 28-Jul- 1 23-Feb-13A 28-Jul- 1 23-Feb-13A 28-Jul- 35 02-Sep-13 06-Cet- 35 07-Cet-13 10-Nov- 0 30-May-13 28-Jul- 1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Cet- 0 23-Mar-13A 28-Jul- 35 28-Jul-13 31-Aug- 35 38-Jul-13 31-Aug- 36 38-Jul-13 31-Aug- 37 38-Jul-13 31-Aug- 38 38 38-Jul-13 31-Aug- 38 38 38 38 38 38 38 38 38 38 38 38 38 3	13 1099 13 1099 13 1099 13 1099 13 1099 13 1099 13 1099 13 921 13 921 13 921 13 921 13 921 13 1150 13 1150 13 1150 13 70 13 70		30-Apr-13 18 19-Jul-13 22 23-Aug-13 12 13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	3-Jul-13 2-Aug-13 2-Sep-13 7-Oct-13 3-Dec-13 3-May-13 7-Jun-13 1-Aug-13 3-Aug-13 3-Sep-13	1078 1078 1078 1078 1078 915 915 915 915 915	Plepar				DDA Landscapir	g Comn	Resunent Design DDA-	Landscaping		Aèpr Resubmit Design DDA v
Control Con	DAGEO-20 Common DAGEO-30 Resus DAGEO-40 Subm discaping DALA-10 Preparation DALA-10 Preparation DALA-10 Common DALA-30 Resus DALA-40 Approximation DAGEO-40 Approximation DAGEO-40 Common DASHM-30 Resus DASHM-30 Resus DAGEO-40 Common DAGEO-40 Common DAGEO-40 Common DAGEO-40 Common DAGEO-40 Common DAGEO-40 Approximation Submon DAGEO-40	mment Design DDA- Geotechnical Works submit Design DDA with DC Certificate- Geotechnical Works strove Design DDA- Geotechnical Works mit to GEO for Approval- Geotechnical Works mit to GEO for Approval- Geotechnical Works pare and submit Design DDA- Landscaping mment Design DDA- Landscaping submit Design DDA- Landscaping mment Design DDA- Landscaping mment Design DDA- SHMMMMS submit Design DDA- SHMMMMS submit Design DDA- SHMMMMS submit Design DDA- SHMMMMS more Design DDA- SHMMMMS more Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML18 mission station Plan	35 21 35 60 90 35 35 35 35 35 35 35 35	5 29-Jun-13A 01-Aug- 21 02-Aug-13 22-Aug- 35 23-Aug-13 26-Sep- 60 27-Sep-13 25-Nov- 1 23-Feb-13A 28-Jul- 1 23-Feb-13A 28-Jul- 1 23-Feb-13A 28-Jul- 35 02-Sep-13 06-Cet- 35 07-Cet-13 10-Nov- 0 30-May-13 28-Jul- 1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Cet- 0 23-Mar-13A 28-Jul- 35 28-Jul-13 31-Aug- 35 38-Jul-13 31-Aug- 36 38-Jul-13 31-Aug- 37 38-Jul-13 31-Aug- 38 38 38-Jul-13 31-Aug- 38 38 38 38 38 38 38 38 38 38 38 38 38 3	13 1099 13 1099 13 1099 13 1099 13 1099 13 1099 13 1099 13 921 13 921 13 921 13 921 13 921 13 1150 13 1150 13 1150 13 70 13 70		19-Jul-13 22 23-Aug-13 12 13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	2-Aug-13 2-Sep-13 7-Oct-13 3-Dec-13 3-May-13 7-Jun-13 1-Aug-13 3-Aug-13 3-Aug-13 3-Aug-13 3-Sep-13	1078 1078 1078 1078 1078 915 915 915 915 915	Pispar				DDA Landscapir	g Comn	Resunent Design DDA-	Landscaping		Appi Resubmit Design DDA v
March Sey Office S Common Prints 1 10 10 10 10 10 10 10	DAGEO-30 Resu DAGEO-30 Resu DAGEO-50 Super DECES SUPER DE	submit Design DDA with DC Certificate- Geotechnical Works rove Design DDA- Geotechnical Works mit to GEO for Approval- Geotechnical Works paire and submit Design DDA- Landscaping roment Design DDA- Landscaping submit Design DDA with DC Certificate - Landscaping rove Design DDA- Landscaping ment Design DDA- SHM/MMS submit Design DDA- SHM/MMS rove Design DDA- SHM/MMS rove Design DDA- SHM/MMS rove Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemometers, MD' submit Design DDA- Remaining Works (barrier walls/ anemom	21 35 60 90 35 35 35 35 35 35 35 35 35	21 02-Aug-13 22-Aug- 35 23-Aug-13 26-Sep- 60 27-Sep-13 25-Nov- 1 23-Feb-13A 28-Jul-1 35 29-Jul-13 01-Sep- 35 02-Sep-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct	13 1099 13 1099 13 1099 13 921 13 921 13 921 13 921 13 921 13 1150 13 1150 13 1150		23-Aug-13 12 13-Sep-13 17 18-Oct-1 17 18-Oct-1 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	2-Sep-13 7-Oct-13 3-Dec-13 3-May-13 7-Jun-13 1-Aug-13 3-Sep-13 3-Aug-13	1078 1078 1078 1078 1078 915 915 915 915 915		D Pi	repare and	submit Desigr	DDA Landscapi	g Comn	Resunent Design DDA-	Landscaping		Aèpr Resubmit Design DDA v
Company Com	DAGEO-40 Appric DAGEO-60 Subm midscaping DALA-10 Preps DALA-10 Preps DALA-20 Appric DALA-30 Resu DALA-40 Appric DALA-30 Comm DALA-30 Appric DASHM-40 Appric DA	rorve Design DDA - Geotechnical Works mit to GEO for Approval- Geotechnical Works pare and submit Design DDA - Landscaping mment Design DDA - Landscaping submit Design DDA - Landscaping submit Design DDA - SHM/MMS mment Design DDA - SHM/MMS mment Design DDA - SHM/MMS submit Design DDA - SHM/MMS mment Design DDA - Remaining Works (barrier walls/ anemometers MD' submit Design DDA - Remaining Works (barrier walls/ anemometers MD' submit Design DDA - Remaining Works (barrier walls/ anemometers MD' submit Design DDA - Remaining Works (barrier walls/ anemometers MD' submit Design DDA - Remaining Works (barrier walls/ anemometers MD' submit Design DDA - Remaining Works (barrier walls/ anemometers MD' submit Design DDA - SHM/MMS mit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML18 mission valuation Plan	35 60 90 35 35 35 35 35 35 35 35 35	35 23-Aug-13 26-Sep- 60 27-Sep-13 25-Nov- 1 23-Feb-13A 28-Jul-1 35 29-Jul-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13A 28-Jul-1 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug- 37 28-Jul-13 31-Aug- 38 38-Aug-13 31-Aug- 38 38-Aug-13 31-Aug- 38 38-Aug-13 31-Aug- 38 38 38 38 38 38 38 38 38 38 38 38 38 3	13 1099 13 1099 3 921 13 921 13 921 13 921 13 921 13 1150 13 1150 13 1150 13 70		13-Sep-13 17 18-Oct-13 16 23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	7-Oct-13 8-Dec-13 8-May-13 7-Jun-13 I-Aug-13 6-Sep-13 8-Aug-13 8-Sep-13	915 915 915 915 917 917 918		p Pi	repare and	submit Design		g Comn	nent Design DDA- //www.s	Landscaping		Aèpr Resubmit Design DDA v
Colored Service Colored S	DAGEO-50 Submidscaping ObAL-10 Prepaping ObAL-30 Resu ObAL-30 Resu ObAL-30 Resu ObAL-30 Resu ObAL-40 ObAL-40 ObAL-40 ObASHM-30 Resu ObASHM-30	umit to GEO for Approval- Geotechnical Works pare and submit Design DDA - Landscaping mment Design DDA - Landscaping stown Design DDA - Landscaping mment Design DDA - Landscaping mment Design DDA - SHM/MMS submit Design DDA - SHM/MMS submit Design DDA - SHM/MMS mment Design DDA - SHM/MMS mment Design DDA - SHM/MMS mment Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barr	90 35 35 35 35 35 35 35 35 35	60 27-Sep-13 25-Nov- 1 23-Feb-13A 28-Jul-1 35 29-Jul-13 01-Sep- 35 02-Sep-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 0 23-Mar-13A 28-Jul-1 35 28-Jul-13 31-Aug-	3 921 13 921 13 921 13 921 13 921 13 921 13 1150 3 1150 3 1150 3 70		23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	8-May-13 7-Jun-13 1-Aug-13 5-Sep-13 9-Aug-13 3-Sep-13	915 915 915 915 915 917 915		g Pr	repare and	submit Design		Comn	/MMS	Landscaping		Resubmil Design DDA v
March Control Contr	Macaping	pare and submit Design DDA - Landscaping mment Design DDA - Landscaping submit Design DDA with DC Certificate - Landscaping rover Design DDA - SthM/MMS submit Design DDA with DC Certificate - SHM/MMS submit Design DDA with DC Certificate - SHM/MMS rove Design DDA - SHM/MMS mment Design DDA - SHM/MMS rove Design DDA - SHM/MMS mment Design DDA - Remaining Works (barrier walls/ anemometers,MD' submit Design DDA - Remaining Works (barrier walls/ anemometers,MD' submit Design DDA - Remaining Works (barrier walls/ anemometers,MD's ing mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mission nation Plan	90 35 35 35 35 35 35 35 35 35	1 23-Feb-13A 28-Jul-13 5 29-Jul-13 01-Sep-35 02-Sep-13 06-Oct-35 07-Oct-13 10-Nov-0 30-May-13 28-Jul-13 28-Jul-13 15-Sep-13 05-Oct-0 0 23-Mar-13A 28-Jul-13 5 28-Jul-13 3 31-Aug-35 28-Jul-13 3 31-Aug-35 31-Aug-35 31-Aug-3	3 921 13 921 13 921 13 921 13 921 3 1160 13 1150 3 70 13 70		23-Feb-13 23 24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	8-May-13 7-Jun-13 I-Aug-13 5-Sep-13 9-Aug-13 3-Sep-13	915 915 915 915 915 1127		P	repare and	submit Design		Comn	/MMS	Resul	1	
March Mar	DAIA-10 Prepe DAIA-20 Comm DAIA-20 Comm DAIA-40 Appro Minimis Comm DASHM-30 Resu DASHM-40 Appro Marker-20 Comm DASHM-40 Appro Marker-20 Comm DAREW-30 Resu DAREW-30 Subm 11020 Subm 11020 Subm	mment Design DDA - Landscaping torvore Design DDA - Landscaping mment Design DDA - SHMMMS submit Design DDA - SHMMMS mment Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Des	35 35 35 35 35 35 35 35 35 35	35 29-Jul-13 01-Sep- 35 02-Sep-13 06-Oct 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 0 23-Mar-13A 28-Jul-1 35 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug-	13 921 13 921 13 921 13 921 13 1150 13 1150 13 1150 3 70 13 70		24-May-13 27 28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 28 24-Sep-13 28	7-Jun-13 I-Aug-13 5-Sep-13 9-Aug-13 3-Sep-13	915 915 915 915 1127		0 Pi	repare and	submit Design		Comn	/MMS	Resul	1	
Control Deput Cols Assessment 1	DALA-20 Come DALA-20 Resu DALA-40 Appropriate DALA-40 Appropriate DASHM-20 Comm DASHM-30 Resu DASHM-40 Appropriate DASHM-30 Resu DASHM-30 Resu DASHM-30 Resu DASHM-10 Subri 10100 Subr 10100 Subr 1010	mment Design DDA - Landscaping torvore Design DDA - Landscaping mment Design DDA - SHMMMS submit Design DDA - SHMMMS mment Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Design DDA - Remaining Works (barrier walls/ anemometers, MD' submit Des	35 35 35 35 35 35 35 35 35	35 02-Sep-13 06-Oct- 35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13A 28-Jul-13 31-Aug- 35 28-Jul-13 31-Aug-	3 1150 13 150 3 1150 13 1150 3 70 13 70		28-Jun-13 01 02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	3-Aug-13 3-Aug-13 3-Sep-13	915 915 1127 1127						Comn	/MMS	Resul	1	
According to the control of the con	DALA-40 Approximated Approximat	mment Design DDA- SHM/MMS submit Design DDA- SHM/MMS submit Design DDA with DC Certificate- SHM/MMS surrove Design DDA- SHM/MMS mment Design DDA- Remaining Works (barrier walls/ anemometers.MD's submit Design DDA- Remaining Works (barrier walls/ anemometers.MD's submit Design DDA- Remaining Works (barrier walls/ anemometers.MD's sing mit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mitsion station Plan	35 35 35 35 35 35 35	35 07-Oct-13 10-Nov- 0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13A 28-Jul-1 35 28-Jul-13 31-Aug-	3 1150 3 1150 13 1150 13 1150 3 70 13 70		02-Aug-13 05 16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	5-Sep-13 9-Aug-13 8-Sep-13	915 915 1127 1127					Comm		/MMS	Resul	1	
Control Section Control Se	MMMMS	mment Design DDA- SHM/MMS submit Design DDA with DC Certificate - SHM/MMS rove Design DDA- Remaining Works (barrier walls/ anemometers,MD' submit Design DDA - Remaining Works (barrier walls/ anemometers,MD' submit Design DDA with DC Certificate - Remaining Works (barrier walls/ rove Design DDA - Remaining Works (barrier walls/ anemometers,MD's ling mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mission nations	35 35 35 35 35 35 37 75	0 30-May-13 28-Jul-1 35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13-A 28-Jul-1 35 28-Jul-13 31-Aug-	3 1150 13 1150 13 1150 3 70 13 70		16-Jul-13 19 20-Aug-13 23 24-Sep-13 28	3-Aug-13 3-Sep-13	1127 1127					Somm	ent Design DDA- SHM		Resul	nnit Design DDA	with DC Certificate- \$H
Control Con	DASHM-20 Comr DASHM-30 Resu DASHM-40 Appro DASHM-40 Appro DASHM-40 Appro DAREW-20 Comr DAREW-20 Comr DAREW-30 Resu DAREW-40 Appro Latil Segment Drawin 1000 Subr 10100 Subr 11170 Subr 11170 Subr 11170 Subr 11170 Subr	submit Design DDA with DC Certificate-SHM/MMS prove Design DDA - Remaining Works (barrier walls/ anemometers.MD' submit Design DDA - Remaining Works (barrier walls/ anemometers.MD' submit Design DDA with DC Certificate - Remaining Works (barrier walls/ prove Design DDA - Remaining Works (barrier walls/ anemometers.MD's sing mit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mitsion tation Plan	35 35 35 35 35 35	35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13 A 28-Jul-1 35 28-Jul-13 31-Aug-	13 1150 13 1150 3 70 13 70		20-Aug-13 23 24-Sep-13 28	3-Sep-13	1127					Comm	ent Design DDA- SHN		Resul	mit Design DDA	with DC Certificate- \$HI
## Section Control District Control Dis	DASHM-30 ResurbashM-30 R	submit Design DDA with DC Certificate-SHM/MMS prove Design DDA - Remaining Works (barrier walls/ anemometers.MD' submit Design DDA - Remaining Works (barrier walls/ anemometers.MD' submit Design DDA with DC Certificate - Remaining Works (barrier walls/ prove Design DDA - Remaining Works (barrier walls/ anemometers.MD's sing mit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mitsion tation Plan	35 35 35 35 35 35	35 28-Jul-13 31-Aug- 35 01-Sep-13 05-Oct- 0 23-Mar-13 A 28-Jul-1 35 28-Jul-13 31-Aug-	13 1150 13 1150 3 70 13 70		20-Aug-13 23 24-Sep-13 28	3-Sep-13	1127			-			ent Design DDA- SHN		Resul	mit Design DDA	with DC Certificate- \$HI
March Mar	DASHM-40 Approx	mment Design DDA- SHMMMS mment Design DDA- Remaining Works (barrier walls/ anemometers.MD' submit Design DDA with DC Certificate - Remaining Works (barrier walls/ rove Design DDA- Remaining Works (barrier walls/ rove Design DDA- Remaining Works (barrier walls/ anemometers.MD's ing mit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML18 mitsion mitsion	35 35 35 35 35	35 01-Sep-13 05-Oct- 0 23-Mar-13A 28-Jul-1 35 28-Jul-13 31-Aug-	13 1150 3 70 13 70		24-Sep-13 28							Commi			Resul	mit besign DDA	with DC Certificate- SH
Company Com	DAREW-20 Common DAREW-30 Resu DAREW-40 Approximate Segment Drawin 10020 Subrr 10160 Subrr 10170 Subr 10170 Sub	mment Design DDA - Remaining Works (barrier walls/ anemometers.MD' submit Design DDA with DC Certificate - Remaining Works (barrier walls/ prove Design DDA - Remaining Works (barrier walls/ anemometers.MD's ing mitted and approve Detail Segment drawing for ML03 writted and Approve Detail Segment drawing for ML07 mitted Approve Detail Segment drawing for ML18 mitssion tables.	35 35 35 35	0 23-Mar-13 A 28-Jul-1 35 28-Jul-13 31-Aug-	3 70 13 70					 						7			
Common	DAREW-20 Common Participation DAREW-30 Resu DAREW-40 Approximate Participation tail Segment Drawin Submon Participation titl000 Submon Participation titl70 Submon Participation e Felling/Transplant	submit Design DDA with DC Certificate - Remaining Works (barrier walls/ rove Design DDA - Remaining Works (barrier walls/ anemometers.MD's ing mit and Approve Detail Segment drawing for ML03 with and Approve Detail Segment drawing for ML07 with and Approve Detail Segment drawing for ML18 mission tation Plan	35 35 75	35 28-Jul-13 31-Aug-	13 70		24-Apr-13 28									1 1	- 1		
## Actual Public Contact Contact Fourier (From From From From From From From From	DAREW-40 Appro- tail Segment Drawin 21020 Subm 21060 Subm 21170 Subm 21ct General Subm 22 Felling/Transplant	prove Design DDA - Remaining Works (barrier walls/ anemometers,MD's ing mint and Approve Detail Segment drawing for ML03 whit and Approve Detail Segment drawing for ML07 whit and Approve Detail Segment drawing for ML18 minssion tation Plan	35 75					3-May-13	130		Co	ommeni De	sign DDA - Re	maining Works (ba	rrier walls/ anemomet	ers,MD's radar VM	IS,HKPF,FTNS & M	NS)	
Address of the plant stage of t	tail Segment Drawin 1020 Subm 1060 Subm 1170 Subm ject General Subm e Felling/Transplant	ing mit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mitssion ntation Plan	75	35 01-Sep-13 05-Oct-			, .		130	-								maining Works (barrier walls/ anemomet
20	01020 Subm 01060 Subm 01170 Subm ject General Subm e Felling/Transplant	omit and Approve Detail Segment drawing for ML03 mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mission utation Plan			13 70		03-Jul-13 06	6-Aug-13	130									. A	pprove Design DDA - R
Sector and Agricultural Process Conference Conferenc	91060 Subm 91170 Subm ject General Subm e Felling/Transplant	mit and Approve Detail Segment drawing for ML07 mit and Approve Detail Segment drawing for ML18 mission ntation Plan		7E 20 Au- 40 40 **	12 240 00 14	04 Aug 10	209 29 4: 42 12	Nov. 12	246			<u> </u>							
Description	iect General Subm Felling/Transplant	omit and Approve Detail Segment drawing for ML18 mission ntation Plan	10						- 1			LI							Output and a
Control Substitution Control Substitutio	ject General Subm e Felling/Transplant	mission ntation Plan	75						8 11			_	_			: :	-	1 1	Submit and Appr
Food Procedure Procedur	e Felling/Transplant					31 337 13													
The File Principle Composition 0 0 0 0 0 0 0 0 0																		 	
## CELL Road ## 1 Common Description Common Com		e Felling/Transplant	61	0 23-Feb-13 A 28-Jul-1	3 A 31-Dec-12	24-Apr-13	47 23-Feb-13 11-	-May-13	-74		Tre	e Felling/T	ansplant						
State Service de general CPV in thorse Plants (Plan PRo) 7 0 31-06-124 (30-04-15) 0-19 (30-04	for CLK South Rd																		
Seed and agreed CoPP to Based Plan (Plos Plan) Fig. 0.19-06-12 20-06-13 20-06-13 13-06-1			28	0 03-Jun-13 A 28-Jul-1	3 43 11-Apr-13	08-May-13	212 03-Jun-13 30)-Jun-13	70		TT	ΓA- Notific	tion for CLK S	outh Fld					
3 - Security Disposed of Marine Editional (Freedom) 1990						10 1 10													
Observed Durspape Parties (Fig. 1986) Obs			/5	0 31-Oct-12 A 28-Jul-1	3 -313 31-Oct-12	13-Jan-13	4 26-Feb-13 11-	-May-13	-329		Su	ubmit and a	prove CNP fo	r Bored Piles (P0 t	o P84)				
Same PRC Design Person to EPD			60	0 14-Aug-12 A 15-Jul-1	3 A 14-Aug-12	12-Oct-12	16 14-Aug-12 12	2-Oct-12	1704	Obtained Du	mning kormit	ten DDC							
Discord Marker Dumpy Parent to EFD			7						1704	Obtained Bu			nit to EPD						
Section Sec	S1820 Obtai	ained Marine Dumping Permit fm EPD	60	19 22-Jul-13 A 15-Aug-	13 1747 20-Oct-12	18-Dec-12	16 02-Mar-13 30)-Apr-13	1704					Obtained Mar	ne Dumping Permit fn	EPD			
Part										30	omit PRC Du	ımping Peri	nit to SOR				1		
Design intervacy ordinations Sign 12-Augy 122 20-Juli 13 2-34 22-Augy 12 16-Nov-12 70-Duch 12 70-Duch 13 70-Duch 1			14	14 16-Aug-13 29-Aug-	13 1747 19-Dec-12	01-Jan-13	16 01-May-13 14	I-May-13	1704					_	Obtained p	erimt for deliverly m	naterial to Mainland		
Design approval of functions 2 2 2 2 2 3 4 1 4 1 2 2 2 3 4 1 4 1 2 2 2 3 4 1 3 2 2 3 4 1 3 2 2 3 4 3 3 2 2 3 3 3 3 3 3			00	4 00 Ave 40 A 00 Ivid	004 00 4 40	40 Nov. 40	0 00 100 10	No. 40	005										
Deber maternal for unpropry cefferdom 46 46 19 Aug. 13 226 13 226 10 10 10 10 10 10 10 1		5									D .	esign témp	orary collerde						
## Description Planer Pla		*												Design a	pproval or temporary	onerdem		Delive	r maternal for temporary
## Process Registration (Page 18 page 19 page																1 1	- :		i i i
Formwork design (Long span) 180 10 10 10 12 24 28 34 13 15 10 10 12 24 13 15 10 10 12 24 13 15 10 10 12 24 13 15 10 10 10 10 10 10 10	S1710 Subm	mit and approval marine batching plant	21	1 18-Dec-12 A 28-Jul-1	3 -314 27-Nov-12	17-Dec-12	31 23-Feb-13 15	5-Mar-13	-339		Si	ubmit and a	pproval marin	batching plant					
Setime Annual Composition of Setime Segment model (Typical span) 120 1 10 -Man-13A (29-Jul-13 22 10 -Jul-13 29-Jul-13 22 10 -Jul-13 29-Jul-13 22 10 -Jul-13 29-Jul-13 29-Jul-1	gment Casting Yard																		
Actual Work			180	1 01-Oct-12 A 28-Jul-1	3 -246 01-Oct-12	29-Mar-13	15 01-Oct-12 29	9-Mar-13	240		1. F	ormwork de	sign (Lang sp	an)					
## Patricision & 2nd Deliver segment moutd (Typical span) 120 1 01-Mar-13 28-Jul-13 2-28 01-Mar-13 01-M			20	00 00 14 40 4 00 0	40. 000 05 14 40	04 Jul 40	00 04 1 40 00	1.1.40											
Fabrication & Part Deliver agreement mouted (Figure 4 spann) 120 10 1-Mart 134 22-Mag 13 22-Bg 13		sting trial segments	38	38 28-Jul-13 A 03-Sep-	13 -288 25-May-13	01-Jul-13	22 01-Jun-13 08	3-Jul-13	-231			+	-		Ca	sting trial segment	ts		
Sizon Fabrication & 3to Deliver segment mould ([right alpsan) 175 146 29-Jun-134 1-33 2-Aug-13 13-Feb-14 80 29-Jun-13 20-De-13 1-33 2-Aug-13 13-Feb-14 15-Ze-Pub-13 1-33 2-Aug-13 13-Feb-14 15-Ze-Pub-13 1-33 2-Aug-13 13-Feb-14 15-Ze-Pub-13 1-33 2-Aug-13 13-Feb-14 15-Ze-Pub-13 13-Ze-Pub-13 13-Ze		prication & 2nd Deliver segment mould (Typical span)	120	1 01-Mar-13 A 28-Jul-1	3 -251 01-Mar-13	22-Aug-13	10 01-Mar-13 28	3lun-13	-221			++	-		hrication & and Daliu	or seament mould	(Timical enan)		
S235 Fabrication & 2nd Deliver segment mould (Long Span) 201 81 30-Mair-13 16-Oct-13 -71 30-Mair-13 15 30-Mair-13 15 30-Mair-13 17 30-Mair-13 15 30-Mair-13 17 30-Mair-13 17 30-Mair-13 17 30-Mair-13 15 30-Mair-13 17			175	145 29-Jun-13 A 20-Dec-			80 29-Jun-13 20)-Dec-13	-133			1 :	- 1		Dicator & 2nd Deliv	ar şegirilerik iriloğlu i	(туркан аран)	<u> </u>	
Section Sect		prication & 1st Deliver segment mould (Long span)		45 30-Dec-12 A 10-Sep-	13 -246 30-Dec-12	16-Aug-13	15 23-Feb-13 10)-Sep-13	-246					_		Fabricati	ion & 1st Deliver seg	ment mould (Lor	ig span)
S2345 Fabrication & Deliver segment mould (Land Vaduct) 51 51 06-Sep-13 26-Oct-13 -37 28-Jul-13 24-Doc-13 23 27-Aug-13 24-Doc-13 23 24-Doc-13 24-Doc-				81 30-Mar-13 A 16-Oct-	13 -71 30-Mar-13	14-Nov-13	15 30-Mar-13 16	6-Oct-13	-71										
Fabrication & Deliver segment mould (Turnaround) 120 120 06-Oet-13 02-Feb-14 196 27-Aug-13 24-Dec-13 23 27-Aug-13 24-Dec-13 23 28-Dec-13 23 28-Dec-13 28-																			
Section Control Statement Control State												1 :	- 1	:					
23265 Prepare MS for Pile Cap 60 1 23-Nov-12 A 28-Jul-13 1-29 23-Nov-12 21-Jan-13 2 20-Jan-13 22-Mar-13 1-4 23275 Approve MS for Pile Cap 60 20 11-Jun-13A 17-Aug-13 1-29 23-Jan-13 22-Mar-13 22-Jan-13 22-Mar-13 22-Jan-13 22-Mar-13 22-Jan-13 22-Mar-13 22-Jan-13 22-Ja			120	120 06-Oct-13 02-Feb-	14 196 27-Aug-13	24-Dec-13	213 27-Aug-13 24	I-Dec-13	236							-+		÷	
Approve MS for Pile Cap 60 20 11-Jun-13A 17-Aug-13 1-12 22-Jan-13 2 2-Mar-13 2 24-Feb-13 24-Apr-13 1-14 60 1 01-Jan-13 01-Mar-13 29-Jul-13 130-Apr-13 10-Jan-13 01-Mar-13 29-Jul-13 10-Apr-13 02-Apr-13 02-A			60	1 23-Nov-12 A 28- Iul-1	3 -129 23-Nov-12	21-Jan-13	2 02-Jan-13 02	P-Mar-13	-14		. D.	renare MS	or Pile Can						
2235 Prepare MS for Column & Portal 60 1 01-Jan-13 23-Jul-13 1-77 01-Jan-13 27 02-Feb-13 02-Apr-13 2-28									-14			Julio IVIO	vap	Approve N	S for Pile Cap				
Approve MS for Column & Portal 60 60 29-Jul-13 26-Sep-13 -177 (0z-Mar-13 30-Apr-13 -28 22405 Prepare MS for 50P Installation 60 21 19-Jun-13A 29-Aug-13 -64 11-Mar-13 (0s-Apr-13 17-Aug-13									-28		Pi	repare MS	or Column & F		T				
2245 Prepare MS for SOP Installation 60 21 19-Jun-134 29-Aug-13 9-44 11-Mar-13 99-May-13 60 19-Jun-13 17-Aug-13 -52 25245 Approve MS for SOP Installation 60 60 30-Aug-13 28-Oct-13 -64 10-May-13 98-Jul-13 60 18-Aug-13 16-Oct-13 -52 2525 Prepare MS for Sopement Erection 60 60 30-Aug-13 28-Oct-13 -52 10-May-13 18-Jul-13 53 18-Aug-13 16-Oct-13 -40 wrement and Fabrication 2186 Delver LG1 & LG2 120 51 29-Apr-13A 30-Oct-13 1 08-Jul-13 29-27-May-13 23-Sep-13 38 Actual Work ♦ Milestone 3 Months Rolling Programme - 28 Jul 2013 Date Revision Checked Approve 29-Jul-13 1307 Rolling Tim									-28									oprove MS for (Jolumn & Portal
S2425 Prepare MS for Segment Erection 60 60 30-Aug-13 29-Oct-13 -52 10-May-13 08-Jul-13 53 18-Aug-13 16-Oct-13 -40 urement and Fabrication 2186 Deliver LG1 & LG2 120 51 29-Apr-13 A 30-Oct-13 1 06-Aug-13 03-Dec-13 29 27-May-13 23-Sep-13 38 Actual Work ♦ Milestone 3 Months Rolling Programme - 28 Jul 2013 Date Revision Checked Approve 29-Jul-13 1307 Rolling Tim									-52						Prepare MS	for SOP Installation	on		
Variable									-52						_				\longrightarrow
2186 Deliver LG1 & LG2			60	60 30-Aug-13 28-Oct-	-52 10-May-13	u8-Jul-13	53 18-Aug-13 16	o-UCt-13	-40	T						+ +	-	: :	
Actual Work Milestone			120	51 29-Apr-12 A 20 Oot	13 1 06. Aug. 42	03-Dec-12	20 27-May-12 22	S-Sen-13	38					<u>:</u>		1 1			
Actual Work Wilestone 3 Months Rolling Programme - 28 Jul 2013	100 Delive	Wei LOT & LOZ	120	31 23-Mpr-13 A 30-Oct-	1 U6-Aug-13	03°De0°13	29 21-May-13 23	-ogh-19	30										
Actual Work Wilestone 3 Months Rolling Programme - 28 Jul 2013	۸ مه	tuol \Mork	lootos								[Date			Revision		0	hecked	Approve
B	ACT	tuai vv OTK ▼ VIII	esion	E	3 M	onths	Rolling Pr	ogramr	me - 2	28 Jul 2013			400	7 Dallin -					+
Page 3 018	Rai	emaining Work	nrove	d DWP00B			_	_			29-J	iui-13	130	/ Kolling			lın	n	
	1/61	Ap	PIOVE	G D WI 00D			Pag	je 3 01 8					T		<u> </u>	-			

Actual Work	◆ ◆ Milestone
Remaining Work	Approved DWP00B
Critical Remaining Work	Submitted DWP01

3 Months Rolling Programme - 28 Jul 2013
Page 8 of 8

Date	Revision	Checked	Approved
29-Jul-13	1307 Rolling	Tim	

APPENDIX B ACTION AND LIMIT LEVELS

Appendix B - Action and Limit Levels

Table B-1 Action and Limit Levels for 1-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AMS1	381	500
AMS4	352	300

Table B-2 Action and Limit Levels for 24-Hour TSP

Location	Action Level, μg/m³	Limit Level, μg/m³
AMS1	170	260
AMS4	171	260

Table B-3 Action and Limit Levels for Construction Noise

Time Period	Action Level	Limit Level
0700-1900 hrs on normal weekdays	When one documented complaint is received	75 dB(A) *

Noted: If works are to be carried during restricted hours, the conditions stipulated in the construction noise permit issued by the Noise Control Authority have to be followed.

Table B-4 Action and Limit Levels for Underwater Construction Noise

Action Level	Limit Level
170 dB re 1μPa	180 dB re 1μPa

^(*) reduce to 70 dB(A) for schools and 65 dB(A) during school examination periods.

Table B-5 Action and Limit Levels for Water Quality

Parameter (unit)	Water Depth	Action Level	Limit Level
Dissolved Oxygen (mg/L) (surface,	Surface and Middle	<u>5.0</u>	4.2 except 5 for FCZ
middle, bottom)	Bottom	<u>4.7</u>	3.6
Turbidity (NTU)	Depth average	27.5 and 120% of upstream control station's turbidity at the same tide of the same day	47.0 and 130% of turbidity at the upstream control station at the same tide of same day
Suspended Solids (mg/L)	Depth average	23.5 and 120% of upstream control station's SS at the same tide of the same day	34.4 and 130% of SS at the upstream control station at the same tide of same day and 10mg/L for WSD Seawater Intakes

Note:

- (1) Depth-averaged is calculated by taking the arithmetic means of reading of all three depths
- (2) For DO, non-compliance of the water quality limit occurs when monitoring result is lower that the limit.
- (3) For SS & turbidity non-compliance of the water quality limits occur when monitoring result is higher than the limits.
- (4) All the figures given in the table are used for reference only and the EPD may amend the figures whenever it is considered as necessary.
- (5) The 1%-ile of baseline data for dissolved oxygen (surface and middle) and dissolved oxygen (bottom) are 4.2mg/L and 3.6mg/L respectively.

APPENDIX C COPIES OF CALIBRATION CERTIFCATES

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA12014/67/0003

Project No.	AMS 1 - Sha Lo Wan		Operator:		Hei			
Date:	17-Jun-13		Next Due Date:		16-Aug-13			
Equipment No.:	: A-01-67		Serial No.		3218			
	_		Ambient C		Ī			
Temperature, Ta (K) 301.2 Pressure, Pa (mmHg) 755.4								
		Ori	fice Transfer Star	ndard Inform	ation			
Equipme	nt No.:	A-04-05	Slope, mc	0.0592	Intercept	, bc	-0.0283	
Last Calibration Date: 26-Dec-12		26-Dec-12	mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$					
Next Calibra	tion Date:	25-Dec-13	Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$					
					g=4 (.004 a despeta de la colonida d			
			Calibration of	TSP Sampler	T			
Calibration	Orfice				HVS			
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of oil		/60) x (298/Ta)] ^{1/2} Y-axis	
1	11.8	3	3.41	58.02	6.9		2.60	
2	9.4	3	3.04	51.84	5.4		2.30	
3	7.1	2	2.64	45.11	4.2		2.03	
4	4.6	2.13		36.40	2.9		1.69	
5	2.8	1.66		28.51	1.9		1.37	
By Linear Regr	ession of Y on X							
Slope, mw =	0.0414	-	1	Intercept, bw	0.177	4		
Correlation co	_		993	•				
*If Correlation C	Coefficient < 0.99	0, check and rec	alibrate.					
			Set Point Ca	alculation				
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM					
From the Regres	sion Equation, th	e "Y" value acco	ording to					
mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$								
Therefore, Set Point; W = $(\text{mw x Qstd} + \text{bw})^2 \times (760 / \text{Pa}) \times (\text{Ta}/298) = 3.90$								
Damarkas								
Remarks:								
•			,				4	
Conducted by: 16 Signature: 17 6 13 Checked by: 18 Tang Signature: 18 Date: 17 16 20 13								
Checked by:	Inka Tano.	Signature:	Kun on		•	Date:	7 16/2013	
	7	•	7.00		-	_		

High-Volume TSP Sampler 5-POINT CALIBRATION DATA SHEET

File No. MA12014/74/0003

Project No.	AMS 4 - San Tau		Operator:		Hei	W		
Date:	17-Jun-13				16-Aug	-13		
Equipment No.:					2202			
			Ambient (Condition				
Temperatur	re, Ta (K)	300.8	Pressure, Pa	ı (mmHg)		755.9		
		∩ ⊮	fice Transfer Sta	ndard Inform	ation			
Fauinme	nt No ·	A-04-05	Slope, mc	0.0592	Intercept	, bc -0.0283	a term traja	
Equipment No.: Last Calibration Date:		26-Dec-12			$mc \times Qstd + bc = [\Delta H \times (Pa/760) \times (298/Ta)]$			
Next Calibra		25-Dec-13			Pa/760) x (298/Ta)] ^{1/2} -bc} / mc			
TVCAL CATIOIC	ition Date.	4		Z				
			Calibration of	TSP Sampler				
Calibration		Or	fice			HVS		
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}		Qstd (CFM) X - axis	ΔW (HVS), in. of oil	[ΔW x (Pa/760) x (298/Ta) Y-axis	^{1/2}	
1	11.4		3.35	57.09	7.7	2.75		
2	9.2		3.01	51.34	6.5	2.53		
3	7.0		2.63	44.84	5.2	2,26		
4	4.5		2.11	36.05	3.4	1.83		
5	2.7		1.63	28.03	2.2	1.47		
By Linear Regr Slope , mw =		(Intercept, bw	• 0,230	6		
Correlation co		- A (1992	тистесри, ви	0,250	<u>v </u>		
*If Correlation C	_			_				
11 0011 0 1111111111	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, on on on and 10						
			Set Point C	alculation			100AE 8 21480	
From the TSP Fi	eld Calibration C	Curve, take Qstd	= 43 CFM					
From the Regres	sion Equation, th	ne "Y" value acc	ording to					
			$\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	r (Do/260) (2	09/Ta)1/2			
		mw x Q	$psta + bw = [\Delta w]$	x (Pa//00) x (2	90/14)]		1	
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760/Pa) x (Ta / 298)=	4.69			
	10-10						—	
December								
Remarks:								
						A*************************************		
Conducted by: hei Signature: hei Date: 17/6/1						Date: _17(6(13		
Checked by:	Lik Tang	Signature:	Kew	oi	_	Date: $17(6/7)^3$ Date: $17(6/7)^3$		
•		•			-			

TISCH ENVIROMENTAL, INC. 145 SOUTH MIAMI AVE. VILLAGE OF CLEVES, OH 45002 513.467.9000 877.263.7610 TOLL FREE 513.467.9009 FAX WWW.TISCH-ENV.COM

AIR POLLUTION MONITORING EQUIPMENT

ORIFICE TRANSFER STANDARD CERTIFICATION WORKSHEET TE-5025A

Date - De Operator	•	Rootsmeter Orifice I.I		438320 2323	Ta (K) - Pa (mm) -	295 - 753.11
PLATE OR Run #	VOLUME START (m3)	VOLUME STOP (m3)	DIFF VOLUME (m3)	DIFF TIME (min)	METER DIFF Hg (mm)	ORFICE DIFF H2O (in.)
1 2 3 4 5	NA NA NA NA NA	NA NA NA NA	1.00 1.00 1.00 1.00	1.4440 1.0240 0.9120 0.8720 0.7200	3.2 6.4 8.0 8.8 12.8	2.00 4.00 5.00 5.50 8.00

DATA TABULATION

Vstd	(x axis) Qstd	(y axis)		Va	(x axis) Qa	(y axis)
0.9967	0.6902	1.4149		0.9957	0.6896	0.8851
0.9925	0.9693	2.0010		0.9915	0.9683	1.2517
0.9903	1.0858	2.2372		0.9893	1.0847	1.3995
0.9893	1.1345	2.3464		0.9883	1.1334	1.4678
0.9840	1.3666	2.8299		0.9830	1.3652	1.7702
Qstd slope (m) = 2.09107			Qa slope (m) = 1.30939			
intercept (b) = -0.02838			intercept (b) = -0.01775			
coefficient (r) = 0.99996			coefficient (r) = 0.99996			
y = SQRT[H2O(Pa/760)(298/Ta)] $y = SQRT[H2O(Ta/Pa)]$						[a/Pa)]

CALCULATIONS

Vstd = Diff. Vol[(Pa-Diff. Hg)/760](298/Ta)Qstd = Vstd/Time

Va = Diff Vol [(Pa-Diff Hg)/Pa]

Qa = Va/Time

For subsequent flow rate calculations:

Qstd = $1/m\{ [SQRT(H2O(Pa/760)(298/Ta))] - b \}$ $Qa = 1/m\{[SQRT H2O(Ta/Pa)] - b\}$

30130 Certificate No.

2 Pages Page

Customer: Dragages - China Habour - VSL Joint Venture

Address :

3/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q30108

Date of receipt

4-Jan-13

Item Tested

Description: Weather Station

Manufacturer: DAVIS

Model

: Vantage PRO2 6152CUK

 $(23 \pm 3)^{\circ}C$

Serial No.

: AA120924015

Test Conditions

Date of Test: 15-Jan-13

Supply Voltage

Relative Humidity: (50 ± 25) %

Ambient Temperature: Test Specifications

Calibration check.

Ref. Document/Procedure: Z04, M14.

Test Results

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

Cert. No.

Traceable to

S155

Std. Anemometer

NSC201230022

NIM-PRC

S070

Protractor

01121

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Approved by :

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 15-Jan-13

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fax: 2425 8646

Certificate No. 30130

Page 2 of 2 Pages

Results:

1. Wind Speed

Applied Value (m/s)	UUT Reading (m/s)
2.50	2.2
4.70	4.5
7.50	7.2
9.80	9.4
15.50	14.3
19.93	19.5

Uncertainty: $\pm (2 \% + 0.2 \text{ m/s})$

2. Wind Direction

Reference Value	UUT Indication
N (0°)	N
NE (45°)	NE
E (90°)	Е
SE (135°)	SE
S (180°)	S
SW (225°)	SW
W (270°)	W
NW (315°)	NW

Remark: 1. UUT: Unit-Under-Test

- 2. Atmospheric Pressure: 1 013 hPa
- 3. Before the calibration of the Wind Direction function, the Arrow Head was adjusted to the magnetic NORTH direction while the monitor indicated N. The customer is reminded to do the alignment again after installation.

----- END -----

Certificate No. 34537

Page of 2 Pages

Customer: Dragages - China Habour - VSL Joint Venture

Address : 3/F., Island Place Tower, 510 King's Road, North Point, H. K.

Order No.: Q30108

Date of receipt

4-Jul-13

Item Tested

Description : Vantage Pro2 Weather Stations

Model

Manufacturer: Davis

: 6152 CUK

Serial No.

: AK130520006

Test Conditions

Date of Test:

 $(23 \pm 3)^{\circ}$ C

Supply Voltage

Relative Humidity: (50 ± 25) %

Test Specifications

Ambient Temperature:

Calibration check.

Ref. Document/Procedure: Z04.

Test Results

The results are shown in the attached page(s).

Main Test equipment used:

Equipment No. Description

\$155

Std. Anemometer

Cert. No.

NSC201331006

Traceable to

NIM-PRC

The values given in this Calibration Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environmental changes, vibration and shock during transportation. overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Hong Kong Calibration Ltd. shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to International System of Units (SI). The test results apply to the above Unit-Under-Test only

Calibrated by :

This Certificate is issued by:

Hong Kong Calibration Ltd.

Date: 6-Aug-13

Unit 8B, 24/F., Well Fung Industrial Centre, No. 58-76, Ta Chuen Ping Street, Kwai Chung, NT, Hong Kong. Tel: 2425 8801 Fex: 2425 8646

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

51:51 510S .euA 70 ы

: ON XA7

FROM:

Certificate No. 34537

Page 2 of 2 Pages

Results:

1. Wind Speed

Applied Value (m/s)	UUT Reading (m/s)
2.7	2.7
5.3	5,4
7.5	7.6
10.4	10.7
15.3	15.6
19.0	20.1

Uncertainty: $\pm (2 \% + 0.2 \text{ m/s})$

2. Wind Direction

Reference Value	UUT Indication
N (0°)	N (0°)
NE (45°)	NE (45°)
E (90°)	E (90°)
SE (135°)	SE (135°)
S (180°)	S (180°)
SW (225°)	SW (225°)
W (270°)	W (270°)
NW (315°)	NW (315°)

Remark: 1. UUT: Unit-Under-Test

- 2. Atmospheric Pressure: 1 003 hPa
- 3. Before the calibration of the Wind Direction function, the Arrow Head was adjusted to the magnetic NORTH direction while the monitor indicated N. The customer is reminded to do the alignment again after installation.

----- END -----

FAX NO.:

The copyright of this certificate is owned by Hong Kong Calibration Ltd., It may not be reproduced except in full.

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration 校正證書

Certificate No.: C130600

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱

Sound & Vibration Analyser

Manufacturer / 製造商 Model No./型號

Syantek

Serial No./編號

SVAN957 21460

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

Chan An Ohn H C Chan

Certified By 核證

Date of Issue 簽發日期

28 January 2013

The test equipment used for edibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in fulf, without the prior written approval of this laborater

本證書所載校正用之測試器材均可測源至國際標準。局部複印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 - 校正及檢測實驗所 co 香港新界屯門與安里一號青山灣機機四樓

1世電話: 2927 2606 Fax/傳真: 2744-8986

E-mail 電郵: callab@suncreation.com

Website Allih: www.suncreation.com

Page 1 of 3

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130600

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to warm up for over 10 minutes before the commencement of the test.

Self-calibration using the Svantek acoustic calibrator SV30A, S/N: 24791 was performed before the test. 2.

The results presented are the mean of 3 measurements at each calibration point. 3.

Test equipment: 4.

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

Multifunction Acoustic Calibrator

C130019

DC110233

5. Test procedure: MA101N.

6. Results:

6.1 Sound Pressure Level

6.1.1 Reference Sound Pressure Level

	UU'	Γ Setting		Applied	d Value	UUT	IEC 61672
Range Mode Frequency Time		Time	Level	Freq.	Reading	Class 1 Spec.	
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	114.2	± 1,1

6.1.2 Linearity

_	U	UT Setting		Applie	d Value	UUT	
Range	Mode	Mode Frequency Time Weighting Weighting		Level (dB)	Freq. (kHz)	Reading (dB)	
HIGH	SPL	A	Fast	114.00	1	114.2 (Ref.)	
				104.00]	104.2	
				94.00		94.2	

IEC 61672 Class 1 Spec. : ± 0.6 dB per 10 dB step and ± 1.1 dB for overall different.

6.2 Time Weighting

	UUT	Setting		Applie	d Value	UUT	IEC 61672
Range	Range Mode Frequency Time		Level	Freq.	Reading	Class 1 Spec.	
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	A	Fast	114.00	1	114.2	Ref.
			Slow			114.2	± 0.3

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可潮源至國際標準。局部複印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C130600

證書編號

6.3 Frequency Weighting

A_Weighting 6.3.1

	U	JT Setting		Appl	ied Value	UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	Ä	Fast	114.00	63 Hz	88.0	-26.2 ± 1.5
					125 Hz	98.0	-16.1 ± 1.5
					250 Hz	105.5	-8.6 ± 1.4
					500 Hz	110.9	-3.2 ± 1.4
					1 kHz	114.2	Ref.
					2 kHz	115.4	$\pm 1.2 \pm 1.6$
					4 kHz	115.2	$\pm 1.0 \pm 1.6$
					8 kHz	113.2	-1.1 (+2.1; -3.1)
					12.5 kHz	109.9	-4.3 (+3.0; -6.0)

C-Weighting 6.3.2

7,0,5,.,		JT Setting		Appli	ed Value	UUT	IEC 61672
Range	Mode	Frequency	Time	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)		(dB)	(dB)
HIGH	SPL	C	Fast	114,00	63 Hz	113.4	-0.8 ± 1.5
					125 Hz	114.0	-0.2 ± 1.5
					250 Hz	114.2	0.0 ± 1.4
					500 Hz	114.2	0.0 ± 1.4
					1 kHz	114.2	Ref.
					2 kHz	114.0	-0.2 ± 1.6
					4 kHz	113.5	-0.8 ± 1.6
					8 kHz	111.3	-3.0 (+2.1; -3.1)
					12.5 kHz	108.0	-6.2 (+6.0 ; -∞)

Remarks: - UUT Microphone Model No.: AC07052H & S/N: 43679

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value: 94 dB: 63 Hz - 125 Hz $: \pm 0.45 \, dB$

250 Hz - 500 Hz $: \pm 0.40 \text{ dB}$ $: \pm 0.30 \text{ dB}$ 1 kHz 2 kHz - 4 kHz $: \pm 0.45 \, dB$ $: \pm 0.55 \, dB$ 8 kHz

 $: \pm 0.80 \text{ dB}$ 12.5 kHz

104 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$ 114 dB : 1 kHz $: \pm 0.10 \text{ dB (Ref. 94 dB)}$

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可溯源至國際標準。 局部復印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited - Calibration & Testing Laboratory

e/o 4/F, Tsing Shan Wan Exchange Building, Hling On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司。校正及檢測實驗所

c/o 香港新界电門與安里一號青山灣機樓四樓

Fax/傳真: 2744 8986 Tel/電話: 2927 2606 E-mail/電郵: callab@sunereation.com Website/網址: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No. :

C130601

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱

Sound & Vibration Analyser

Manufacturer / 製造商 Model No./型號

Svantek

Serial No. / 編號

SVAN957 23851

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By

測試

Chan Kon C

Certified By

核證

Date of Issue

簽發日期

28 January 2013

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior

本證書所載校正用之測試器材均可滴源至國際標準。局部復印本證書需先獲本實驗所書面批准

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C130601

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours, and switched on to 1. warm up for over 10 minutes before the commencement of the test.

Self-calibration using the Svantek acoustic calibrator SV30A, S/N: 24780 was performed before the test. 2.

The results presented are the mean of 3 measurements at each calibration point. 3.

Test equipment: 4.

Equipment ID

Description

Certificate No.

CL280 CL281

40 MHz Arbitrary Waveform Generator

C130019

Multifunction Acoustic Calibrator

DC110233

5. Test procedure: MA101N.

6. Results:

Sound Pressure Level 6.1

Reference Sound Pressure Level 6.1.1

Itelefoliec De	mina i i cosui	CLOTOL					
	UU	T Setting		Applie	d Value	UUT	IEC 61672
Range			1	Level	Freq.	Reading	Class 1 Spec.
		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
HIGH	SPL	Α	Fast	114.00	1	113.8	± 1.1

6.1.2 Linearity

	Ŭ	UT Setting	Applie	d Value	UUT					
Range	Mode Frequency		Mode Frequency		Mode Frequency		Time	Level	Freq.	Reading
		Weighting	Weighting	(dB)	(kHz)	(dB)				
HIGH	SPL	A Fast		114.00	1	113.8 (Ref.)				
				104.00		103.8				
				94.00		93,8				

IEC 61672 Class 1 Spec. : \pm 0.6 dB per 10 dB step and \pm 1.1 dB for overall different.

6.2 Time Weighting

Γ		UUT	Setting		Applied Value		UUT	IEC 61672
I	Range Mode Frequency		Time	Level	Freq.	Reading	Class 1 Spec.	
	J		Weighting	Weighting	(dB)	(kHz)	(dB)	(dB)
	HIGH	SPL	Α	Fast	114.00	1	113.8	Ref.
				Slow			113.8	± 0.3

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書面批准。

輝創工程有限公司。校正及檢測實驗所

cio 香港新界屯門與安里一號青山灣機樓四樓 Tel電話: 2927 2606 Fax側真: 2744 8986

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior scritten approval of this laborator

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.: C130601

證書編號

6.3 Frequency Weighting

6.3.1 A-Weighting

A-weightii	UUT Setting			Applied Value		UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class I Spec. (dB)
HIGH	SPL	A	Fast	114.00	63 Hz	87.6	-26.2 ± 1.5
					125 Hz	97.6	-16.1 ± 1.5
					250 Hz	105.1	-8.6 ± 1.4
					500 Hz	110.5	-3.2 ± 1.4
					1 kHz	113.8	Ref.
					2 kHz	115.0	+1.2 ± 1.6
					4 kHz	114.8	$+1.0 \pm 1.6$
					8 kHz	112.8	-1.1 (+2.1; -3.1)
					12.5 kHz	109.6	-4.3 (+3.0 ; -6.0)

6.3.2 C-Weighting

weigniu		JT Setting		Applied Value		UUT	IEC 61672
Range	Mode	Frequency Weighting	Time Weighting	Level (dB)	Freq.	Reading (dB)	Class 1 Spec. (dB)
HIGH	SPL	C	Fast	114,00	63 Hz	113.0	-0.8 ± 1.5
					125 Hz	113.6	-0.2 ± 1.5
					250 Hz	113.8	0.0 ± 1.4
					500 Hz	113.8	0.0 ± 1.4
					1 kHz	113.8	Ref.
					2 kHz	113.7	-0.2 ± 1.6
					4 kHz	113.1	-0.8 ± 1.6
	İ				8 kHz	110.9	-3.0 (+2.1; -3.1
					12.5 kHz	107.6	-6.2 (+6.0 , -∞)

Remarks: - UUT Microphone Model No.: AC07502E & S/N: 48532

- Mfr's Spec. : IEC 61672 Class 1

- Uncertainties of Applied Value : 94 dB : 63 Hz - 125 Hz : \pm 0.45 dB

250 Hz - 500 Hz : ± 0.40 dB 1 kHz : ± 0.30 dB 2 kHz - 4 kHz : ± 0.45 dB 8 kHz : ± 0.55 dB 12.5 kHz : ± 0.80 dB

104 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB) 114 dB : 1 kHz : ± 0.10 dB (Ref. 94 dB)

- The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可滴漂至國際標準。局部復印本證書儒先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/F, Tsing Shan Wan Exchange Building, 1 Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司。按正及檢測實驗所

co 香港新界电門與安里一號青山樹楼樓四樓

Tel-電話: 2927-2606 Fax/傳真: 2744-8986 E-mail/電影: callab@suncreation.com Website/創華: www.suncreation.com

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130599

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱 :

Acoustic Calibrator

Manufacturer / 製造商 Model No. / 型號 Svantek

Model No. / 型號 Serial No. / 編號 SV30A 24780

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

· ---

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

H C Chan

Certified By

核證

K Lee

Date of Issue 簽發日期

28 January 2013

. 20 Junuary 2011

The test equipment used for enhibitation are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之淵試器材均可淵潭至國際標準。 局部復印本證書需先獲本實驗所書面批准。

Sun Creation Engineering Limited - Calibration & Testing Laboratory

c/o 4/f, Tsing Shan Wan Exchange Building, I Hing On Lane, Tuen Mun, New Territories, Hong Kong

輝創工程有限公司 按正及檢測實驗所

co 香港新界屯門與安里一號青山灣機樓四樓

Tel·電話: 2927 2606 Fax/傳真: 2744 8986 E-mail·電郵: callab@suncreati

E-mail/電影; callab@suncreation.com Website/掲址: www.suncreation.com

Page 1 of 2

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130599

證書編號

The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

Description

Certificate No.

CL130

Universal Counter

C123541

CL281 TST150A Multifunction Acoustic Calibrator Measuring Amplifier

DC110233 C120886

Test procedure: MA100N.

5. Results:

Sound Level Accuracy 5.1

	Journa Dovortioonino,			
ſ	UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value
	Nominal Value	(dB)	(dB)	(dB)
	94 dB, 1 kHz	94.1	± 0.3	± 0.2
Ī	114 dB. 1 kHz	114.0		

Frequency Accuracy 5.2

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value	
(kHz)	(kHz)	Spec.	(Hz)	
1	0,999 99	1 kHz ± 0.02 %	± 0.01	

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traccable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laborator

本證書所載校正用之測試器材均可溯源至固際標準。 局部複印本證書需先復本實驗所書面批准

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130598

證書編號

ITEM TESTED / 送檢項目 (Job No. / 序引編號: IC13-0227)

Description / 儀器名稱

Acoustic Calibrator

Manufacturer / 製造商

Svantek

Model No./型號 Serial No./編號

SV30A 24791

Supplied By / 委託者

Dragages - China Harbour - VSL Joint Venture

3/F, Island Place Tower, 510 King's Road,

North Point, Hong Kong

TEST CONDITIONS / 測試條件

Temperature / 溫度 :

 $(23 \pm 2)^{\circ}$ C

Relative Humidity / 相對濕度 :

 $(55 \pm 20)\%$

Line Voltage / 電壓 :

TEST SPECIFICATIONS / 測試規範

Calibration check

DATE OF TEST / 測試日期

25 January 2013

TEST RESULTS / 測試結果

The results apply to the particular unit-under-test only.

All results are within manufacturer's specification.

The results are detailed in the subsequent page(s).

The test equipment used for calibration are traceable to National Standards via:

- The Government of The Hong Kong Special Administrative Region Standard & Calibration Laboratory
- Rohde & Schwarz Laboratory, Germany
- Fluke Everett Service Center, USA
- Agilent Technologies, USA

Tested By 測試

H C Chan

than Um (

Certified By 核證

Date of Issue

28 January 2013

簽發日期

The test equipment used for calibration are traceable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory

本證書所載校正用之測試器材均可測潔至國際標準。局部複印本證書需先獲本實驗所書而批准。

Sun Creation Engineering Limited

Calibration and Testing Laboratory

Certificate of Calibration

校正證書

Certificate No.:

C130598

證書編號

1. The unit-under-test (UUT) was allowed to stabilize in the laboratory for over 12 hours before the commencement of the test.

2. The results presented are the mean of 3 measurements at each calibration point.

3. Test equipment:

Equipment ID

CL130

CL281 TST150A **Description**

Universal Counter

Measuring Amplifier

Multifunction Acoustic Calibrator

Certificate No.

C123541 DC110233

C120886

4. Test procedure: MA100N.

5. Results:

5.1 Sound Level Accuracy

South Botti II water							
UUT	Measured Value	Mfr's Spec.	Uncertainty of Measured Value				
Nominal Value	(dB)	(dB)	(dB)				
94 dB, 1 kHz	93,9	± 0.3	± 0.2				
114 dB. 1 kHz	113.9						

5.2 Frequency Accuracy

UUT Nominal Value	Measured Value	Mfr's	Uncertainty of Measured Value	
(kHz)	(kHz)	Spec.	(Hz)	
1	1.000 00	$1 \text{ kHz} \pm 0.02 \%$	± 0.01	

Remark: - The uncertainties are for a confidence probability of not less than 95 %.

Note:

The values given in this Certificate only relate to the values measured at the time of the test and any uncertainties quoted will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during transportation, overloading, mis-handling, or the capability of any other laboratory to repeat the measurement. Sun Creation Engineering Limited shall not be liable for any loss or damage resulting from the use of the equipment.

The test equipment used for calibration are traccable to the Nation Standards as specified in this certificate. This certificate shall not be reproduced except in full, without the prior written approval of this laboratory.

本證書所載校正用之測試器材均可溯源至國際標準。 局部複印本證書需先獲本實驗所書而批准,

佳力高試驗中心有限公司

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 07-06-2013

Page 1A of 1 pages

Castco LRN: EN0130514-18

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6920 Serial No.: 03H1764AA Instrument No.: W.03.03

Date of Calibration: 20-05-2013

Date of Next Calibration: 20-08-2013

pH Value Check (pH Probe: YSI 6561 - 10E)

<u> </u>						
Expected Reading (pH Unit)	Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Reference		
4.00	4.03	0.03		-		
7.02	7.01	-0.01	± 0.2	APHA 21e, 4500-H ⁺ B		
10.06	10.01	-0.05		ĺ		

Turbidity Check (Turbidity Sensor: YSI 6136 - 09M100672)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Reference
4.00	3.9	-2.5		
10.00	9.5	-5.0		
20.00	19.0	-5.0	± 10	APHA 21e, 2130B
50.00	50.5	1.0		
100.00	100.5	0.5		1

Conductivity Performance Check (Conductivity Sensor: YSI 6560 - 10C100151)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Reference
1412 at 25 °C	1490 at 25 °C	5.5	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: YSI 6560 - 10C100151)

Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Reference
35	34.83	-0.5	± 10	APHA 19e, 2520B

Dissolved Oxygen Check (Dissolved Oxygen Sensor: YSI 6562 - 12A100930)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Reference
8.20	8.27	0.07	± 0.20	APHA 21e, 4500-O
4.76	4.80	0.04	± 0.20	C&G

Water Level Meter Check

Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Reference
1.00	1.01	0.01	± 0.05	YSI Sondes Procedure

Temperature Check

	Tomporature Check				
Expected Reading (°C)		Sonde Reading (℃)	Tolerance (°C)	Tolerance Limit (℃)	Method Reference
	25.0	25.1	0.1	± 2.0	Telarc Technical Guide No.3 1986

Remark:

Checked by:

1. This thes report supersedes previous test report of Castco LRN: EN0130514-18 issued on 21-05-2013.

LI YIN SHAN

Certified by:

LEE STEPHEN SHU HANG Ph.D.

Technical Directo

End of Report

佳力高試驗中心有限公司

CASTCO TESTING CENTRE LTD.

TEST REPORT

Chemical Analysis of Water

Accuracy check of YSI Sondes Environmental Monitoring System

Date of issue: 07-06-2013 Page 1A of 1 pages

Castco LRN: EN0130514-19

Sample details as supplied by customer

Customer: Dragages-China Harbour-VSL Joint Venture

Customer Ref. No.: --

Address: Tung Chung Waterfront Road, adjacent to Tung Chung New Development Pier

Job Title: Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road - Section between HKSAR Boundary and Scenic Hill

Contract No.: HY/2011/09

Laboratory Test Result

Instrument Name: Sonde Environmental Monitoring System

Manufacturer: YSI Model No.: YSI 6820 Serial No.: 11J101088 Instrument No.: W.03.11

Date of Calibration: 20-05-2013 Date of Next Calibration: 20-08-2013

pH Value Check (pH Probe: YSI 6561 - 11H)

	pri value cheek (pri robe.	. 1010301 1111)			
Expected Reading (pH Unit)		Sonde Reading (pH Unit)	Tolerance (pH Unit)	Tolerance Limit (pH Unit)	Method Reference
ı	(110111)				
ı	4.00	4.06	0.06	!	
ı	7.02	7.03	0.01	± 0.2	APHA 21e, 4500-H ⁺ B
ı	10.06	9.97	-0.09	!	

Turbidity Check (Turbidity Sensor: YSI 6136 - 11J100474)

Expected Reading (NTU)	Sonde Reading (NTU)	Tolerance (%)	Tolerance Limit (%)	Method Reference
4.00	3.8	-5.0		
10.00	9.6	-4.0		
20.00	19.1	-4.5	± 10	APHA 21e, 2130B
50.00	48.8	-2.4		·
100.00	95.5	-4.5		

Conductivity Performance Check (Conductivity Sensor: YSI 6560 - 11J100023)

Expected Reading (µS/cm)	Sonde Reading (µS/cm)	Tolerance (%)	Tolerance Limit (%)	Method Reference
1412 at 25 °C	1459 at 25 °C	3.3	± 10	APHA 21e, 2510B

Salinity Performance Check (Salinity Sensor: YSI 6560 - 11J100023)

Expected Reading (ppt)	Sonde Reading (ppt)	Tolerance (%)	Tolerance Limit (%)	Method Reference
35	33.49	-4.3	± 10	APHA 19e, 2520B

Dissolved Oxygen Check (Dissolved Oxygen Sensor: YSI 6562 - 11J100272)

DO from Winkler Titration (mg/L)	Sonde Reading (mg/L)	Tolerance (mg/L)	Tolerance Limit (mg/L)	Method Reference
8.20	8.18	-0.02	± 0.20	APHA 21e, 4500-O
4.76	4.86	0.10		C&G

Water Level Meter Check

Expected Reading (m)	Sonde Reading (m)	Tolerance (m)	Tolerance Limit (m)	Method Reference
1.00	1.01	0.01	± 0.05	YSI Sondes Procedure

Temperature Check

Expected Reading (°C)	Sonde Reading (°C)	Tolerance (°C)	Tolerance Limit (℃)	Method Reference
25.0	25.1	0.1	± 2.0	Telarc Technical Guide No.3 1986

End of Report

Remark:

1. This thes report supersedes previous test report of Castco LRN: EN0130514-19 issued on 21-05-2013.

Shan Checked by:

Form No. ENV SONDE_T1 dd 22/02/2013 Assistant Chemist

LI YIN SHAN

Certified by:

LEE STEPHEN SHU HANG

香港粉嶺安居街33號 33, On Kui Street, Fanling, H 29A, On Chuen Street, Fanling, I 香港粉嶺安全街29A號

E-mail: castco@netvigator.com Website: www

HYDROPHONE SENSITIVITY

Under Test: S/N:

TC4014-5 5111003

Reference: Date:

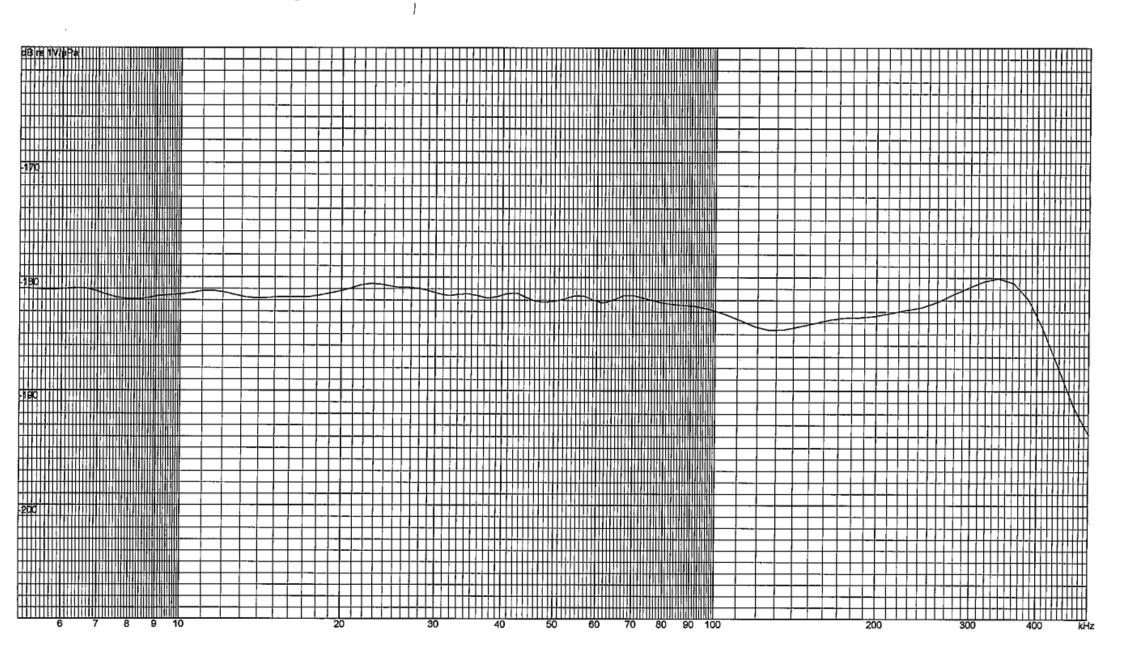
2012-01-24 14825, 43

Session, Run: Comment:

PHO @ 250 Hz: -180.8 dB.

Amplitude: Pulse Width: Rep Rate:

Averages:


10.0 Vrms 357.1 µs 33.3 ms

Temperature: Depth: Distance:

°C 0.0 m 0.00 m

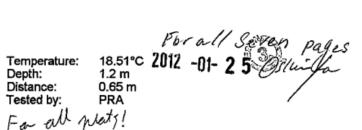
Tested by:

PRA

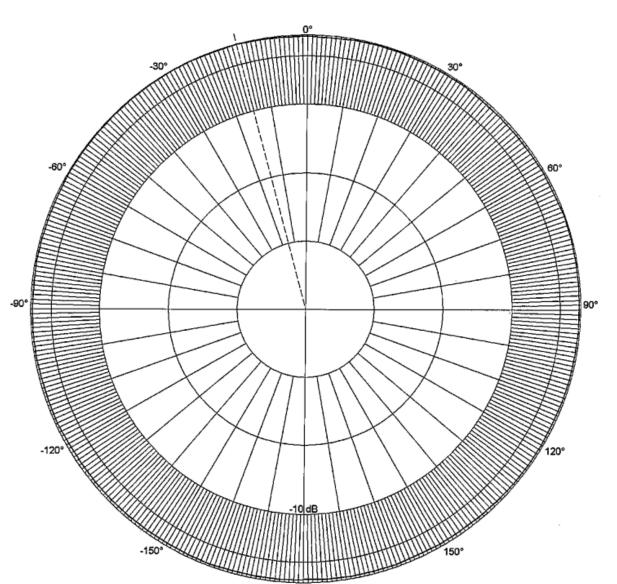
Under Test: S/N: Reference:

TC4014-5 5111003 TC4034 Date: 2012-01-24 Session, Run: 14825, 42

Max RR: SL Right: Comment: -183.0 dB re 1µPa/V at 1m -15.0°, 0.0dB dB re 1µPa/V at 1m Horizontal.


Amplitude: Pulse Width:

Frequency:


Angle:

250.0 µs -180.0° to 180.0° 100,00 kHz

10.0 Vrms

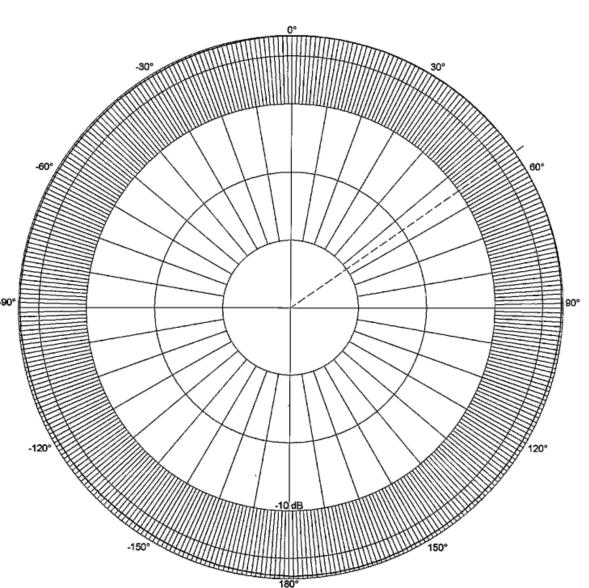
Far all plats! 2012-01-24 PRA

Under Test: S/N: Reference: Date:

TC4014-5 5111003

TC4034 2012-01-24 14825, 42 -183.5 dB re 1µPa/V at 1m 55.0°, 0.0dB dB re 1µPa/V at 1m Horizontal.

Session, Run: Max RR: SL Right: Comment:


Amplitude: Pulse Width: Angle:

Frequency:

10.0 Vrms 250.0 µs -180.0° to 180.0° 200.00 kHz

Temperature: Depth: Distance: Tested by:

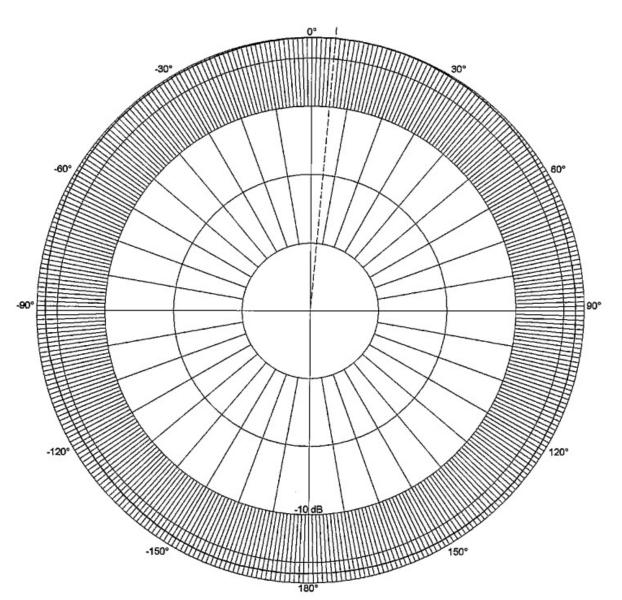
Under Test: S/N: Reference:

Date:

TC4014-5 5111003 TC4034 2012-01-24

Session, Run: 14825, 42

Max RR: SL Right: Comment:


-180.8 dB re 1µPa/V at 1m 5.0°, 0.0dB dB re 1µPa/V at 1m Horizontal.

Angle:

10.0 Vrms 250.0 µs -180.0° to 180.0° Amplitude: Pulse Width: Frequency:

300.00 kHz

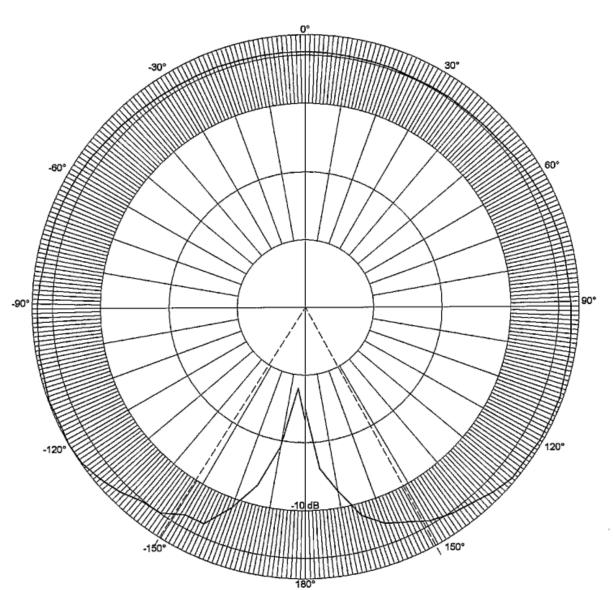
18.51°C Temperature: Depth: Distance: 1.2 m 0.65 m Tested by: PRA

Under Test: S/N:

TC4014-5 5111003 TC4034 Reference: 2012-01-24 Date:

Session, Run: Max RR: W:

14825, 3 -182.0 dB re 1µPa/V at 1m 299.2° Vertical


Comment:

Amplitude: Pulse Width: Angle:

Frequency:

10.0 Vrms 125.0 μs -180.0° to 180.0° 100.00 kHz

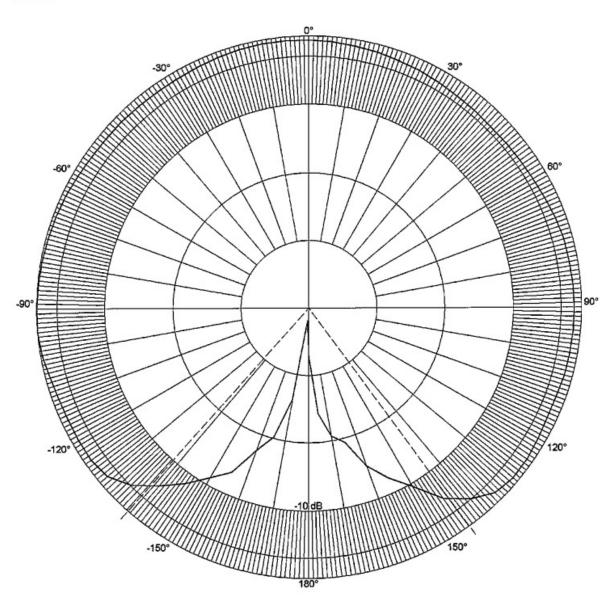
Temperature: Depth: Distance: Tested by:

Under Test: S/N: Reference:

Date:

TC4014-5 5111003 TC4034 2012-01-24

14825, 3 -183.4 dB re 1µPa/V at 1m 282.3° Vertical


Session, Run: Max RR: W: Comment:

Amplitude: Pulse Width: Angle:

Frequency:

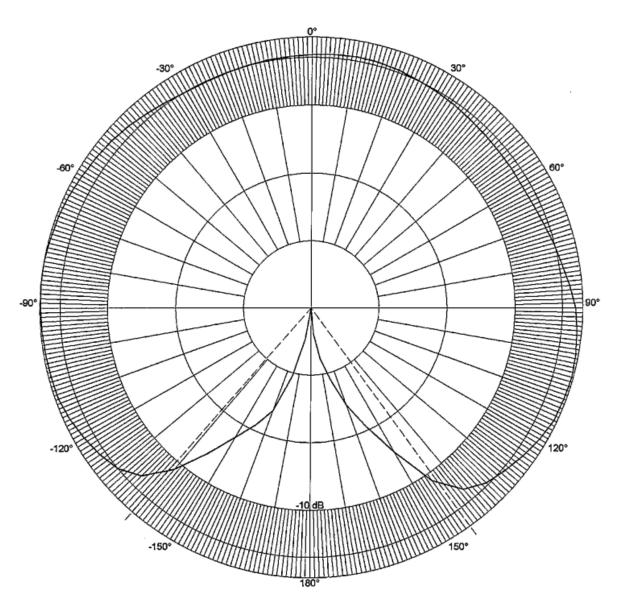
Temperature: Depth: Distance:

Under Test: S/N: Reference:

TC4014-5 5111003 Date: 14825, 3 -180.9 dB re 1μPa/V at 1m 283.0° Session, Run:

Max RR:

W: Comment:


TC4034 2012-01-24

Vertical

Amplitude: Pulse Width: Angle: Frequency:

10.0 Vrms 125.0 µs -180.0° to 180.0° 300.00 kHz

Temperature: Depth: Distance: Tested by:

APPENDIX D ENVIRONMENTAL MONITORING SCHEDULES

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Air Quality and Noise Monitoring Schedule in July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul
		Noise		24 hr TSP 1 hr TSP X 3		
7-Jul	8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul
	Noise		24 hr TSP 1 hr TSP X 3			
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
		24 hr TSP 1 hr TSP X 3	Noise			
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
	24 hr TSP 1 hr TSP X 3	Noise			24 hr TSP 1 hr TSP X 3	
28-Jul	29-Jul	30-Jul	31-Jul			
	Noise					

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Stations

AMS1 - Sha Lo Wan AMS4 - San Tau **Noise Monitoring Stations**

NMS1 - Sha Lo Wan NMS4 - San Tau

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Air Quality and Noise Monitoring Schedule in August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Sunuay	Williay	rucsuay	wcuncsuay	1-Aug	2-Aug	3-Aug
				24 hr TSP 1 hr TSP X 3	2	51105
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
			24 hr TSP 1 hr TSP X 3	Noise		
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
		24 hr TSP 1 hr TSP X 3	Noise			
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
	24 hr TSP 1 hr TSP X 3	Noise			24 hr TSP 1 hr TSP X 3	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
	Noise			24 hr TSP 1 hr TSP X 3		

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Air Quality Monitoring Stations

AMS1 - Sha Lo Wan AMS4 - San Tau Noise Monitoring Stations

NMS1 - Sha Lo Wan NMS4 - San Tau

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Impact Water Quality Monitoring Schedule in July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
	1-Jul				5-Jul	
		Water Quality Monitoring Mid-Ebb 08:56		Water Quality Monitoring Mid-Ebb 10:35		Water Quality Monitoring Mid-Ebb 11:53
		Mid-Flood 15:05		Mid-Flood 17:26		Mid-Flood 18:50
7-Jul	8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul
/-Jul	0-Jul	<i>7-</i> Jul	10-Jul	11-Jul	12-341	13-341
	Water Quality Monitoring		Water Quality Monitoring		Water Quality Monitoring	
	Mid-Ebb 13:02 Mid-Flood 19:54		Mid-Flood 07:17 Mid-Ebb 14:06		Mid-Flood 08:32 Mid-Ebb 15:11	
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
	Water Quality Monitoring Mid-Flood 10:55 Mid-Ebb 17:07		Water Quality Monitoring Mid-Flood 14:01 Mid-Ebb 19:39		Water Quality Monitoring Mid-Ebb 09:45 Mid-Flood 16:53	
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
	Water Quality Monitoring Mid-Ebb 12:17 Mid-Flood 19:26		Water Quality Monitoring Mid-Flood 07:18 Mid-Ebb 13:53		Water Quality Monitoring Mid-Flood 08:58 Mid-Ebb 15:20	
28-Jul	29-Jul	30-Jul	31-Jul			
	Water Quality Monitoring Mid-Flood 11:38 Mid-Ebb 17:27		Water Quality Monitoring Mid-Ebb 08:10 Mid-Flood 14:51			

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Impact Water Quality Monitoring Schedule in August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
				1-Aug		3-Aug
						Water Quality Monitoring Mid-Ebb 10:53 Mid-Flood 18:04
						10.04
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
	Water Quality Monitoring Mid-Ebb 12:08 Mid-Flood 18:59		Water Quality Monitoring Mid-Ebb 13:15 Mid-Flood 19:51		Water Quality Monitoring Mid-Ebb 14:20 Mid-Flood 20:49	
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
	Water Quality Monitoring Mid-Flood 09:54 Mid-Ebb 16:03		Water Quality Monitoring Mid-Flood 12:12 Mid-Ebb 17:57		Water Quality Monitoring Mid-Ebb 08:14 Mid-Flood 15:40	
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
	Water Quality Monitoring Mid-Ebb 11:14 Mid-Flood 18:22		Water Quality Monitoring Mid-Ebb 12:52 Mid-Flood 19:36		Water Quality Monitoring Mid-Flood 08:00 Mid-Ebb 14:18	
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug
	Water Quality Monitoring Mid-Flood 10:17 Mid-Ebb 16:09		Water Quality Monitoring Mid-Flood 12:26 Mid-Ebb 17:34			Water Quality Monitoring Mid-Ebb 09:31 Mid-Flood 17:11

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday		
	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul		
					Line Transect Vessel Survey			
7-Jul	8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul		
			Line Transect Vessel Survey					
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul		
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul		
28-Jul	29-Jul	30-Jul	31-Jul					

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Construction-Phase Dolphin Monitoring in West Lantau (Line Transect Vessel Survey) in August 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
•	·	•	•	1-Aug	2-Aug	3-Aug
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug
	Jimg	o.mg	, , , mg	OTME	7.mg	
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug
			Line Transect Vessel Survey			
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug
			Line Transect Vessel Survey			
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug

The schedule may be changed due to unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Construction-Phase Underwater Noise Monitoring in July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
•	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul	6-Jul
7-Jul	8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	13-Jul
				Underwater Noise Monitoring (Pier 0)	Underwater Noise Monitoring (Pier 0)	
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul
	Underwater Noise Monitoring (Pier 0)					
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul
	Underwater Noise Monitoring (Pier 0)	Underwater Noise Monitoring (Pier 0)	Underwater Noise Monitoring (Pier 0)			
28-Jul	29-Jul	30-Jul	31-Jul			

The schedule may be changed due to changes in work programme and unforeseen circumstances (adverse weather, etc)

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Dolphin Behaviour & Land-based Dolphin Behaviour and Movement Monitoring in July 2013

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday		
	1-Jul	2-Jul	3-Jul	4-Jul	5-Jul			
7-Jul	8-Jul	9-Jul	10-Jul	11-Jul	12-Jul	l 13-Jul		
		*1) Dolphin Behaviour Monitoring		*1) Dolphin Behaviour Monitoring	*1) Dolphin Behaviour Monitoring			
	*2) Land-based Dolphin Behaviour and Movement Monitoring	*2) Land-based Dolphin Behaviour and Movement Monitoring	*2) Land-based Dolphin Behaviour and Movement Monitoring	*2) Land-based Dolphin Behaviour and Movement Monitoring	*2) Land-based Dolphin Behaviour and Movement Monitoring	*2) Land-based Dolphin Behaviour and Movement Monitoring		
14-Jul	15-Jul	16-Jul	17-Jul	18-Jul	19-Jul	20-Jul		
	*1) Dolphin Behaviour Monitoring	*1) Dolphin Behaviour Monitoring	*1) Dolphin Behaviour Monitoring	*1) Dolphin Behaviour Monitoring				
	*2) Land-based Dolphin Behaviour and Movement Monitoring		*2) Land-based Dolphin Behaviour and Movement Monitoring	*2) Land-based Dolphin Behaviour and Movement Monitoring	*2) Land-based Dolphin Behaviour and Movement Monitoring			
21-Jul	22-Jul	23-Jul	24-Jul	25-Jul	26-Jul	27-Jul		
	*1) Dolphin Behaviour Monitoring		*1) Dolphin Behaviour Monitoring *2) Land-based Dolphin Behaviour	*1) Dolphin Behaviour Monitoring	*1) Dolphin Behaviour Monitoring			
		and Movement Monitoring	and Movement Monitoring					
28-Jul	29-Jul	30-Jul	31-Jul					
	*2) Land-based Dolphin Behaviour and Movement Monitoring							

Remarks: * Dolphin-related monitoring was conducted during the bored piling activitie

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Tentative Land-based Dolphin Behaviour and Movement Monitoring in August 2013

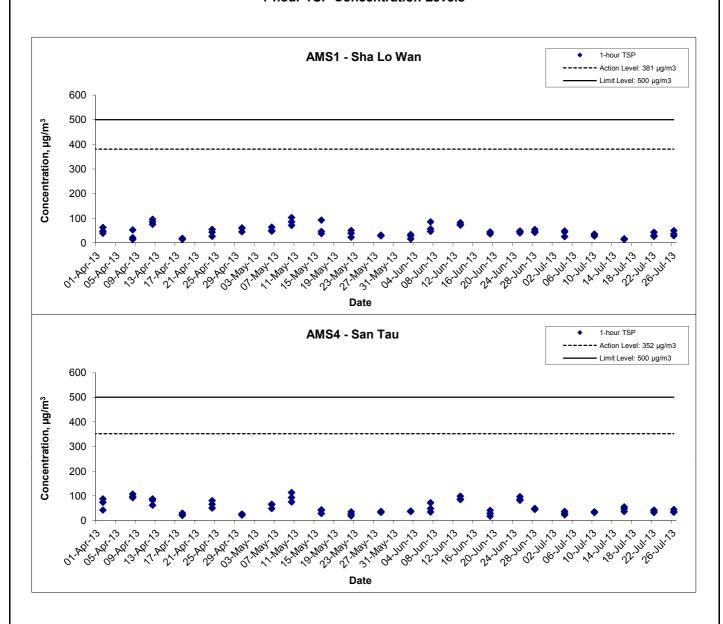
Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday			
·	Ž	,	ý	1-Aug	2-Aug	3-Aug			
4-Aug	5-Aug	6-Aug	7-Aug	8-Aug	9-Aug	10-Aug			
11-Aug	12-Aug	13-Aug	14-Aug	15-Aug	16-Aug	17-Aug			
18-Aug	19-Aug	20-Aug	21-Aug	22-Aug	23-Aug	24-Aug			
25-Aug	26-Aug	27-Aug	28-Aug	29-Aug	30-Aug	31-Aug			
				*Land-based Dolphin Behaviour and Movement Monitoring	*Land-based Dolphin Behaviour and Movement Monitoring				

Remarks: * Additional monitoring will be conducted subject to the detailed analysis of 30 days of Land-based Dolphin Behaviour and Movement Monitoring results

APPENDIX E 1-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix E - 1-hour TSP Monitoring Results

Location AMS1 - Sha Lo Wan


Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Jul-13	09:40	Sunny	302.9	758.6	2.7743	2.7776	0.0033	1887.9	1888.9	1.0	1.22	1.22	1.22	73.0	45
4-Jul-13	10:45	Sunny	303.1	758.5	2.7560	2.7596	0.0036	1888.9	1889.9	1.0	1.22	1.22	1.22	73.0	49
4-Jul-13	13:00	Sunny	306.2	757.5	2.7732	2.7751	0.0019	1889.9	1890.9	1.0	1.21	1.21	1.21	72.5	26
10-Jul-13	08:50	Cloudy	300.1	758.5	2.7628	2.7653	0.0025	1914.9	1915.9	1.0	1.22	1.22	1.22	73.4	34
10-Jul-13	09:53	Cloudy	300.3	758.3	2.7743	2.7764	0.0021	1915.9	1916.9	1.0	1.22	1.22	1.22	73.3	29
10-Jul-13	13:05	Cloudy	299.7	758.0	2.7806	2.7833	0.0027	1916.9	1917.9	1.0	1.22	1.22	1.22	73.4	37
16-Jul-13	09:50	Rainy	298.5	758.8	2.7993	2.8006	0.0013	1941.9	1942.9	1.0	1.23	1.23	1.23	73.6	18
16-Jul-13	10:50	Rainy	298.7	758.7	2.7809	2.7820	0.0011	1942.9	1943.9	1.0	1.23	1.23	1.23	73.6	15
16-Jul-13	13:50	Rainy	298.9	758.5	2.7718	2.7730	0.0012	1943.9	1944.9	1.0	1.23	1.23	1.23	73.5	16
22-Jul-13	09:30	Cloudy	301.3	758.3	2.7762	2.7794	0.0032	1969.7	1970.7	1.0	1.22	1.22	1.22	73.2	44
22-Jul-13	11:00	Sunny	301.7	758.0	2.8140	2.8160	0.0020	1970.7	1971.7	1.0	1.22	1.22	1.22	73.1	27
22-Jul-13	13:00	Sunny	299.1	755.2	2.7876	2.7898	0.0022	1971.7	1972.7	1.0	1.22	1.22	1.22	73.3	30
26-Jul-13	10:55	Rainy	298.4	754.9	2.7614	2.7636	0.0022	1996.7	1997.7	1.0	1.22	1.22	1.22	73.4	30
26-Jul-13	14:08	Rainy	299.5	755.1	2.7800	2.7827	0.0027	1997.7	1998.7	1.0	1.22	1.22	1.22	73.3	37
26-Jul-13	15:10	Rainy	299.7	754.9	2.7844	2.7881	0.0037	1998.7	1999.7	1.0	1.22	1.22	1.22	73.2	51
														Min	15
														Max	51
														Average	33

Location AMS4 - San Tau

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m ³)	$(\mu g/m^3)$
4-Jul-13	09:40	Sunny	303.0	758.4	2.7655	2.7672	0.0017	1417.6	1418.6	1.0	1.22	1.22	1.22	73.0	23
4-Jul-13	10:45	Sunny	303.2	758.2	2.7567	2.7588	0.0021	1418.6	1419.6	1.0	1.22	1.22	1.22	73.0	29
4-Jul-13	14:00	Sunny	306.4	757.4	2.7512	2.7539	0.0027	1419.6	1420.6	1.0	1.21	1.21	1.21	72.5	37
10-Jul-13	10:50	Cloudy	302.2	757.9	2.8151	2.8177	0.0026	1444.6	1445.6	1.0	1.22	1.22	1.22	73.1	36
10-Jul-13	14:00	Cloudy	299.9	757.8	2.7488	2.7512	0.0024	1445.6	1446.6	1.0	1.22	1.22	1.22	73.4	33
10-Jul-13	15:05	Cloudy	300.1	757.6	2.7789	2.7815	0.0026	1446.6	1447.6	1.0	1.22	1.22	1.22	73.3	35
16-Jul-13	10:30	Rainy	299.0	758.6	2.7838	2.7879	0.0041	1471.7	1472.7	1.0	1.23	1.23	1.23	73.6	56
16-Jul-13	13:25	Rainy	298.3	758.1	2.7795	2.7830	0.0035	1472.7	1473.7	1.0	1.23	1.23	1.23	73.6	48
16-Jul-13	14:31	Rainy	298.5	758.1	2.7853	2.7880	0.0027	1473.7	1474.7	1.0	1.23	1.23	1.23	73.6	37
22-Jul-13	08:40	Cloudy	301.1	755.4	2.7784	2.7808	0.0024	1499.7	1500.7	1.0	1.22	1.22	1.22	73.1	33
22-Jul-13	10:05	Sunny	301.3	755.2	2.8197	2.8228	0.0031	1500.7	1501.7	1.0	1.22	1.22	1.22	73.0	42
22-Jul-13	14:05	Sunny	301.4	756.8	2.7646	2.7674	0.0028	1501.7	1502.7	1.0	1.22	1.22	1.22	73.1	38
26-Jul-13	08:50	Rainy	298.0	755.7	2.7861	2.7894	0.0033	1526.7	1527.7	1.0	1.23	1.23	1.23	73.5	45
26-Jul-13	09:52	Rainy	298.1	755.5	2.7960	2.7986	0.0026	1527.7	1528.7	1.0	1.23	1.22	1.22	73.5	35
26-Jul-13	10:54	Rainy	298.3	755.3	2.7845	2.7870	0.0025	1528.7	1529.7	1.0	1.22	1.22	1.22	73.5	34
	<u> </u>	<u> </u>		·										Min	23
														Max	56
														Average	37

App E - 1hr TSP Cinotech

1-hour TSP Concentration Levels

Title Contract No. HY/2011/09
Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road –
Section between HKSAR Boundary and Scenic Hill
Graphical Presentation of 1-hour TSP Monitoring Results

Scale Project
No. MA12014

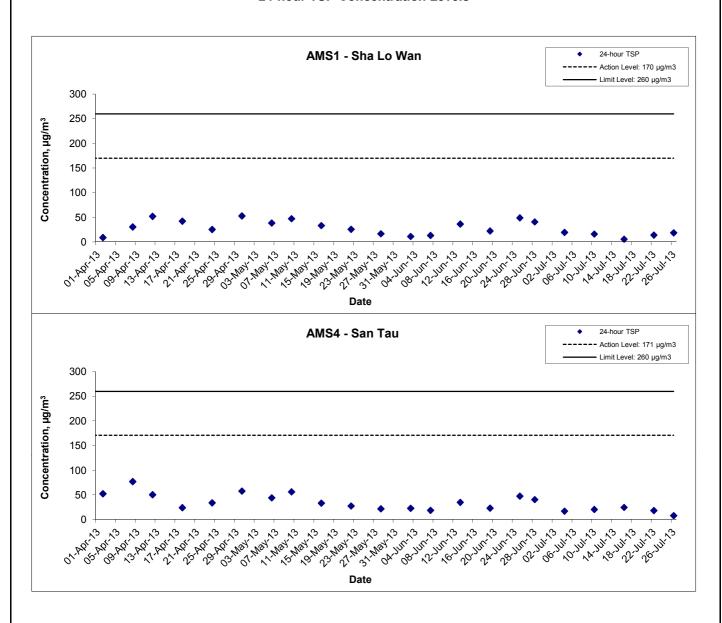
Date
Jul 13

Appendix
E

APPENDIX F 24-HOUR TSP MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix F - 24-hour TSP Monitoring Results

Location AMS1 - Sha Lo Wan


Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	Time	Sampling	Flow Rate	(m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m³)
4-Jul-13	17:00	Cloudy	305.7	756.2	2.7498	2.7839	0.0341	1890.9	1914.9	24.0	1.21	1.21	1.21	1739.8	20
10-Jul-13	14:10	Cloudy	300.0	757.8	2.7856	2.8141	0.0285	1917.9	1941.9	24.0	1.22	1.22	1.22	1760.2	16
16-Jul-13	15:00	Cloudy	299.4	758.1	2.8064	2.8167	0.0103	1944.9	1968.9	24.0	1.22	1.22	1.22	1762.5	6
22-Jul-13	14:02	Cloudy	299.3	755.0	2.7880	2.8129	0.0249	1972.7	1996.7	24.0	1.22	1.22	1.22	1758.7	14
26-Jul-13	16:20	Rainy	299.9	754.7	2.7820	2.8149	0.0329	1999.7	2023.7	24.0	1.22	1.22	1.22	1756.4	19
														Min	6
														Max	20
														Average	15

Location AMS4 - San Tau

Sampling Date	Start Time	Weather	Air	Atmospheric	Filter W	eight (g)	Particulate	Elapse	e Time	Sampling	Flow Rate	e (m³/min.)	Av. flow	Total vol.	Conc.
Sampling Date	Start Time	Condition	Temp. (K)	Pressure, Pa (mmHg)	Initial	Final	weight (g)	Initial	Final	Time(hrs.)	Initial	Final	(m ³ /min)	(m^3)	(µg/m ³)
4-Jul-13	16:15	Cloudy	305.5	756.5	2.7634	2.7931	0.0297	1420.6	1444.6	24.0	1.21	1.21	1.21	1741.2	17
10-Jul-13	16:20	Cloudy	300.2	757.4	2.7878	2.8239	0.0361	1447.6	1471.6	24.0	1.22	1.22	1.22	1759.7	21
16-Jul-13	15:36	Cloudy	298.7	757.9	2.7988	2.8423	0.0435	1474.7	1498.7	24.0	1.23	1.23	1.23	1765.1	25
22-Jul-13	15:06	Cloudy	301.5	757.5	2.7788	2.8110	0.0322	1502.7	1526.7	24.0	1.22	1.22	1.22	1755.4	18
26-Jul-13	11:56	Rainy	298.5	755.1	2.7905	2.8046	0.0141	1529.7	1553.7	24.0	1.22	1.22	1.22	1762.1	8
														Min	8
														Max	25
														Average	18

App F - 24hr TSP Cinotech

24-hour TSP Concentration Levels

Title Contract No. HY/2011/09
Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road –
Section between HKSAR Boundary and Scenic Hill

Graphical Presentation of 24-hour TSP Monitoring Results

Scale
N.T.S
No. MA12014

Date
Jul 13

Appendix
F

APPENDIX G NOISE MONITORING RESULTS AND GRAPHICAL PRESENTATION

Appendix G - Noise Monitoring Results

D-1-	10/ U	T:	Un	it: dB (A) (5-n	nin)	Average	Baseline Level	Construction Noise Level
Date	Weather	Time	L _{eq}	L ₁₀	L 90	L _{eq}	L _{eq}	L _{eq}
		10:00	67.6	77.5	55.7			
		10:05	68.7	80.5	56.0			
2-Jul-13	Cuppy	10:10	70.5	79.6	59.0	69		60 Magazzad / Limit Lave
2-Jul- 13	Sunny	10:15	65.7	74.8	59.4	09		69 Measured ≤ Limit Leve
		10:20	67.6	79.4	59.6			
		10:25	70.4	78.4	60.6			
		10:05	68.6	77.5	55.8			
		10:10	67.6	78.4	54.5			
8-Jul-13	Claudy	10:15	67.8	79.8	60.2	67		C7 Management / Limit Laura
6-Jul- 13	Cloudy	10:20	65.0	76.3	52.5	07		67 Measured ≤ Limit Leve
		10:25	66.4	69.2	61.3			
		10:30	65.4	78.2	55.0			
		17:30	66.3	69.3	62.3			
		17:35	69.1	73.0	64.6			
17-Jul-13	Cloudy	17:40	68.2	71.4	63.5	68	66.9	68 Measured ≤ Limit Leve
17-Jul-13	Cloudy	17:45	67.8	71.2	62.9	00	00.9	66 Measured ≦ Limit Leve
		17:50	68.4	71.8	63.8			
		17:55	69.4	73.5	65.1			
		10:30	67.1	74.6	57.4			
		10:35	59.0	61.5	55.9			
23-Jul-13	Cloudy	10:40	67.2	70.4	62.5	64		64 Measured ≤ Limit Leve
23-Jul- 13	Cloudy	10:45	64.1	68.4	57.3	04		04 Measureu ≦ Limit Leve
		10:50	62.5	67.0	56.2			
		10:55	60.6	62.9	57.0			
		10:20	67.6	72.5	54.4			
		10:25	68.6	74.2	53.0			
29-Jul-13	Cloudy	10:30	70.6	72.6	51.3	69		60 Magaurad / Limit Laur
29-Jul-13	Cioudy	10:35	68.6	72.6	53.6	09		69 Measured ≤ Limit Leve
		10:40	69.4	76.3	54.3			
		10:45	70.2	76.5	54.6	Ĭ		

Remark: * +3dB(A) Façade correction included

ocation NMS	4 - San Tau		I 11-	:t. dD (A) /F ::	·-:-\	A	I Baratina I amil	Occasionation National and
Date	Weather	Time		it: dB (A) (5-r	1 '	Average	Baseline Level	Construction Noise Level
Вакс	Weather	Time	L _{eq}	L ₁₀	L ₉₀	L _{eq}	L _{eq}	L _{eq}
		11:15	58.7	60.9	56.7			
		11:20	57.6	59.7	54.8			
2-Jul-13	Sunny	11:25	57.3	59.4	54.2	58		58 Measured ≤ Limit Leve
2-501-15	Suring	11:30	57.1	60.8	56.1	30		30 Measured \(\geq \text{Lilling Level}\)
		11:35	57.4	60.7	58.2			
		11:40	58.3	60.5	56.3			
		13:05	60.4	61.9	58.8			
		13:10	59.2	61.6	57.6			
8-Jul-13	Cloudy	13:15	57.5	59.7	55.8	59		59 Measured ≤ Limit Leve
0-Jul- 13	Cloudy	13:20	58.9	61.2	57.5	59		59 Measureu ≦ Limit Leve
		13:25	58.6	60.9	55.2			
		13:30	59.4	61.7	58.1			
		14:40	56.0	59.2	50.3			
		14:45	53.7	55.3	49.2			
17-Jul-13	Cloudy	14:50	55.0	57.6	49.5	56	56.0	56 Measured ≤ Limit Leve
17-Jul-13	Cloudy	14:55	56.8	59.6	50.0	50	50.0	56 Measured ≤ Littlit Leve
		15:00	57.0	60.2	49.8			
		15:05	56.9	60.1	50.1			
		15:05	59.2	62.6	52.8			
		15:10	58.5	62.1	53.0			
23-Jul-13	Cloudy	15:15	56.7	58.5	54.5	58		58 Measured ≤ Limit Leve
23-Jul-13	Cloudy	15:20	58.0	61.7	58.5	50		56 Measured \(\leq \) Limit Leve
		15:25	57.5	61.5	52.3			
		15:30	59.8	62.5	58.6			
		13:05	61.6	59.6	50.4			
		13:10	53.3	55.2	51.1			
29-Jul-13	Cloudy	13:15	53.6	53.8	51.0	58		58 Measured ≤ Limit Leve
29-Jui- 13	Cioudy	13:20	62.0	59.1	51.6	30		Jo weasureu ≥ Limit Leve
		13:25	52.8	53.8	51.1			
		13:30	54.3	55.7	52.7	1		

Remark: * +3dB(A) Façade correction included

App G - Noise Cinotech

Noise Levels NMS1 NMS 1 - Sha Lo Wan Baseline NL, 66.9 dB(A) Limit Level, 75 dB(A) 80 Construction Noise Level dB(A) 75 70 65 60 55 50 45 o.May.13 NMS4 NMS 4 - San Tau Baseline NL, 56.0 dB(A) Limit Level, 75 dB(A) 80 Construction Noise Level dB(A) 75 70 65 60 55

Title Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill **Graphical Presentation of Construction Noise Monitoring** Results

50 45

> Scale Project No. MA12014 N.T.S Date Appendix Jul 13 G

3 NOWIT TIME SKIME STUPS STUPS STUPS STUPS

APPENDIX H
WATER QUALITY MONITORING
RESULTS AND GRAPHICAL
PRESENTATION

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	1	рΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.6	28.7	7.9	7.9	18.4	18.3	123.7	121.6	8.6	8.5		3.5	3.5		4.7	4.7	
						28.7 28.3		7.9 7.9		18.2 22.9		119.5 111.7		8.4 7.7		8.1	3.4 6.5			4.7 5.0		
2-Jul-13	Sunny	Moderate	08:27	Middle	5.5	28.3	28.3	7.9	7.9	23.1	23.0	111.3	111.5	7.6	7.7		6.9	6.7	7.3	5.5	5.3	5.5
				Bottom	10	28.4 28.4	28.4	7.9 8.0	8.0	23.9 23.7	23.8	111.2 110.0	110.6	7.6 7.5	7.6	7.6	10.4 12.8	11.6		6.5 6.2	6.4	
				Surface	1	30.0	30.0	8.0	8.0	7.4	7.4	116.6	116.6	8.4	8.4		4.0	4.0		2.5	2.9	
4-Jul-13	Sunny	Calm	10:30	Middle	6	30.0 28.8	28.8	8.0 7.9	7.9	7.3 16.5	16.7	116.6 85.4	85.6	8.4 6.0	6.0	7.2	4.0 5.4	5.4	6.7	3.3 2.7	2.3	3.1
4-Jul-13	Suring	Callii	10.30			28.8 28.0		7.9 7.9		16.8 27.7		85.8 74.3		6.0 5.0			5.4 10.7		0.7	1.8 1.2		3.1
				Bottom	11	28.0	28.0	7.9	7.9	27.7	27.7	74.0	74.2	5.0	5.0	5.0	10.9	10.8		7.2	4.2	
				Surface	1	29.5 29.5	29.5	8.5 8.5	8.5	10.6 10.7	10.7	126.6 126.1	126.4	9.1 9.1	9.1	7.8	4.5 4.8	4.7		6.0 4.7	5.4	
6-Jul-13	Cloudy	Moderate	11:11	Middle	7	28.2 28.6	28.4	8.1 8.1	8.1	27.9 25.1	26.5	93.7 94.0	93.9	6.4 6.5	6.5	7.0	3.1 2.7	2.9	5.0	6.0 4.0	5.0	4.9
				Bottom	13	27.7	27.8	8.1	8.1	29.0	29.0	79.1 79.1	79.1	5.4 5.4	5.4	5.4	7.3	7.3		3.3	4.2	
				Surface	1	27.8 29.0	29.0	8.1	8.2	29.0 15.0	15.0	110.3	106.6	8.1	7.7		7.3 5.4	5.7		5.0 11.0	10.5	
0 1 1 40	0		10.00			29.0 27.3		8.2 8.1		15.0 30.1		102.9 91.8		7.3 6.1		6.9	6.0 5.2			10.0 9.7		
8-Jul-13	Sunny	Moderate	12:32	Middle	5.5	27.4 27.2	27.4	8.1 8.1	8.1	30.2 30.6	30.2	90.3 78.6	91.1	6.1 5.5	6.1		5.3 7.4	5.3	6.0	5.7 7.3	7.7	8.3
				Bottom	10	27.2	27.2	8.1	8.1	30.6	30.6	79.5	79.1	5.6	5.6	5.6	6.8	7.1		6.0	6.7	
				Surface	1	28.6 28.6	28.6	8.1 8.1	8.1	21.1 21.1	21.1	88.7 87.6	88.2	6.1 6.0	6.1	5.7	4.7 5.0	4.9		2.9 3.1	3.0	
10-Jul-13	Fine	Moderate	13:36	Middle	6	27.5 27.5	27.5	8.1 8.1	8.1	26.4 26.5	26.5	72.0 74.0	73.0	5.1 5.2	5.2	5.7	8.7 8.7	8.7	12.0	2.8 3.3	3.1	3.4
				Bottom	11	27.1	27.1	8.0	8.0	28.4	28.3	73.8	73.1	5.1	5.1	5.1	23.5	22.4		3.7	4.2	
				Surface	1	27.1 28.6	28.6	8.0 8.4	8.4	28.2 23.1	23.1	72.3 94.4	94.6	5.0 6.8	6.8		21.3 4.4	4.1		4.6 3.1	2.7	
						28.6 27.8		8.4 8.3		23.1 25.9		94.7 79.8		6.8 5.7		6.3	3.7 4.7			2.3 1.8		
12-Jul-13	Sunny	Moderate	15:07	Middle	6	27.9	27.9	8.3	8.3	25.9	25.9	82.0	80.9	5.9	5.8		4.4	4.6	6.1	3.1	2.5	3.0
				Bottom	11	26.4 26.5	26.5	8.2 8.2	8.2	30.7 30.7	30.7	94.0 76.8	85.4	6.8 5.6	6.2	6.2	9.4 9.7	9.6		2.6 5.2	3.9	
				Surface	1	28.4 28.4	28.4	8.2 8.2	8.2	17.0 17.2	17.1	95.9 95.7	95.8	6.6 6.5	6.6		4.7 4.9	4.8		2.0 2.0	2.0	
15-Jul-13	Rainy	Calm	16:36	Middle	6	26.7 26.7	26.7	8.0 8.0	8.0	27.7 27.8	27.8	78.1 77.7	77.9	5.3 5.3	5.3	6.0	6.4 6.4	6.4	7.5	2.0	2.7	2.2
				Bottom	11	25.7	25.7	8.0	8.0	35.1	35.1	74.5	74.4	4.9	4.9	4.9	11.4	11.4		2.1	1.9	
					1	25.7 28.6	28.6	8.0 8.1	1	35.1 16.3	16.3	74.2 86.0	86.3	4.9 6.1	6.1	-	11.3 1.9	2.0		2.1		
				Surface		28.6 27.4		8.1 8.1	8.1	16.3 23.8		86.6 82.2		6.1 5.7		5.9	2.0 1.8			1.5 2.0	1.8	
17-Jul-13	Rainy	Moderate	19:29	Middle	6.5	27.4	27.4	8.1	8.1	23.9	23.9	81.4	81.8	5.7	5.7		1.8	1.8	2.1	1.8	1.9	2.0
				Bottom	12	26.5 26.8	26.7	8.0 8.1	8.1	27.8 27.3	27.6	69.9 70.6	70.3	4.9 4.9	4.9	4.9	2.7 2.2	2.5		2.6 2.2	2.4	

Water Quality Monitoring Results at CS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.1 27.1	27.1	8.1 8.1	8.1	26.3 26.3	26.3	85.5 85.4	85.5	5.9 5.9	5.9	5.7	1.3 1.3	1.3		2.0 1.9	2.0	
19-Jul-13	Cloudy	Calm	08:53	Middle	6.5	26.8 26.8	26.8	8.1 8.1	8.1	27.8 27.8	27.8	79.0 79.0	79.0	5.4 5.4	5.4	5.7	2.2 2.3	2.3	3.7	2.9 1.8	2.4	3.1
				Bottom	12	26.3 26.3	26.3	8.0 8.0	8.0	29.1 29.1	29.1	71.4 70.9	71.2	5.0 5.0	5.0	5.0	7.4 7.6	7.5		5.4 4.1	4.8	
				Surface	1	27.6 27.6	27.6	8.3 8.3	8.3	28.4 28.4	28.4	77.1 77.3	77.2	5.2 5.2	5.2	5.3	5.6 5.8	5.7		6.1 5.5	5.8	
22-Jul-13	Cloudy	Calm	12:09	Middle	3.5	27.5 27.5	27.5	8.3 8.3	8.3	29.5 29.5	29.5	78.1 79.5	78.8	5.2 5.3	5.3	0.0	6.9 5.7	6.3	8.5	4.1 2.8	3.5	4.2
				Bottom	6	27.4 27.4	27.4	8.3 8.3	8.3	29.6 29.6	29.6	76.5 76.4	76.5	5.1 5.1	5.1	5.1	13.5 13.5	13.5		3.7 3.0	3.4	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	27.0 27.0	27.0	95.5 95.5	95.5	6.5 6.5	6.5	6.3	4.9 4.8	4.9		5.9 5.2	5.6	
24-Jul-13	Rainy	Moderate	13:30	Middle	7	27.9 27.9	27.9	8.2 8.2	8.2	28.7 28.7	28.7	90.7 91.2	91.0	6.1 6.1	6.1	0.0	12.3 12.3	12.3	15.5	5.6 5.5	5.6	6.0
				Bottom	13	27.8 27.8	27.8	8.2 8.2	8.2	29.2 29.2	29.2	90.9 90.8	90.9	6.1 6.1	6.1	6.1	27.6 30.7	29.2		7.6 5.7	6.7	
				Surface	1	27.7 27.6	27.7	8.1 8.1	8.1	26.8 26.9	26.9	101.4 97.5	99.5	6.9 6.7	6.8	6.7	6.2 6.0	6.1		5.9 8.5	7.2	
26-Jul-13	Rainy	Rough	15:29	Middle	6.5	27.6 27.7	27.7	8.1 8.1	8.1	27.0 25.9	26.5	97.2 95.1	96.2	6.6 6.5	6.6	0.7	5.0 4.8	4.9	10.0	6.1 6.1	6.1	6.4
				Bottom	12	27.7 27.7	27.7	8.1 8.1	8.1	26.9 25.9	26.4	98.8 94.5	96.7	6.9 6.5	6.7	6.7	17.5 20.2	18.9		5.4 6.6	6.0	
				Surface	1	29.0 27.5	28.3	8.1 8.2	8.2	16.5 16.5	16.5	92.9 93.7	93.3	6.4 6.5	6.5	6.4	3.0 3.1	3.1		2.9 2.9	2.9	
29-Jul-13	Sunny	Calm	17:25	Middle	6.5	27.5 30.3	28.9	8.2 8.2	8.2	18.4 18.6	18.5	90.9 90.8	90.9	6.2 6.3	6.3	0.4	4.8 4.7	4.8	4.7	2.9 3.2	3.1	2.9
				Bottom	12	28.9 30.4	29.7	8.1 8.2	8.2	27.0 27.1	27.1	78.6 78.8	78.7	5.3 5.4	5.4	5.4	6.0 6.2	6.1		2.7 2.7	2.7	
				Surface	1	29.0 29.0	29.0	8.2 8.2	8.2	17.6 17.6	17.6	94.3 94.1	94.2	6.4 6.4	6.4	6.2	2.7 2.7	2.7		4.0 5.2	4.6	
31-Jul-13	Sunny	Calm	07:55	Middle	6.5	28.3 28.3	28.3	8.2 8.2	8.2	22.1 21.2	21.7	87.6 88.7	88.2	5.9 6.0	6.0	U.E	2.5 2.5	2.5	4.6	5.0 3.2	4.1	4.5
				Bottom	12	27.1 27.1	27.1	8.2 8.2	8.2	29.4 29.4	29.4	78.0 77.2	77.6	5.2 5.1	5.2	5.2	8.8 8.6	8.7		4.6 5.0	4.8	

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Depti	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.4	29.4	8.1	8.1	15.4	15.4	107.9	107.1	7.6	7.6		7.2	7.5		5.5	5.4	
				Odridoc		29.4	20.7	8.1	0.1	15.3	10.4	106.2	107.1	7.5	7.0	7.4	7.8	7.0		5.3	0.4	
2-Jul-13	Sunnv	Moderate	14:48	Middle	5	28.7	28.7	7.9	7.9	19.2	19.2	102.0	102.8	7.1	7.2		8.4	8.3	8.3	4.8	4.6	5.3
	,					28.7		7.9		19.2		103.6		7.2			8.1			4.3		
				Bottom	9	28.6 28.5	28.6	7.9 7.9	7.9	20.1 20.1	20.1	99.6 95.1	97.4	6.9 6.6	6.8	6.8	8.7 9.4	9.1		5.0 6.8	5.9	
						30.8		8.0		7.1		101.5		7.3			4.8			2.3		
				Surface	1	30.8	30.8	8.1	8.1	7.0	7.1	101.3	101.3	7.3	7.3		4.8	4.8		2.0	2.2	
4 1 1 40	E	0.1	47.40		_	29.3	00.0	7.9	7.0	18.1	40.0	95.2	00.4	6.6	0.0	7.1	6.5	0.0	7.0	2.2	0.0	0.0
4-Jul-13	Fine	Calm	17:18	Middle	5	29.1	29.2	7.9	7.9	18.2	18.2	103.5	99.4	7.2	6.9		6.0	6.3	7.2	3.7	3.0	3.2
				Bottom	9	28.9	28.9	7.9	7.9	18.7	19.1	73.4	81.2	5.1	5.7	5.7	10.6	10.6		4.3	4.3	
				Dottom	3	28.8	20.0	7.9	7.5	19.5	13.1	89.0	01.2	6.2	0.7	5.7	10.6	10.0		4.3	7.0	
				Surface	1	29.7	29.3	8.6	8.4	15.3	15.3	131.7	129.5	9.5	9.5		7.2	7.3		6.7	6.7	
						28.8		8.1		15.3		127.3		9.4		8.2	7.3 5.9			6.7		
6-Jul-13	Cloudy	Moderate	18:38	Middle	6.5	30.1 28.3	29.2	8.4 8.0	8.2	21.4 21.4	21.4	97.2 96.2	96.7	6.8 6.7	6.8		6.3	6.1	7.4	7.0 8.0	7.5	7.9
						28.6		8.1		24.1		85.0		5.9			8.9			11.0		
				Bottom	12	28.3	28.5	8.0	8.1	24.1	24.1	84.3	84.7	5.8	5.9	5.9	8.9	8.9		7.7	9.4	
				Surface	1	29.6	29.6	8.3	8.3	13.4	13.6	111.4	107.9	7.9	7.7		6.8	7.1		1.7	2.2	
				Surface		29.6	29.0	8.3	6.3	13.7	13.0	104.4	107.9	7.4	7.1	7.1	7.4	7.1		2.7	2.2	
8-Jul-13	Fine	Moderate	19:33	Middle	6	28.8	28.8	8.1	8.1	17.9	17.8	92.1	93.0	6.4	6.5		9.7	9.3	10.9	15.3	18.8	8.3
						28.8		8.1		17.6		93.9		6.5			8.9			22.3		
				Bottom	11	28.4 28.4	28.4	8.1 8.1	8.1	21.1 21.1	21.1	88.0 86.0	87.0	6.3 6.1	6.2	6.2	15.6 17.1	16.4		3.7 4.0	3.9	
						28.7		8.1		14.9		82.9		5.9			5.1			3.5		
				Surface	1	28.8	28.8	8.1	8.1	15.0	15.0	82.5	82.7	5.9	5.9		4.8	5.0		3.7	3.6	
10-Jul-13	Fine	Moderate	06:59	Middle	5	28.6	28.6	8.0	8.1	18.7	18.8	76.1	76.5	5.5	5.5	5.7	6.7	6.6	10.3	2.8	3.2	3.6
10-Jul-13	rille	Woderate	00.59	iviluule	J	28.6	20.0	8.1	0.1	18.8	10.0	76.9	70.5	5.5	5.5		6.5	0.0	10.3	3.5	3.2	3.0
				Bottom	9	27.9	27.8	8.0	8.0	23.9	24.6	73.3	73.2	5.1	5.1	5.1	19.4	19.3		4.1	4.0	
						27.7		8.0		25.3		73.0		5.1			19.2			3.9		
				Surface	1	29.2 29.1	29.2	8.3 8.3	8.3	14.5 14.7	14.6	103.1 102.7	102.9	7.6	7.6		3.5	3.6		10.6	7.4	
						27.5		8.2		26.0		78.0		7.6 5.7		6.7	3.6 9.9			2.3		
12-Jul-13	Sunny	Moderate	08:02	Middle	5	27.4	27.5	8.2	8.2	25.8	25.9	80.4	79.2	5.9	5.8		9.5	9.7	8.6	2.1	2.2	4.1
				D-#	9	27.0	07.0	8.2	0.0	28.1	00.4	72.2	74.4	5.3	<i>-</i>	5 0	12.5	40.4		2.9	0.7	
				Bottom	9	27.0	27.0	8.2	8.2	28.1	28.1	70.5	71.4	5.2	5.3	5.3	12.3	12.4		2.5	2.7	
				Surface	1	29.2	29.2	8.0	8.0	13.5	13.5	81.1	81.0	5.7	5.7		3.9	3.9		1.9	2.0	
				0411400	·	29.2		8.0	0.0	13.4	.0.0	80.8	00	5.7	0	5.6	3.9	0.0		2.1	2.0	
15-Jul-13	Rainy	Calm	10:58	Middle	5.5	28.4 28.4	28.4	8.0 8.0	8.0	20.2 20.3	20.3	77.8 80.3	79.1	5.4	5.5		6.8 6.6	6.7	6.2	1.9 2.3	2.1	2.1
						28.1		8.0		21.8		71.3		5.6 4.9			7.8			1.8		
				Bottom	10	28.1	28.1	8.0	8.0	22.0	21.9	76.4	73.9	5.3	5.1	5.1	7.9	7.9		2.3	2.1	
				04	4	28.8	20.0	8.0	0.0	15.5	45.0	93.0	00.0	6.6	0.0		2.5	0.5		2.1	0.0	
				Surface	1	28.8	28.8	8.0	8.0	15.6	15.6	92.7	92.9	6.6	6.6	6.1	2.5	2.5		1.8	2.0	
17-Jul-13	Rainy	Moderate	13:46	Middle	5.5	27.3	27.3	8.0	8.0	23.4	23.9	80.5	80.6	5.6	5.6	0.1	4.3	4.5	5.6	1.9	2.1	2.1
	,	222.2.0				27.2		8.0		24.3		80.6		5.6			4.6			2.3		
				Bottom	10	26.4 26.4	26.4	8.0 8.0	8.0	27.3 27.4	27.4	68.5 68.7	68.6	4.9 4.9	4.9	4.9	9.8 10.0	9.9		2.3 2.1	2.2	
						20.4	<u> </u>	0.0	<u>ı </u>	21.4	<u>ı </u>	00.1	<u> </u>	4.9	l		10.0	<u> </u>	<u> </u>	Z. I	ı	

Water Quality Monitoring Results at CS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	.11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.1 8.1	8.1	24.3 24.3	24.3	83.9 83.8	83.9	5.8 5.8	5.8	5.6	3.0 3.1	3.1		4.7 3.0	3.9	
19-Jul-13	Cloudy	Calm	16:28	Middle	7	27.6 27.6	27.6	8.1 8.1	8.1	24.6 24.6	24.6	77.1 77.3	77.2	5.4 5.4	5.4	5.0	3.9 3.9	3.9	5.6	8.0 3.0	5.5	4.9
				Bottom	13	26.9 26.9	26.9	8.1 8.1	8.1	26.4 26.4	26.4	75.8 75.7	75.8	5.1 5.1	5.1	5.1	9.2 10.1	9.7		6.5 4.3	5.4	
				Surface	1	28.3 28.3	28.3	8.1 8.1	8.1	22.6 22.7	22.7	78.6 78.5	78.6	5.4 5.4	5.4	5.4	8.8 7.6	8.2		11.2 10.2	10.7	
22-Jul-13	Rainy	Moderate	19:21	Middle	5.5	28.2 28.2	28.2	8.1 8.1	8.1	23.3 23.4	23.4	78.2 78.6	78.4	5.4 5.4	5.4	5.4	8.8 8.5	8.7	9.0	11.7 11.0	11.4	11.7
				Bottom	10	28.2 28.2	28.2	8.1 8.1	8.1	24.2 24.0	24.1	78.4 78.6	78.5	5.4 5.4	5.4	5.4	10.6 9.8	10.2		13.2 12.7	13.0	
				Surface	1	27.8 27.8	27.8	8.1 8.1	8.1	24.8 24.8	24.8	91.2 90.7	91.0	6.2 6.2	6.2	6.1	3.4 3.4	3.4		4.0 4.7	4.4	_
24-Jul-13	Rainy	Moderate	06:54	Middle	7	28.0 28.0	28.0	8.1 8.1	8.1	26.4 26.6	26.5	88.9 89.1	89.0	6.0 6.0	6.0	0.1	6.4 6.9	6.7	9.8	3.8 3.7	3.8	4.0
				Bottom	13	28.0 28.0	28.0	8.2 8.2	8.2	27.3 27.3	27.3	87.9 87.7	87.8	5.9 5.9	5.9	5.9	19.5 19.3	19.4		4.1 3.2	3.7	
				Surface	1	27.1 27.6	27.4	8.0 8.1	8.1	23.5 26.2	24.9	87.4 88.0	87.7	6.1 6.0	6.1	6.2	4.7 4.6	4.7		30.7 12.6	21.7	
26-Jul-13	Rainy	Rough	07:52	Middle	7	27.1 27.5	27.3	8.0 8.1	8.1	23.5 26.0	24.8	86.9 90.7	88.8	6.1 6.2	6.2	0.2	10.2 10.0	10.1	10.6	4.6 6.2	5.4	10.8
				Bottom	13	27.5 27.6	27.6	8.1 8.1	8.1	26.0 26.2	26.1	92.0 88.5	90.3	6.3 6.1	6.2	6.2	17.1 16.7	16.9		5.9 4.6	5.3	
				Surface	1	28.2 28.4	28.3	8.1 8.1	8.1	20.5 18.6	19.6	84.4 87.2	85.8	5.9 6.1	6.0	6.1	3.4 3.5	3.5		2.1 2.5	2.3	
29-Jul-13	Sunny	Calm	10:26	Middle	7	28.2 28.5	28.4	8.1 8.1	8.1	20.5 18.2	19.4	85.1 88.5	86.8	5.9 6.2	6.1	0.1	3.7 3.7	3.7	3.6	3.2 2.6	2.9	2.7
				Bottom	13	28.5 28.3	28.4	8.1 8.1	8.1	18.3 18.8	18.6	89.4 86.7	88.1	6.3 6.1	6.2	6.2	3.6 3.3	3.5		3.1 2.4	2.8	
				Surface	1	30.1 30.1	30.1	8.4 8.4	8.4	14.8 14.8	14.8	99.1 99.7	99.4	6.8 6.8	6.8	6.6	2.4 2.4	2.4		1.2 1.2	1.2	
31-Jul-13	Sunny	Calm	14:45	Middle	5.5	29.5 29.6	29.6	8.3 8.3	8.3	16.0 16.0	16.0	92.6 92.5	92.6	6.3 6.3	6.3	0.0	2.0 2.1	2.1	3.7	2.4 2.4	2.4	1.8
				Bottom	10	29.3 29.3	29.3	8.3 8.3	8.3	16.4 16.8	16.6	81.8 81.8	81.8	5.6 5.6	5.6	5.6	7.0 6.3	6.7		1.7 1.7	1.7	

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

	Condition	Condition**	-	Depth		Tempera					ity ppt				lved Oxygen			Turbidity(NTI				(mg/L)
2-Jul-13 S		Condition	Time		. (,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
2-Jul-13 S				Surface	1	28.6	28.6	8.2	8.3	16.8	16.8	121.7	120.2	8.6	8.5		3.0	3.1		6.7	6.8	
2-Jul-13 S				Juliace	1	28.6	20.0	8.3	0.5	16.7	10.0	118.7	120.2	8.4	0.5	8.4	3.1	3.1		6.8	0.0	
	Sunny	Moderate	07:39	Middle	3.5	28.5	28.6	8.2	8.3	17.2	17.1	115.8	116.3	8.2	8.2	0.4	2.7	2.9	5.8	6.5	6.4	6.2
2 00. 10	Curiny	Moderate	07.00	Wildale	0.0	28.6	20.0	8.3	0.0	16.9	.,.,	116.7	110.0	8.2	0.2		3.1	2.0	0.0	6.3	0.4	
				Bottom	6	28.3	28.2	8.2	8.2	23.0	23.1	83.8	83.6	5.8	5.8	5.8	11.5	11.4		5.5	5.5	
						28.1		8.2		23.2		83.4		5.7		*.*	11.2	1		5.5		
				Surface	1	29.7	29.7	8.0	8.0	10.5	10.5	97.6	97.6	7.0	7.0		4.6	4.7		10.3	9.6	
					· ·	29.7		8.0		10.4		97.5		7.0	1	6.2	4.7	1		8.8		
4-Jul-13 S	Sunny	Calm	09:03	Middle	3	28.6	28.6	8.0	8.0	20.4	20.1	75.7	76.0	5.2	5.3		4.2	4.3	4.8	13.8	14.9	11.5
	-					28.6		8.0		19.8		76.2		5.3			4.3	-		16.0		
				Bottom	5	28.1 28.1	28.1	8.1 8.1	8.1	27.7 27.7	27.7	82.7 82.3	82.5	5.7 5.7	5.7	5.7	5.2 5.8	5.5		14.2 5.5	9.9	
						29.7					l	126.9			<u> </u>		4.3	+			<u> </u>	
				Surface	1	29.7	29.7	8.5 8.5	8.5	10.6 10.6	10.6	125.9	126.4	9.1 9.0	9.1		4.3	4.4		5.7 6.0	5.9	
						29.7		8.2		16.7		103.1		7.8		8.5	5.0		1	6.0		
6-Jul-13 Cl	Cloudy	Moderate	10:21	Middle	3.5	29.2	29.3	8.2	8.2	17.2	17.0	103.1	102.9	7.8	7.8		5.0	5.0	5.8	4.3	5.2	5.7
						27.7		8.1		29.5		68.4		5.2			7.6			6.3		
				Bottom	6	27.7	27.7	8.1	8.1	29.6	29.6	68.1	68.3	5.2	5.2	5.2	8.3	8.0		5.5	5.9	
					. 1	29.3	20.4	8.2		13.0	40.0	100.2		7.1			5.8			6.3		
				Surface	1	29.4	29.4	8.2	8.2	13.0	13.0	97.3	98.8	6.9	7.0		5.8	5.8		7.3	6.8	
0 1 1 40	0		44.40	10.11		28.0	00.0	8.1	0.4	24.2	05.0	85.5	05.0	6.2	0.0	6.6	10.8	40.0	40.0	8.0	0.0	
8-Jul-13 S	Sunny	Moderate	11:48	Middle	4	27.9	28.0	8.1	8.1	25.8	25.0	84.8	85.2	6.1	6.2		13.2	12.0	10.3	8.0	8.0	7.9
				Bottom	7	27.1	27.1	8.1	8.1	30.7	30.8	78.0	77.5	5.6	5.6	5.6	12.9	13.0		12.0	8.8	
				DOLLOITI	1	27.1	21.1	8.1	0.1	30.8	30.6	76.9	11.5	5.5	5.0	5.0	13.0	13.0		5.5	6.6	
				Surface	1	29.5	29.7	8.2	8.3	16.4	16.2	125.0	125.4	9.0	9.1		4.6	4.6		3.4	4.0	
				Ouriacc	'	29.8	20.1	8.3	0.0	16.0	10.2	125.8	125.4	9.1	5.1	7.5	4.6	4.0		4.5	4.0	
10-Jul-13 F	Fine	Moderate	12:38	Middle	3.5	27.7	27.7	8.1	8.1	25.8	26.0	78.5	79.1	5.7	5.8	7.0	8.8	9.8	9.2	3.8	3.5	4.1
						27.6		8.1		26.2		79.7		5.8			10.8			3.2		
				Bottom	6	26.9	26.9	8.1	8.1	29.1	29.1	73.9	73.3	5.3	5.3	5.3	13.1	13.1		4.3	4.9	
						26.9		8.1		29.1		72.7		5.2			13.0			5.5		
				Surface	1	29.1	29.0	8.2	8.2	19.2	19.7	86.3	87.2	6.2	6.3		3.3	3.6		8.3	11.4	
						28.9 27.3		8.2 8.0		20.2		88.0 80.3		6.3 5.8		6.1	3.9 7.9	-		14.5 16.8		
12-Jul-13 S	Sunny	Moderate	13:40	Middle	3.5	27.3	27.3	8.1	8.1	27.2	27.0	79.7	80.0	5.8	5.8		7.9	7.5	8.2	6.8	11.8	9.2
						26.4		8.0		30.0		71.8		5.2			13.2	+		3.3		
				Bottom	6	26.3	26.4	8.0	8.0	30.2	30.1	71.2	71.5	5.2	5.2	5.2	13.6	13.4		5.5	4.4	
						29.0		8.2		16.9		85.3		6.0			1.9			1.7		
				Surface	1	29.0	29.0	8.1	8.2	16.9	16.9	84.5	84.9	5.9	6.0		1.9	1.9		1.9	1.8	
45 1140	Deim	0-1	40.00	Mistalia	-	28.2	27.4	8.1	0.4	20.9	00.0	82.4	04.0	5.7	5.0	5.8	4.3	4.6		3.0	0.0	0.0
15-Jul-13 R	Rainy	Calm	18:03	Middle	5	26.6	27.4	8.0	8.1	25.5	23.2	80.8	81.6	5.5	5.6		4.9	4.6	5.7	2.2	2.6	2.8
				Bottom	9	25.8	25.8	8.0	8.0	30.2	30.3	72.2	72.5	4.9	4.9	4.9	10.3	10.5		2.3	3.9	
				DOLLOITI	9	25.8	25.6	8.0	6.0	30.3	30.3	72.7	12.5	4.9	4.9	4.9	10.6	10.5		5.5	3.9	
				Surface	1	28.5	28.5	8.2	8.2	17.1	17.2	91.5	91.3	6.5	6.5		1.8	1.9		1.6	1.7	
				Juliace	'	28.5	20.0	8.2	0.2	17.3	11.2	91.0	31.0	6.4	0.0	6.1	1.9	1.0		1.8	1.7]
17-Jul-13 R	Rainy	Moderate	17:54	Middle	3.5	27.3	27.4	8.2	8.2	23.0	23.0	79.6	80.2	5.6	5.6	•	2.7	2.9	4.1	2.6	2.5	2.7
,						27.5		8.2		23.0		80.7		5.6			3.0			2.3		1
				Bottom	6	25.9	25.9	8.1	8.2	30.2	30.3	72.8	72.7	5.0	5.0	5.0	7.1	7.6		2.2	3.9	
						25.8		8.2		30.3		72.6		5.0			8.1			5.5	<u> </u>	

Water Quality Monitoring Results at CS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.5 27.5	27.5	8.2 8.2	8.2	24.2 23.9	24.1	83.2 83.4	83.3	5.8 5.8	5.8	5.7	1.7 1.9	1.8		8.3 10.2	9.3	
19-Jul-13	Cloudy	Calm	08:07	Middle	3.5	26.6 26.6	26.6	8.2 8.2	8.2	28.6 28.7	28.7	80.5 79.4	80.0	5.5 5.4	5.5	5.7	3.8 3.5	3.7	4.8	8.7 4.0	6.4	6.8
				Bottom	6	26.3 26.3	26.3	8.2 8.2	8.2	29.7 29.7	29.7	72.6 72.2	72.4	4.9 4.9	4.9	4.9	8.9 9.0	9.0		4.0 5.5	4.8	
				Surface	1	27.8 27.9	27.9	8.2 8.2	8.2	27.6 27.1	27.4	81.4 79.3	80.4	5.5 5.3	5.4	5.4	6.0 6.6	6.3		5.7 4.4	5.1	
22-Jul-13	Cloudy	Calm	13:10	Middle	4	27.4 27.3	27.4	8.2 8.2	8.2	28.7 28.8	28.8	81.9 78.8	80.4	5.5 5.3	5.4	0.4	7.3 7.7	7.5	9.6	5.2 5.5	5.4	5.6
				Bottom	7	27.4 27.4	27.4	8.2 8.2	8.2	29.0 29.0	29.0	79.5 77.2	78.4	5.4 5.2	5.3	5.3	15.0 14.9	15.0		7.3 5.5	6.4	
				Surface	1	27.9 27.9	27.9	8.2 8.2	8.2	27.0 27.0	27.0	95.0 94.9	95.0	6.4 6.4	6.4	6.3	5.7 5.6	5.7		5.7 44.0	24.9	
24-Jul-13	Rainy	Moderate	12:23	Middle	3	27.9 27.9	27.9	8.3 8.3	8.3	29.8 29.8	29.8	93.0 93.1	93.1	6.2 6.2	6.2	0.0	13.4 13.8	13.6	17.6	3.7 3.4	3.6	11.0
				Bottom	5	27.9 27.9	27.9	8.3 8.3	8.3	29.9 29.9	29.9	92.2 92.0	92.1	6.1 6.1	6.1	6.1	32.2 34.7	33.5		3.4 5.5	4.5	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	25.1 25.1	25.1	90.1 90.0	90.1	6.2 6.2	6.2	6.1	7.5 7.9	7.7		5.5 6.0	5.8	
26-Jul-13	Rainy	Rough	14:06	Middle	3.5	27.7 27.7	27.7	8.2 8.2	8.2	27.3 27.1	27.2	86.4 86.4	86.4	5.9 5.9	5.9	0.1	12.1 10.3	11.2	10.5	6.6 6.5	6.6	5.8
				Bottom	6	27.7 27.7	27.7	8.2 8.2	8.2	27.6 27.6	27.6	87.1 87.1	87.1	5.9 5.9	5.9	5.9	13.1 11.8	12.5		4.7 5.5	5.1	
				Surface	1	30.3 30.3	30.3	8.0 8.0	8.0	14.5 14.5	14.5	99.0 98.7	98.9	7.5 7.5	7.5	7.4	2.9 2.9	2.9		2.8 2.3	2.6	
29-Jul-13	Sunny	Calm	16:02	Middle	3	28.5 28.5	28.5	8.0 8.0	8.0	17.1 17.2	17.2	95.3 95.5	95.4	7.3 7.3	7.3	***	3.2 3.5	3.4	6.2	3.3 3.4	3.4	3.4
				Bottom	5	27.3 27.3	27.3	8.2 8.2	8.2	28.2 28.2	28.2	71.0 70.7	70.9	5.4 5.4	5.4	5.4	12.5 11.9	12.2		3.0 5.5	4.3	
				Surface	1	28.9 28.9	28.9	7.9 7.9	7.9	15.7 15.7	15.7	104.3 103.9	104.1	7.4 7.4	7.4	6.8	1.7 1.7	1.7		4.6 4.4	4.5	
31-Jul-13	Sunny	Calm	06:58	Middle	4	28.7 28.6	28.7	8.0 8.0	8.0	18.5 21.2	19.9	89.2 90.0	89.6	6.2 6.2	6.2	0.0	2.6 2.5	2.6	3.8	5.0 5.2	5.1	4.9
				Bottom	7	27.0 27.0	27.0	8.0 8.0	8.0	29.2 29.2	29.2	78.2 77.3	77.8	5.3 5.2	5.3	5.3	7.0 7.0	7.0		4.4 5.5	5.0	

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Deptl	h /m)	Tempera	ature (°C)	ţ	ЭΗ	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.3	29.3	8.3	8.3	13.5	13.6	118.1	115.9	8.4	8.3		5.0	5.1		6.8	6.5	
				Surface	!	29.3	29.3	8.3	6.3	13.6	13.0	113.7	115.9	8.1	6.3	7.6	5.1	5.1		6.2	0.5	
2-Jul-13	Sunny	Moderate	13:26	Middle	3.5	28.8	28.8	8.2	8.2	16.1	16.2	98.8	97.7	7.0	6.9	7.0	7.3	8.1	8.5	7.0	6.9	6.1
2-Jul- 13	Suring	Moderate	13.20	Middle	3.5	28.8	20.0	8.2	6.2	16.3	10.2	96.5	91.1	6.8	0.9		8.8	0.1	0.5	6.8	0.9	0.1
				Bottom	6	28.2	28.2	8.1	8.1	21.7	21.7	81.6	81.1	5.8	5.7	5.7	12.9	12.4		4.2	4.8	
				Dottom	O	28.2	20.2	8.1	0.1	21.7	21.7	80.5	01.1	5.6	5.7	5.1	11.9	12.4		5.3	4.0	
				Surface	1	30.6	30.6	8.1	8.1	9.4	9.5	128.2	128.5	9.1	9.2		6.3	6.3		7.8	6.6	
				Surface	'	30.6	30.0	8.1	0.1	9.5	9.5	128.7	120.5	9.2	9.2	8.1	6.2	0.5		5.3	0.0	
4-Jul-13	Fine	Calm	16:00	Middle	3.5	29.4	29.4	7.9	7.9	13.0	13.0	98.1	98.3	7.0	7.0	0.1	14.4	14.4	15.4	16.0	15.9	9.7
4-001-13	TITIE	Callii	10.00	Middle	5.5	29.4	29.4	7.9	7.9	13.0	13.0	98.4	90.5	7.0	7.0		14.3	14.4	13.4	15.7	15.9	5.1
				Bottom	6	28.0	28.0	8.0	8.0	26.8	26.8	83.2	82.9	5.8	5.8	5.8	23.3	25.6		6.8	6.7	
				Вошот	O	28.0	26.0	8.0	6.0	26.8	20.6	82.5	62.9	5.8	5.6	5.6	27.8	25.0		6.5	0.7	
				Surface	1	29.7	29.7	8.4	8.4	10.9	10.7	115.9	116.0	8.3	8.3		8.0	7.7		7.0	6.8	
				Surface	'	29.6	29.1	8.4	0.4	10.5	10.7	116.1	110.0	8.3	0.3	7.5	7.4	1.1		6.5	0.6	
6-Jul-13	Cloudy	Moderate	17:24	Middle	3.5	29.2	29.2	8.2	8.2	14.4	15.2	92.6	92.3	6.6	6.6	7.5	12.5	12.9	12.9	3.7	5.2	6.3
0-301-13	Cloudy	Moderate	17.24	Middle	5.5	29.2	29.2	8.2	0.2	16.0	13.2	91.9	92.5	6.5	0.0		13.2	12.9	12.5	6.7	5.2	0.5
				Bottom	6	28.6	28.4	8.1	8.1	21.5	23.6	73.1	74.2	5.7	5.7	5.7	18.3	18.1		7.3	6.8	
				Dottom	U	28.2	20.4	8.1	0.1	25.7	25.0	75.3	14.2	5.7	5.7	5.1	17.8	10.1		6.3	0.0	
				Surface	1	29.1	29.1	8.0	8.0	13.9	14.0	90.1	92.2	6.4	6.6		7.9	8.0		16.3	17.2	
				Surface	'	29.0	29.1	8.0	0.0	14.0	14.0	94.2	92.2	6.7	0.0	6.2	8.0	0.0		18.0	17.2	
8-Jul-13	Fine	Moderate	18:32	Middle	3.5	28.6	28.7	8.0	8.0	16.5	16.1	80.3	79.4	5.7	5.7	0.2	15.7	17.3	15.3	49.0	43.7	34.6
6-Jul- 13	riile	Moderate	10.32	Middle	3.5	28.7	20.7	8.0	6.0	15.7	10.1	78.4	79.4	5.6	5.7		18.8	17.3	15.5	38.3	43.7	34.0
				Bottom	6	28.2	28.2	8.0	8.0	19.9	20.3	80.7	81.3	5.8	5.9	5.9	21.5	20.5		42.3	43.0	
				Dottom	O	28.2	20.2	8.0	0.0	20.6	20.0	81.8	01.0	5.9	0.0	5.5	19.5	20.5		43.7	40.0	
				Surface	1	28.8	28.8	8.1	8.1	14.1	14.1	99.8	99.0	7.1	7.1		4.7	4.5		1.6	1.8	
				Gunade	·	28.7	20.0	8.1	0.1	14.0	1-1.1	98.1	00.0	7.0	7	6.5	4.3	1.0		2.0	1.0	
10-Jul-13	Fine	Moderate	05:38	Middle	3.5	28.7	28.7	8.1	8.1	17.9	17.8	83.6	82.3	5.9	5.8	0.0	6.2	6.0	5.7	2.4	2.9	2.4
10 001 10	1 1110	Woderate	00.00	wiidale	0.0	28.6	20.7	8.1	0.1	17.7	17.0	80.9	02.0	5.7	0.0		5.7	0.0	0.7	3.4	2.0	
				Bottom	6	28.2	28.2	8.1	8.1	21.8	21.7	74.4	73.7	5.1	5.1	5.1	6.6	6.6		2.2	2.4	
					,	28.2		8.1		21.6		73.0		5.1	***	***	6.5			2.6		
				Surface	1	29.5	29.5	8.2	8.2	14.3	14.4	92.1	90.6	6.8	6.7		3.2	3.3		2.1	2.5	
						29.4		8.2		14.4		89.1		6.6		6.2	3.3			2.9		
12-Jul-13	Sunny	Moderate	06:50	Middle	3.5	28.6	28.4	8.1	8.1	19.5	20.4	77.0	76.5	5.6	5.6	0.2	4.7	4.7	7.7	4.0	4.1	8.6
						28.2		8.1		21.3		75.9		5.5			4.7			4.1		
				Bottom	6	27.0	27.0	8.1	8.1	28.0	28.1	70.2	70.0	5.1	5.1	5.1	16.5	15.1		33.0	19.3	
						27.0		8.1		28.1		69.7		5.1			13.7			5.5		
				Surface	1	28.1	28.2	8.1	8.1	22.5	22.3	96.3	96.0	6.5	6.5		4.4	4.4		2.6	2.6	
						28.2		8.1		22.1		95.7		6.5		6.0	4.3			2.5		
15-Jul-13	Rainy	Calm	12:19	Middle	4	26.6	26.8	8.0	8.0	27.8	27.4	81.0	80.6	5.4	5.4		7.1	7.2	8.9	4.2	4.2	3.4
						26.9		8.0		26.9		80.1		5.4			7.3			4.2		
				Bottom	7	26.3	26.3	8.0	8.0	28.7	28.9	72.1	72.5	4.8	4.9	4.9	14.3	15.2		3.3	3.3	
						26.2		8.0		29.1		72.8		4.9			16.0	1		3.3		
				Surface	1	28.5	28.5	8.2	8.2	17.5	17.4	91.2	91.3	6.4	6.5		1.6	1.7		2.0	2.0	
						28.4		8.2		17.3		91.3		6.5	-	6.0	1.8	-	-	1.9	-	
17-Jul-13	Rainy	Moderate	15:27	Middle	3.5	28.0	27.9	8.2	8.2	21.0	21.6	77.7	77.7	5.5	5.5		2.2	2.3	4.2	1.2	1.2	1.6
						27.8 26.2		8.2 8.2	-	22.2 29.5		77.7 78.0		5.4 5.4	-		9.3			1.2	-	
				Bottom	6	26.2 25.9	26.1	8.2 8.2	8.2	29.5 30.2	29.9	78.0 77.6	77.8	5.4 5.4	5.4	5.4	9.3 8.1	8.7		1.2	1.6	
						25.9	<u> </u>	0.2	<u> </u>	30.2	1	0.11	1	5.4	<u> </u>	<u> </u>	0.1	<u> </u>	1	1.9	1	<u> </u>

Water Quality Monitoring Results at CS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.8	27.9	8.1 8.2	8.2	24.0 24.2	24.1	84.6 84.4	84.5	5.8 5.8	5.8	5.7	3.2 3.2	3.2		6.7 4.7	5.7	
19-Jul-13	Cloudy	Calm	15:20	Middle	3	27.6 27.6	27.6	8.1 8.2	8.2	24.3 24.2	24.3	80.8 80.5	80.7	5.6 5.5	5.6	5.7	3.7 3.8	3.8	6.7	3.8 4.7	4.3	4.2
				Bottom	5	26.7 26.7	26.7	8.1 8.1	8.1	27.3 27.4	27.4	73.0 72.0	72.5	5.0 4.9	5.0	5.0	12.5 13.5	13.0		2.8 2.2	2.5	
				Surface	1	28.2 28.2	28.2	8.0 8.0	8.0	21.5 21.6	21.6	74.9 71.8	73.4	5.2 5.0	5.1	5.1	9.0 9.5	9.3		8.8 8.2	8.5	
22-Jul-13	Rainy	Moderate	20:13	Middle	4	27.9 28.0	28.0	8.0 8.0	8.0	23.5 22.6	23.1	73.9 73.8	73.9	5.1 5.1	5.1	5.1	11.8 11.1	11.5	12.2	9.7 7.7	8.7	9.3
				Bottom	7	27.6 27.6	27.6	8.0 8.0	8.0	24.7 24.8	24.8	72.1 71.9	72.0	5.0 4.9	5.0	5.0	15.6 15.7	15.7		10.0 11.2	10.6	
				Surface	1	27.9 28.0	28.0	8.1 8.1	8.1	22.8 23.0	22.9	87.2 87.1	87.2	6.0 6.0	6.0	6.1	3.8 4.0	3.9		4.0 62.0	33.0	
24-Jul-13	Rainy	Moderate	05:55	Middle	3.5	27.9 27.9	27.9	8.1 8.1	8.1	24.7 24.7	24.7	89.4 89.3	89.4	6.1 6.1	6.1	0.1	3.6 3.7	3.7	7.4	4.5 2.7	3.6	13.4
				Bottom	6	28.0 28.0	28.0	8.2 8.2	8.2	27.6 27.6	27.6	89.6 89.7	89.7	6.0 6.0	6.0	6.0	13.6 15.5	14.6		3.2 4.0	3.6	
				Surface	1	27.5 27.5	27.5	8.1 8.1	8.1	23.7 23.7	23.7	87.9 87.8	87.9	6.1 6.1	6.1	6.0	5.9 5.8	5.9		6.0 5.2	5.6	
26-Jul-13	Rainy	Rough	07:36	Middle	3.5	27.6 27.6	27.6	8.2 8.2	8.2	26.1 26.2	26.2	86.4 86.6	86.5	5.9 5.9	5.9	0.0	8.4 8.6	8.5	9.6	7.0 6.8	6.9	6.1
				Bottom	6	27.6 27.6	27.6	8.2 8.2	8.2	26.7 26.6	26.7	85.3 85.2	85.3	5.8 5.8	5.8	5.8	14.6 14.1	14.4		5.1 6.6	5.9	
				Surface	1	28.4 28.3	28.4	8.1 8.1	8.1	19.3 19.4	19.4	85.9 85.7	85.8	6.5 6.5	6.5	6.4	5.7 5.7	5.7		3.2 4.6	3.9	
29-Jul-13	Sunny	Calm	10:09	Middle	3.5	28.0 28.0	28.0	8.1 8.1	8.1	20.3 20.4	20.4	81.7 82.1	81.9	6.2 6.3	6.3	0.4	10.9 11.0	11.0	9.8	2.9 2.7	2.8	3.2
				Bottom	6	27.8 27.8	27.8	8.2 8.2	8.2	23.1 23.1	23.1	76.0 75.6	75.8	5.8 5.8	5.8	5.8	12.9 12.6	12.8		3.3 2.7	3.0	
				Surface	1	30.1 30.1	30.1	8.3 8.3	8.3	13.7 13.7	13.7	114.5 114.9	114.7	7.8 7.9	7.9	7.1	2.7 2.7	2.7		1.7 2.5	2.1	
31-Jul-13	Sunny	Calm	13:14	Middle	3.5	28.8 28.8	28.8	8.0 8.0	8.0	18.4 18.3	18.4	90.7 90.3	90.5	6.3 6.3	6.3		1.7 1.6	1.7	4.3	3.0 2.7	2.9	2.6
				Bottom	6	28.0 28.0	28.0	8.0 8.0	8.0	23.5 23.5	23.5	82.3 80.8	81.6	5.3 5.2	5.3	5.3	8.4 8.8	8.6		2.7 3.0	2.9	

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.7 28.8	28.8	8.3 8.4	8.4	16.8 16.1	16.5	102.3 101.0	101.7	7.2 7.1	7.2		3.1 2.9	3.0		5.5 6.5	6.0	
2-Jul-13	Sunny	Moderate	09:07	Middle	5	28.7 28.7	28.7	8.3 8.3	8.3	16.8 16.6	16.7	103.5 102.9	103.2	7.3 7.3	7.3	7.3	3.0 2.8	2.9	4.3	5.5 5.7	5.6	5.9
				Bottom	9	28.4 28.5	28.5	8.2 8.2	8.2	17.5 16.9	17.2	79.4 81.2	80.3	5.6	5.6	5.6	7.4	6.9		4.8 7.3	6.1	
				Surface	1	30.3	30.3	8.1	8.1	8.4	8.4	129.5	129.2	5.6 9.3	9.3		6.4 4.1	4.2		2.3	2.0	
4-Jul-13	Sunny	Calm	11:13	Middle	4	30.3 29.2	29.3	8.1	8.0	14.5	14.4	128.9 101.5	101.8	9.3 7.2	7.2	8.3	5.0	5.0	7.3	1.7	1.8	2.9
				Bottom	7	29.3 27.9 27.9	27.9	8.0 8.1 8.1	8.1	14.2 27.1 27.1	27.1	102.0 84.7 84.5	84.6	7.2 5.9 5.9	5.9	5.9	5.0 11.4 14.0	12.7		2.5 2.3 7.7	5.0	
				Surface	1	29.8 29.8	29.8	8.6 8.6	8.6	10.9 10.9	10.9	121.0 121.4	121.2	8.4 8.4	8.4		4.3 4.4	4.4		4.3	4.8	
6-Jul-13	Cloudy	Moderate	12:11	Middle	5	28.6 28.8	28.7	8.2 8.2	8.2	23.9	22.3	93.6 94.7	94.2	7.3 7.5	7.4	7.9	3.8	4.1	7.3	5.0 4.7	4.9	5.6
				Bottom	9	27.7 27.8	27.8	8.1 8.1	8.1	29.5 29.4	29.5	75.8 76.9	76.4	6.1 6.1	6.1	6.1	12.6 14.2	13.4		5.0 9.3	7.2	-
				Surface	1	29.4 29.4	29.4	8.3 8.3	8.3	13.2 13.2	13.2	103.8 104.3	104.1	7.4 7.4	7.4	7.2	5.5 6.0	5.8		3.0 5.3	4.2	
8-Jul-13	Sunny	Moderate	13:35	Middle	5	28.7 28.4	28.6	8.2 8.1	8.2	17.3 19.4	18.4	95.1 95.1	95.1	7.0 7.0	7.0	7.2	5.9 5.6	5.8	10.5	6.7 16.0	11.4	10.3
				Bottom	9	27.3 27.3	27.3	8.0 8.0	8.0	29.8 29.6	29.7	77.0 75.9	76.5	5.6 5.5	5.6	5.6	18.5 21.0	19.8		13.7 16.7	15.2	
				Surface	1	29.4 29.2	29.3	8.4 8.3	8.4	16.7 17.4	17.1	119.6 112.1	115.9	8.6 8.1	8.4	7.8	4.5 4.2	4.4		4.5 4.7	4.6	
10-Jul-13	Fine	Moderate	14:29	Middle	5	28.0 28.6	28.3	8.3 8.3	8.3	23.8 21.3	22.6	99.3 99.1	99.2	7.1 7.1	7.1		3.0 3.7	3.4	8.0	4.7 4.2	4.5	4.6
				Bottom	9	26.9 27.0	27.0	8.2 8.2	8.2	29.0 28.9	29.0	73.1 73.2	73.2	5.3 5.3	5.3	5.3	16.8 15.8	16.3		4.3 4.8	4.6	
				Surface	1	30.0 30.2 27.7	30.1	8.3 8.3 8.1	8.3	17.0 16.7 25.4	16.9	104.6 106.7 82.1	105.7	7.5 7.6 6.0	7.6	6.8	2.6 2.5 7.3	2.6		1.9 1.7 2.6	1.8	-
12-Jul-13	Sunny	Moderate	15:34	Middle	5	27.7 27.7 26.4	27.7	8.1 8.0	8.1	25.2 29.9	25.3	82.5 69.0	82.3	6.0 5.1	6.0		6.7 14.5	7.0	7.9	3.2 5.7	2.9	3.9
				Bottom	9	26.4	26.4	8.0 8.2	8.0	29.8 16.9	29.9	68.9 91.3	69.0	5.1	5.1	5.1	13.5	14.0		8.0	6.9	
15-Jul-13	Rainy	Calm	16:27	Surface Middle	5	29.0 26.2	29.0	8.2 8.0	8.2	16.9	16.9 28.9	90.2	90.8	6.3	5.5	6.0	1.5 9.1	9.0	7.8	1.6	1.8	2.1
10-Jul-13	Railly	Callli	10.21	Bottom	9	26.3 25.9	25.9	8.0 8.0	8.0	28.8 29.7	29.9	81.7 72.8	72.5	5.6 4.9	4.9	4.9	8.9 13.3	12.8	7.0	1.9 2.5	2.3	2.1
				Surface	1	25.9 28.5	28.5	8.0	8.2	30.0 17.1	17.2	72.2 83.2	82.7	5.9	5.9		12.3	2.0		1.4	1.3	
17-Jul-13	Rainy	Moderate	19:52	Middle	5.5	28.5 27.5	26.6	8.2	8.2	17.2 24.0	24.4	76.0	75.8	5.8 5.3	5.3	5.6	2.2	2.8	4.8	1.1	1.5	1.4
	-			Bottom	10	25.7 25.7 25.7	25.7	8.2 8.2 8.2	8.2	24.8 30.8 30.8	30.8	75.5 72.0 71.2	71.6	5.2 5.0 4.9	5.0	5.0	9.6 9.6	9.6		1.2 1.1 1.4	1.3	1

Water Quality Monitoring Results at IS1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.1 28.0	28.1	8.2 8.2	8.2	21.0 21.1	21.1	83.4 83.2	83.3	5.8 5.8	5.8	F 7	2.1 1.8	2.0		2.5 2.5	2.5	
19-Jul-13	Cloudy	Calm	10:21	Middle	5	27.3 27.3	27.3	8.3 8.3	8.3	26.7 27.1	26.9	79.8 80.8	80.3	5.4 5.5	5.5	5.7	1.2 1.3	1.3	5.0	1.5 1.6	1.6	2.0
				Bottom	9	26.4 26.4	26.4	8.2 8.2	8.2	29.5 29.6	29.6	75.5 75.2	75.4	5.3 5.3	5.3	5.3	11.5 11.6	11.6		2.0 1.9	2.0	
				Surface	1	27.8 27.8	27.8	8.1 8.2	8.2	26.5 26.9	26.7	84.8 82.6	83.7	5.8 5.6	5.7	5.7	4.8 4.8	4.8		7.9 6.9	7.4	
22-Jul-13	Cloudy	Calm	11:24	Middle	5	27.4 27.4	27.4	8.2 8.2	8.2	28.7 28.8	28.8	83.0 83.2	83.1	5.6 5.6	5.6	5.7	7.2 7.1	7.2	9.2	5.0 6.4	5.7	5.8
				Bottom	9	27.4 27.4	27.4	8.2 8.2	8.2	29.0 29.0	29.0	82.4 81.1	81.8	5.5 5.5	5.5	5.5	16.0 15.2	15.6		4.4 4.3	4.4	
				Surface	1	27.9 27.9	27.9	8.3 8.3	8.3	27.6 27.6	27.6	89.7 89.7	89.7	6.0 6.0	6.0	5.9	4.9 5.2	5.1		6.3 7.1	6.7	
24-Jul-13	Rainy	Moderate	14:32	Middle	4	27.9 27.9	27.9	8.3 8.3	8.3	29.2 29.1	29.2	85.2 85.4	85.3	5.7 5.7	5.7	5.5	9.5 9.4	9.5	14.0	7.1 7.1	7.1	8.8
				Bottom	7	27.9 27.9	27.9	8.3 8.3	8.3	29.9 29.9	29.9	85.7 85.7	85.7	5.7 5.7	5.7	5.7	26.4 28.3	27.4		12.9 12.2	12.6	
				Surface	1	27.7 27.8	27.8	8.2 8.2	8.2	24.6 24.6	24.6	90.9 91.0	91.0	6.2 6.2	6.2	6.2	6.6 6.1	6.4		7.7 6.6	7.2	
26-Jul-13	Rainy	Rough	16:13	Middle	4	27.7 27.7	27.7	8.2 8.2	8.2	25.9 25.8	25.9	88.5 89.1	88.8	6.0 6.1	6.1	0.2	12.3 10.8	11.6	11.8	6.5 6.1	6.3	6.2
				Bottom	7	27.6 27.6	27.6	8.2 8.2	8.2	26.4 26.4	26.4	87.5 87.0	87.3	6.0 5.9	6.0	6.0	19.4 15.6	17.5		4.9 5.5	5.2	
				Surface	1	30.4 30.1	30.3	8.0 8.0	8.0	14.2 15.3	14.8	99.0 99.3	99.2	7.5 7.6	7.6	6.7	2.6 2.6	2.6		3.0 2.6	2.8	
29-Jul-13	Sunny	Calm	18:16	Middle	4	27.7 27.8	27.8	8.1 8.1	8.1	24.3 24.1	24.2	74.4 75.4	74.9	5.7 5.7	5.7	· · ·	13.8 14.3	14.1	10.5	3.2 3.0	3.1	3.4
				Bottom	7	27.5 27.5	27.5	8.2 8.2	8.2	26.6 26.6	26.6	69.0 68.6	68.8	5.3 5.2	5.3	5.3	14.3 15.1	14.7		5.6 2.9	4.3	
				Surface	1	29.4 29.4	29.4	8.1 8.1	8.1	12.9 12.9	12.9	113.1 113.5	113.3	8.0 8.0	8.0	7.5	2.7 2.6	2.7		6.4 5.4	5.9	
31-Jul-13	Sunny	Calm	08:47	Middle	4.5	29.0 29.0	29.0	7.9 7.9	7.9	16.3 16.3	16.3	98.7 97.9	98.3	6.9 6.8	6.9		2.3 2.2	2.3	3.8	5.8 6.0	5.9	5.7
				Bottom	8	27.1 27.1	27.1	8.0 8.0	8.0	28.5 28.5	28.5	78.9 77.8	78.4	5.3 5.2	5.3	5.3	6.4 6.6	6.5		5.6 5.2	5.4	

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.5 29.5	29.5	8.4 8.4	8.4	14.5 14.5	14.5	107.1 106.8	107.0	7.5 7.5	7.5		4.3 4.3	4.3		4.8 6.5	5.7	
2-Jul-13	Sunny	Moderate	15:13	Middle	5	28.6 28.6	28.6	8.2 8.2	8.2	18.5 18.8	18.7	77.4 76.8	77.1	5.4 5.4	5.4	6.5	8.0 9.1	8.6	8.6	4.8 8.9	6.9	5.6
				Bottom	9	28.2 28.3	28.3	8.1 8.1	8.1	21.4 21.0	21.2	71.5 72.9	72.2	5.1 5.2	5.2	5.2	13.2 12.6	12.9		4.2 4.2	4.2	
				Surface	1	30.9	31.0	8.0	8.0	6.0	6.0	119.0	118.9	8.6	8.6		5.5	5.5		4.3	4.4	
4-Jul-13	Fine	Calm	18:23	Middle	4.5	31.0 30.5	30.5	8.0 8.1	8.1	7.8	7.8	118.7 118.6	118.7	8.5 8.5	8.5	8.6	5.4 5.4	5.4	6.1	4.5 5.2	4.9	5.4
				Bottom	8	30.5 28.8 28.8	28.8	8.1 8.0 8.0	8.0	7.8 18.9 18.9	18.9	118.8 87.4 86.8	87.1	8.5 6.1 6.0	6.1	6.1	5.4 7.4 7.3	7.4		4.5 6.8 6.7	6.8	
				Surface	1	29.6 29.6	29.6	8.5 8.4	8.5	10.7	11.1	111.9	111.8	8.0 8.0	8.0		7.5 6.9	7.2		11.0	11.0	
6-Jul-13	Cloudy	Moderate	19:14	Middle	5.5	29.1 28.9	29.0	8.3 8.2	8.3	11.4 16.0 18.5	17.3	111.7 87.6 87.5	87.6	6.1 6.1	6.1	7.1	11.8 12.1	12.0	10.8	11.0 12.7 11.7	12.2	11.1
				Bottom	10	28.3 28.3	28.3	8.1 8.1	8.1	24.3 24.5	24.4	75.1 76.0	75.6	5.8 5.8	5.8	5.8	13.8 12.7	13.3		9.7 10.3	10.0	
				Surface	1	29.4 29.4	29.4	8.1 8.1	8.1	12.1 12.2	12.2	93.2 92.2	92.7	6.7 6.6	6.7	0.0	6.7 6.7	6.7		4.3 2.3	3.3	
8-Jul-13	Fine	Moderate	20:11	Middle	5	28.6 28.7	28.7	8.0 8.0	8.0	16.0 16.6	16.3	78.5 79.2	78.9	5.6 5.6	5.6	6.2	11.7 14.3	13.0	13.6	4.3 3.0	3.7	12.1
				Bottom	9	28.3 28.4	28.4	8.0 8.0	8.0	20.6 19.7	20.2	80.2 79.6	79.9	5.8 5.7	5.8	5.8	21.2 20.9	21.1		24.7 34.0	29.4	
				Surface	1	29.0 28.9	29.0	8.2 8.2	8.2	14.4 14.2	14.3	91.2 90.7	91.0	6.5 6.5	6.5	5.8	4.5 4.7	4.6		2.1 2.2	2.2	
10-Jul-13	Fine	Moderate	07:18	Middle	5	28.6 28.6	28.6	8.1 8.1	8.1	18.6 18.5	18.6	73.2 72.0	72.6	5.1 5.0	5.1	5.8	5.7 5.9	5.8	6.3	1.9 2.1	2.0	2.3
				Bottom	9	28.0 28.1	28.1	8.2 8.2	8.2	23.0 23.0	23.0	76.6 76.7	76.7	5.2 5.2	5.2	5.2	9.0 7.8	8.4		1.9 3.3	2.6	
				Surface	1	28.7 28.6	28.7	8.1 8.1	8.1	20.6 20.9	20.8	73.0 71.8	72.4	5.3 5.2	5.3	5.3	3.6 4.0	3.8		2.0 4.0	3.0	
12-Jul-13	Sunny	Moderate	08:49	Middle	5	27.1 26.2	26.7	8.1 8.0	8.1	27.7 30.4	29.1	71.7 72.8	72.3	5.2 5.3	5.3	5.5	9.2 9.3	9.3	8.6	5.8 3.0	4.4	4.1
				Bottom	9	26.0 26.1	26.1	8.0 8.0	8.0	31.1 30.7	30.9	69.7 69.4	69.6	5.1 5.1	5.1	5.1	11.7 13.7	12.7		5.2 4.3	4.8	
				Surface	1	28.0 28.1	28.1	8.1 8.1	8.1	22.6 22.3	22.5	100.0 98.7	99.4	6.8 6.7	6.8	6.3	4.6 4.6	4.6		3.2 2.6	2.9	
15-Jul-13	Rainy	Calm	10:29	Middle	5	27.1 27.0	27.1	8.0 8.0	8.0	26.3 26.4	26.4	84.2 83.0	83.6	5.7 5.6	5.7		7.1 7.3	7.2	8.2	1.7 2.5	2.1	2.7
				Bottom	9	26.2 26.3	26.3	8.0	8.0	29.4 29.0	29.2	74.2 72.8	73.5	5.0 4.9	5.0	5.0	11.6 13.7	12.7		3.1 2.8	3.0	
				Surface	1	28.4 28.4	28.4	8.2 8.2	8.2	17.7 17.8	17.8	92.3 91.5	91.9	6.5 6.5	6.5	6.1	2.6 2.6	2.6		1.2	1.1	
17-Jul-13	Rainy	Moderate	13:21	Middle	5	27.5 27.4	27.5	8.2 8.2	8.2	23.6	23.7	81.2 81.6	81.4	5.6 5.7	5.7		4.2 4.2	4.2	5.1	1.5 1.4	1.5	1.7
				Bottom	9	26.1 26.1	26.1	8.1 8.1	8.1	29.3 29.2	29.3	72.5 71.4	72.0	5.0 4.9	5.0	5.0	8.6 8.6	8.6		2.1 2.8	2.5	

Water Quality Monitoring Results at IS1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt	DO Satu	ration (%)		lved Oxygen			Turbidity(NTI	,		ended Solids	` 0 /
Batto	Condition	Condition**	Time	Бор	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.1 28.2	28.2	8.3 8.3	8.3	22.9 22.8	22.9	95.5 95.7	95.6	6.6 6.6	6.6	6.3	2.4 2.4	2.4		4.7 4.2	4.5	
19-Jul-13	Cloudy	Calm	17:13	Middle	5	28.0 28.0	28.0	8.3 8.3	8.3	23.9 23.7	23.8	85.7 83.8	84.8	5.9 5.8	5.9	0.5	3.3 2.9	3.1	6.0	4.2 4.2	4.2	4.5
				Bottom	9	26.8 26.8	26.8	8.2 8.2	8.2	27.3 27.2	27.3	74.3 74.1	74.2	5.1 5.1	5.1	5.1	11.9 12.8	12.4		5.3 4.5	4.9	
				Surface	1	28.2 28.2	28.2	7.9 8.0	8.0	21.4 21.3	21.4	76.3 75.9	76.1	5.3 5.3	5.3	5 4	6.3 6.5	6.4		9.5 9.4	9.5	
22-Jul-13	Rainy	Moderate	18:37	Middle	5	28.2 28.1	28.2	7.9 8.0	8.0	21.7 21.9	21.8	77.4 76.6	77.0	5.4 5.3	5.4	5.4	9.6 9.2	9.4	9.6	8.7 9.0	8.9	9.1
				Bottom	9	27.6 27.6	27.6	8.0 8.0	8.0	24.9 25.0	25.0	72.7 72.5	72.6	5.0 5.0	5.0	5.0	13.0 13.1	13.1		9.7 8.0	8.9	
				Surface	1	27.9 27.9	27.9	8.2 8.2	8.2	25.8 25.8	25.8	87.8 87.7	87.8	6.0 6.0	6.0	5.9	3.9 3.8	3.9		10.8 9.0	9.9	
24-Jul-13	Rainy	Moderate	08:06	Middle	4.5	28.1 28.1	28.1	8.3 8.3	8.3	27.8 27.8	27.8	85.2 85.6	85.4	5.7 5.7	5.7	5.9	14.8 15.0	14.9	13.5	7.5 9.0	8.3	8.4
				Bottom	8	28.1 28.1	28.1	8.3 8.3	8.3	27.9 27.9	27.9	84.4 84.2	84.3	5.7 5.6	5.7	5.7	23.0 20.3	21.7		4.4 9.7	7.1	
				Surface	1	27.5 27.5	27.5	8.1 8.1	8.1	23.2 23.2	23.2	90.9 91.4	91.2	6.3 6.4	6.4	6.3	9.0 7.8	8.4		5.8 5.5	5.7	
26-Jul-13	Rainy	Rough	09:46	Middle	4.5	27.6 27.6	27.6	8.2 8.2	8.2	25.5 25.0	25.3	90.2 90.3	90.3	6.2 6.2	6.2	0.3	7.2 7.3	7.3	8.8	4.8 6.1	5.5	5.5
				Bottom	8	27.6 27.6	27.6	8.2 8.2	8.2	26.6 26.5	26.6	89.7 89.2	89.5	6.1 6.1	6.1	6.1	10.1 11.3	10.7		5.2 5.6	5.4	
				Surface	1	28.3 28.3	28.3	8.1 8.1	8.1	18.8 19.8	19.3	84.9 84.0	84.5	6.5 6.4	6.5	6.3	4.5 4.6	4.6		3.5 3.0	3.3	
29-Jul-13	Sunny	Calm	12:31	Middle	4.5	28.0 28.0	28.0	8.1 8.1	8.1	20.8 20.9	20.9	79.0 79.5	79.3	6.0 6.1	6.1	0.5	5.4 5.1	5.3	5.2	3.7 3.3	3.5	3.2
				Bottom	8	28.0 28.0	28.0	8.2 8.1	8.2	21.1 21.1	21.1	78.7 78.6	78.7	6.0 6.0	6.0	6.0	5.9 5.2	5.6		3.2 2.6	2.9	
				Surface	1	30.4 30.5	30.5	8.3 8.3	8.3	10.9 10.8	10.9	99.9 98.8	99.4	7.0 6.9	7.0	6.6	3.7 3.6	3.7		2.3 1.7	2.0	_
31-Jul-13	Sunny	Calm	15:13	Middle	4.5	28.9 28.9	28.9	8.0 8.0	8.0	17.7 17.7	17.7	91.0 90.4	90.7	6.2 6.2	6.2	0.0	4.8 4.8	4.8	6.0	2.9 2.7	2.8	2.2
				Bottom	8	27.2 27.2	27.2	8.0 8.0	8.0	27.8 27.9	27.9	72.8 72.1	72.5	4.9 4.9	4.9	4.9	9.5 9.7	9.6		1.8 1.8	1.8	

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Doto	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Depti	n (m)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.8	28.8	8.3	8.3	18.8	18.7	108.1	107.2	7.5	7.5		3.6	3.5		5.3	4.9	
				Juliace		28.8	20.0	8.3	0.5	18.5	10.7	106.3	107.2	7.4	7.5	6.6	3.4	3.5		4.5	4.9	
2-Jul-13	Sunnv	Moderate	09:53	Middle	3.5	28.2	28.3	8.2	8.2	22.9	21.8	81.7	81.7	5.6	5.6	0.0	10.0	9.4	8.7	6.3	6.2	5.4
2 001 10	Ourning	Moderate	00.00	Middle	0.0	28.4	20.0	8.2	0.2	20.6	21.0	81.7	01.7	5.6	0.0		8.8	0.1	0.7	6.0	0.2	0.4
				Bottom	6	28.2	28.2	8.2	8.2	23.3	23.2	72.5	72.4	5.0	5.0	5.0	14.4	13.3		5.8	5.2	
						28.1		8.2		23.1		72.3		5.0			12.1			4.5		
				Surface	1	30.2	30.2	8.1	8.1	8.7	8.7	120.2	120.3	8.6	8.6		4.6	4.6		2.2	2.1	
						30.2		8.1		8.7		120.3		8.6		8.6	4.5 4.7	+		2.0		
4-Jul-13	Sunny	Calm	11:32	Middle	3.5	30.1 30.1	30.1	8.1 8.1	8.1	8.7 8.7	8.7	119.0 119.4	119.2	8.6 8.6	8.6		4.7	4.6	6.3	2.8 2.2	2.5	2.4
						28.0		8.0		26.0		82.9		5.6			8.8	1		2.2		
				Bottom	6	28.0	28.0	8.1	8.1	26.5	26.3	76.4	79.7	5.2	5.4	5.4	10.7	9.8		3.2	2.7	
						29.6	l I	8.5		13.0		107.6		7.3			4.7	1		5.3		
				Surface	1	29.6	29.6	8.6	8.6	12.6	12.8	105.2	106.4	7.2	7.3		4.8	4.8		6.7	6.0	
			40.40			28.4		8.2		25.2		85.0		6.7		7.0	10.3	40.0		4.7		
6-Jul-13	Cloudy	Moderate	12:43	Middle	3.5	28.2	28.3	8.2	8.2	26.5	25.9	84.3	84.7	6.7	6.7		10.8	10.6	9.5	5.3	5.0	5.7
				Dottom	6	27.8	27.8	8.1	8.1	28.9	29.0	76.8	76.6	6.1	6.1	6.1	12.7	13.2		5.7	6.0	
				Bottom	0	27.8	21.0	8.1	0.1	29.0	29.0	76.3	70.0	6.1	0.1	0.1	13.7	13.2		6.3	0.0	
				Surface	1	29.5	29.6	8.3	8.4	13.1	13.1	116.4	115.9	8.3	8.3		5.1	5.1		5.3	5.0	
				Odridoc		29.6	20.0	8.4	0.1	13.1	10.1	115.4	110.0	8.2	0.0	8.0	5.1	0.1		4.7	0.0	
8-Jul-13	Sunny	Moderate	13:57	Middle	4	28.6	28.6	8.1	8.1	18.1	17.9	105.1	105.4	7.7	7.7	0.0	4.9	5.1	10.5	3.0	3.7	4.0
	,				,	28.6		8.1		17.7		105.6		7.7			5.2			4.3		
				Bottom	7	27.5	27.5	8.0	8.0	29.1	28.8	76.5	75.8	5.5	5.5	5.5	20.4	21.4		3.7	3.4	
						27.5		8.0		28.5		75.0		5.4			22.3 6.9	1		3.0		
				Surface	1	29.1 29.0	29.1	8.2 8.2	8.2	20.9 21.9	21.4	94.0 94.0	94.0	6.8 6.7	6.8		7.6	7.3		3.5 4.2	3.9	
						28.0		8.2		24.2		77.7		5.6		6.3	7.8	1		4.8		
10-Jul-13	Fine	Moderate	14:57	Middle	3.5	28.0	28.0	8.2	8.2	24.4	24.3	79.1	78.4	5.7	5.7		8.2	8.0	8.8	3.2	4.0	3.9
					_	27.2		8.2		28.1		76.0		5.4			11.9			3.7		
				Bottom	6	27.2	27.2	8.2	8.2	27.2	27.7	75.7	75.9	5.4	5.4	5.4	10.4	11.2		4.0	3.9	
				04	4	29.2	20.2	8.2	0.0	21.1	20.0	89.1	88.8	6.4	6.4		5.9	5.0		2.5	2.0	
				Surface	1	29.4	29.3	8.2	8.2	20.7	20.9	88.4	88.8	6.3	6.4	6.4	5.7	5.8		3.0	2.8	
12-Jul-13	Sunny	Moderate	15:55	Middle	3.5	27.7	27.8	8.1	8.1	25.6	25.4	87.2	88.6	6.3	6.4	0.4	6.2	6.2	7.8	8.3	7.9	6.0
12-Jul-13	Julily	Woderate	13.33	Midule	3.3	27.9	21.0	8.1	0.1	25.2	25.4	90.0	00.0	6.5	0.4		6.2	0.2	7.0	7.5	1.5	0.0
				Bottom	6	26.6	26.8	8.0	8.1	29.3	28.9	73.7	72.7	5.4	5.3	5.3	12.0	11.4		7.3	7.3	
				Dottom	Ů	26.9	20.0	8.1	0	28.4	20.0	71.6		5.2	0.0	0.0	10.7			7.2	7.0	
				Surface	1	29.0	29.1	8.2	8.2	16.9	16.9	90.3	90.2	6.3	6.3		1.6	1.5		2.1	2.1	
						29.1		8.2		16.9		90.0		6.3		5.9	1.4 2.2	+		2.0		
15-Jul-13	Rainy	Calm	16:04	Middle	3.5	28.7 27.6	28.2	8.1 8.0	8.1	19.8 19.2	19.5	79.5 79.5	79.5	5.5 5.4	5.5		2.2	2.2	5.4	2.2 1.8	2.0	2.0
						25.9		8.0		29.8		73.9		5.0			12.7			1.9		
				Bottom	6	25.8	25.9	8.0	8.0	30.2	30.0	71.4	72.7	4.9	5.0	5.0	12.5	12.6		1.8	1.9	
						28.5		8.2		17.1		80.1		5.7			2.6			0.8		
				Surface	1	28.5	28.5	8.2	8.2	17.1	17.1	79.6	79.9	5.6	5.7	E 0	2.6	2.6		1.0	0.9	
17 Jul 12	Doiny	Modorata	20:10	Middle	3.5	27.4	27.1	8.2	8.2	26.6	25.7	75.1	74.6	5.4	5.4	5.6	3.1	3.4	5.1	2.5	2.0	1.4
17-Jul-13	Rainy	Moderate	20:18	Middle	3.5	26.7	21.1	8.2	0.2	24.7	25.7	74.0	74.0	5.4	5.4		3.6	3.4	5.1	1.5	2.0	1.4
				Bottom	6	25.6	25.6	8.2	8.2	30.9	30.9	75.6	75.2	5.2	5.2	5.2	9.5	9.4		1.4	1.3	
				Dottom		25.6	20.0	8.2	0.2	30.9	55.5	74.7	, 5.2	5.1	J.2	٥.٤	9.2	J.7		1.1	1.0	

Water Quality Monitoring Results at IS2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.0 27.0	27.0	8.2 8.2	8.2	26.6 26.8	26.7	92.1 87.2	89.7	6.5 6.1	6.3	6.0	3.4 3.2	3.3		5.6 2.2	3.9	
19-Jul-13	Cloudy	Calm	10:44	Middle	3.5	26.6 26.6	26.6	8.2 8.2	8.2	28.5 28.7	28.6	80.0 79.6	79.8	5.6 5.6	5.6	0.0	6.4 5.2	5.8	6.4	2.3 1.5	1.9	2.6
				Bottom	6	26.4 26.4	26.4	8.2 8.2	8.2	29.3 29.3	29.3	77.8 77.4	77.6	5.5 5.4	5.5	5.5	10.2 9.8	10.0		1.8 2.0	1.9	
				Surface	1	27.8 27.8	27.8	8.1 8.1	8.1	26.4 26.5	26.5	93.7 86.4	90.1	6.4 5.9	6.2	6.0	3.4 3.6	3.5		5.7 4.5	5.1	
22-Jul-13	Cloudy	Calm	11:03	Middle	3.5	27.4 27.5	27.5	8.2 8.2	8.2	28.6 28.4	28.5	85.2 87.8	86.5	5.7 5.9	5.8	0.0	5.7 5.2	5.5	5.9	4.4 4.1	4.3	4.6
				Bottom	6	27.4 27.4	27.4	8.2 8.2	8.2	28.9 28.9	28.9	84.8 84.0	84.4	5.7 5.7	5.7	5.7	9.0 8.6	8.8		4.4 4.3	4.4	
				Surface	1	27.9 27.9	27.9	8.3 8.3	8.3	28.6 28.6	28.6	85.9 85.7	85.8	5.7 5.7	5.7	5.7	8.4 8.6	8.5		2.1 6.7	4.4	
24-Jul-13	Rainy	Moderate	14:55	Middle	3	27.9 27.9	27.9	8.3 8.3	8.3	29.0 29.1	29.1	85.4 85.4	85.4	5.7 5.7	5.7	5.7	12.2 11.7	12.0	17.5	5.6 7.6	6.6	6.2
				Bottom	5	27.9 27.9	27.9	8.3 8.3	8.3	29.6 29.6	29.6	85.4 85.5	85.5	5.7 5.7	5.7	5.7	31.9 31.9	31.9		7.3 7.9	7.6	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	24.6 24.5	24.6	90.5 90.5	90.5	6.2 6.2	6.2	6.2	6.5 6.4	6.5		4.4 4.0	4.2	
26-Jul-13	Rainy	Rough	16:36	Middle	3	27.7 27.7	27.7	8.2 8.2	8.2	25.4 25.4	25.4	89.1 89.1	89.1	6.1 6.1	6.1	0.2	8.6 8.7	8.7	8.7	2.9 6.2	4.6	4.6
				Bottom	5	27.6 27.6	27.6	8.2 8.2	8.2	26.3 26.3	26.3	87.1 86.6	86.9	5.9 5.9	5.9	5.9	10.0 11.5	10.8		4.4 5.4	4.9	
				Surface	1	30.5 30.2	30.4	8.1 8.1	8.1	14.1 14.7	14.4	99.3 99.9	99.6	7.6 7.6	7.6	6.7	2.8 2.7	2.8		2.9 2.5	2.7	
29-Jul-13	Sunny	Calm	18:36	Middle	3	27.7 27.7	27.7	8.1 8.1	8.1	24.3 24.3	24.3	75.6 76.4	76.0	5.8 5.8	5.8	0.7	13.9 13.3	13.6	10.9	4.1 3.3	3.7	3.4
				Bottom	5	27.5 27.5	27.5	8.2 8.2	8.2	26.6 26.6	26.6	68.9 68.5	68.7	5.2 5.2	5.2	5.2	17.2 15.3	16.3		3.1 4.2	3.7	
				Surface	1	29.4 29.4	29.4	8.1 8.1	8.1	12.8 12.8	12.8	113.1 113.4	113.3	8.0 8.0	8.0	7.2	2.6 2.7	2.7		5.0 5.4	5.2	
31-Jul-13	Sunny	Calm	09:13	Middle	3.5	28.6 28.6	28.6	7.9 7.9	7.9	18.6 18.6	18.6	90.8 90.3	90.6	6.3 6.3	6.3	7.2	2.1 2.1	2.1	3.3	5.0 5.6	5.3	5.4
				Bottom	6	27.2 27.1	27.2	8.0 8.0	8.0	28.1 28.2	28.2	80.3 80.1	80.2	5.4 5.4	5.4	5.4	4.9 5.5	5.2		6.2 5.2	5.7	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.2	29.3	8.4	8.4	16.1	15.4	120.2	120.0	8.4	8.4		4.3	4.3		5.5	5.7	
				Juliace		29.4	29.5	8.4	0.4	14.7	15.4	119.8	120.0	8.4	0.4	8.2	4.3	4.5		5.8	3.7	
2-Jul-13	Sunny	Moderate	15:40	Middle	3.5	29.0	29.0	8.3	8.3	17.2	17.1	113.8	112.5	8.0	7.9	0.2	13.7	13.4	9.0	11.5	8.8	6.7
2 001 10	Ourniy	Moderate	10.40	Mildale	0.0	29.0	20.0	8.3	0.0	16.9	.,	111.1	112.0	7.8	7.0		13.1	10.4	0.0	6.0	0.0	0.7
				Bottom	6	28.8	28.8	8.3	8.3	18.6	18.8	102.2	100.7	7.1	7.0	7.0	9.8	9.4		5.2	5.5	
					-	28.7		8.3		18.9		99.1		6.9			9.0			5.8		
				Surface	1	30.9	31.0	8.1	8.1	6.1	6.1	115.1	115.3	8.3	8.3		5.5	5.5		5.5	5.5	
					, i	31.0		8.1		6.1		115.4		8.3		8.2	5.5			5.5		
4-Jul-13	Fine	Calm	18:40	Middle	3.5	30.3	30.3	8.1	8.1	9.3	9.2	113.6	113.4	8.1	8.1		6.5	6.5	7.5	6.0	6.3	5.5
						30.3		8.1		9.0		113.1		8.1			6.5			6.5		
				Bottom	6	28.3 28.4	28.4	8.0 8.0	8.0	22.2 22.1	22.2	80.2 74.7	77.5	5.5 5.1	5.3	5.3	11.1 9.7	10.4		4.0 5.3	4.7	
-													1					1				
				Surface	1	29.4	29.4	8.6	8.6	15.4	15.5	125.4 126.3	125.9	8.5	8.6		7.4	8.0		13.7	13.2	
						29.4 29.3		8.6 8.5		15.5 17.0		119.3		8.6 8.3		8.5	8.6 10.0	1		12.7 14.3		
6-Jul-13	Cloudy	Moderate	19:42	Middle	3.5	29.3	29.3	8.5	8.5	17.0	17.1	121.0	120.2	8.4	8.4		11.3	10.7	10.9	13.7	14.0	12.9
						28.9		8.3		19.9		88.3		6.1			13.8			11.7		
				Bottom	6	29.0	29.0	8.3	8.3	19.6	19.8	90.5	89.4	6.2	6.2	6.2	14.4	14.1		11.0	11.4	
						29.2		8.1		16.2		93.3		6.5			12.2			23.7		
				Surface	1	29.1	29.2	8.2	8.2	17.0	16.6	93.8	93.6	6.6	6.6		12.9	12.6		22.3	23.0	
						29.1		8.1		17.6		90.3		6.3		6.4	15.7			6.3		
8-Jul-13	Fine	Moderate	20:42	Middle	3.5	29.0	29.1	8.2	8.2	18.5	18.1	88.4	89.4	6.1	6.2		17.9	16.8	17.3	14.7	10.5	17.5
				D. 11	•	27.9	00.4	8.0	0.4	26.1	04.7	74.1	70.0	5.2		5.0	22.8	00.5		19.7	40.0	
				Bottom	6	28.3	28.1	8.1	8.1	23.3	24.7	71.5	72.8	5.1	5.2	5.2	22.1	22.5		18.3	19.0	
				Surface	1	28.7	28.8	8.2	8.2	15.5	15.8	92.3	91.4	6.6	6.5		4.6	4.7		2.8	2.6	
				Surface		28.8	20.0	8.2	0.2	16.0	13.6	90.5	91.4	6.4	0.5	6.1	4.7	4.7		2.4	2.0	
10-Jul-13	Fine	Moderate	07:43	Middle	3.5	28.8	28.8	8.2	8.2	17.8	17.9	80.7	79.8	5.6	5.6	0.1	5.3	5.5	5.9	3.0	2.2	2.4
10-541-15	1 1110	Woderate	07.40	ivildate	0.0	28.8	20.0	8.2	0.2	18.0	17.5	78.8	75.0	5.5	0.0		5.7	5.5	0.0	1.4	2.2	2.7
				Bottom	6	28.5	28.6	8.2	8.2	20.0	19.9	74.4	74.6	5.2	5.2	5.2	7.5	7.4		2.9	2.5	
					•	28.6		8.2	Ţ	19.8		74.8		5.2		· · -	7.2			2.0		
				Surface	1	29.1	29.1	8.2	8.2	16.3	16.2	91.1	89.7	6.7	6.6		4.1	4.4		3.5	4.7	
						29.1		8.2		16.1		88.3		6.5		6.5	4.6		_	5.9		
12-Jul-13	Sunny	Moderate	09:23	Middle	3.5	28.0	27.9	8.1	8.1	23.8	24.6	86.9	86.2	6.3	6.3		5.9	6.4	9.5	5.2	6.7	6.0
						27.7 26.8		8.1 8.0		25.3 28.9		85.5 68.1		6.2 5.0			6.8 16.7	1		8.2 8.2		
				Bottom	6	26.8	26.8	8.0	8.0	29.0	29.0	68.2	68.2	5.0	5.0	5.0	18.9	17.8		5.2	6.7	
						28.1		8.0		22.4		99.4		6.7			4.7			3.3		
				Surface	1	28.0	28.1	8.1	8.1	22.4	22.5	100.8	100.1	6.8	6.8		4.7	4.5		2.9	3.1	
						27.3		8.0		25.2		87.9		5.9		6.3	6.3			2.8		
15-Jul-13	Rainy	Calm	10:02	Middle	3.5	27.3	27.3	8.0	8.0	25.3	25.3	85.0	86.5	5.7	5.8		6.4	6.4	6.5	3.1	3.0	3.5
						26.2	22.2	8.0		29.2	20.4	74.8		5.0			9.0			5.2		
				Bottom	6	26.2	26.2	8.0	8.0	29.0	29.1	74.4	74.6	5.0	5.0	5.0	8.2	8.6		3.5	4.4	
İ				Curfoor	1	28.5	20.5	8.2	0.0	17.3	17.0	91.8	01.4	6.5	6.5		1.6	1.7		0.7	0.0	
				Surface	1	28.5	28.5	8.2	8.2	17.3	17.3	90.9	91.4	6.4	6.5	6.4	1.7	1.7		1.1	0.9	
17-Jul-13	Rainy	Moderate	12:49	Middle	3.5	28.2	28.2	8.2	8.2	19.8	19.8	89.6	89.8	6.3	6.3	0.4	1.2	1.2	3.2	1.1	1.0	0.9
17-Jul-13	Railly	iviouerale	12.49	iviluule	3.0	28.2	20.2	8.2	0.2	19.8	19.0	89.9	09.0	6.3	0.3		1.1	1.2	3.2	0.9	1.0	0.8
				Bottom	6	27.8	27.9	8.2	8.2	21.8	21.5	86.1	86.0	6.0	6.0	6.0	6.6	6.8		8.0	0.9	
				Dottoni	U	27.9	21.0	8.2	0.2	21.2	21.0	85.9	00.0	6.0	0.0	0.0	6.9	0.0		1.0	0.0	

Water Quality Monitoring Results at IS2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)		ature (°C)		Н		ity ppt	DO Satu	ration (%)		lved Oxygen	(mg/L)		Turbidity(NT	,		ended Solids	
Batto	Condition	Condition**	Time	Бор	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0 28.0	28.0	8.3 8.3	8.3	24.1 24.2	24.2	90.1 90.4	90.3	6.2 6.2	6.2	6.2	4.0 5.0	4.5		3.0 3.5	3.3	
19-Jul-13	Cloudy	Calm	17:43	Middle	3.5	27.8 28.0	27.9	8.2 8.3	8.3	24.5 24.2	24.4	89.5 89.5	89.5	6.1 6.1	6.1	0.2	13.1 12.3	12.7	8.1	2.7 2.5	2.6	3.2
				Bottom	6	27.6 27.5	27.6	8.2 8.2	8.2	25.4 25.4	25.4	78.7 76.5	77.6	5.4 5.2	5.3	5.3	6.6 7.6	7.1		5.0 2.4	3.7	
				Surface	1	28.2 28.2	28.2	7.7 7.9	7.8	21.2 21.3	21.3	78.1 78.7	78.4	5.4 5.5	5.5		9.6 9.4	9.5		9.7 8.2	9.0	
22-Jul-13	Rainy	Moderate	18:17	Middle	3.5	28.2 28.2	28.2	7.9 7.9	7.9	21.5 21.6	21.6	80.7 78.7	79.7	5.6 5.5	5.6	5.6	10.6 10.2	10.4	11.7	9.7 8.8	9.3	9.2
				Bottom	6	28.0 27.9	28.0	7.9 8.0	8.0	22.7	23.0	79.7 75.9	77.8	5.5 5.2	5.4	5.4	15.7 14.9	15.3		8.8 9.9	9.4	
				Surface	1	27.9 27.9	27.9	8.2 8.2	8.2	25.8 25.8	25.8	86.1 86.1	86.1	5.9 5.9	5.9		3.9 3.8	3.9		2.9 9.8	6.4	
24-Jul-13	Rainy	Moderate	08:24	Middle	3.5	28.1 28.1	28.1	8.3 8.3	8.3	27.8 27.8	27.8	83.9 84.1	84.0	5.6 5.6	5.6	5.8	7.7	7.7	9.9	3.1 9.6	6.4	7.6
				Bottom	6	28.1	28.1	8.3 8.3	8.3	28.0 28.0	28.0	83.3 83.1	83.2	5.6 5.6	5.6	5.6	18.1 18.0	18.1		9.7 10.2	10.0	
				Surface	1	27.5 27.5	27.5	8.1 8.1	8.1	23.2 23.2	23.2	91.2 91.7	91.5	6.3 6.4	6.4		7.1 6.4	6.8		5.3 4.7	5.0	
26-Jul-13	Rainy	Rough	10:05	Middle	3.5	27.5 27.5	27.5	8.2 8.2	8.2	23.7	23.8	90.4 90.7	90.6	6.3 6.3	6.3	6.4	5.6 5.6	5.6	7.4	4.8 5.5	5.2	5.3
				Bottom	6	27.6 27.6	27.6	8.2 8.2	8.2	26.4 26.4	26.4	90.1 89.6	89.9	6.1 6.1	6.1	6.1	9.8 9.8	9.8		5.4 5.7	5.6	
				Surface	1	28.6 28.6	28.6	8.1 8.1	8.1	18.8 18.6	18.7	84.6 84.4	84.5	6.4 6.4	6.4	0.0	4.0 4.0	4.0		3.7 3.5	3.6	
29-Jul-13	Sunny	Calm	12:48	Middle	3.5	28.0 28.0	28.0	8.1 8.1	8.1	20.8 20.8	20.8	77.4 77.5	77.5	5.9 5.9	5.9	6.2	4.9 4.8	4.9	4.8	4.7 4.2	4.5	3.8
				Bottom	6	28.0 28.0	28.0	8.1 8.1	8.1	20.8 20.8	20.8	77.9 77.9	77.9	5.9 5.9	5.9	5.9	5.5 5.2	5.4		3.2 3.3	3.3	
				Surface	1	30.4 30.4	30.4	8.3 8.3	8.3	10.7 10.7	10.7	97.3 97.5	97.4	6.7 6.7	6.7	6.5	1.7 1.8	1.8		2.7 2.5	2.6	
31-Jul-13	Sunny	Calm	15:37	Middle	3.5	29.0 29.0	29.0	8.0 8.0	8.0	17.6 17.7	17.7	92.1 91.6	91.9	6.3 6.2	6.3	0.5	2.6 2.6	2.6	2.7	3.8 4.6	4.2	3.0
				Bottom	6	28.7 28.7	28.7	8.0 8.0	8.0	19.3 19.3	19.3	80.9 80.1	80.5	5.3 5.3	5.3	5.3	3.7 3.6	3.7		2.4 2.2	2.3	

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.5 28.6	28.6	7.9 7.9	7.9	20.5 20.5	20.5	117.4 112.0	114.7	8.1 7.8	8.0	8.0	5.9 6.9	6.4		4.5 3.3	3.9	
2-Jul-13	Sunny	Moderate	08:09	Middle	-	-	-	-	-		-		-		-	6.0	-	-	7.7	-	-	4.4
				Bottom	4.9	28.5 28.5	28.5	8.0 7.9	8.0	21.8 21.8	21.8	113.8 112.4	113.1	7.8 7.7	7.8	7.8	8.4 9.4	8.9		4.5 5.0	4.8	
				Surface	1	29.6 29.6	29.6	7.9 7.9	7.9	8.9 8.9	8.9	102.4 101.8	102.1	7.4 7.4	7.4	7.4	4.7 4.7	4.7		4.8 8.7	6.8	
4-Jul-13	Sunny	Calm	09:56	Middle	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-	6.5	-	-	5.7
				Bottom	4.1	28.6 28.6	28.6	7.8 7.8	7.8	20.4 21.4	20.9	82.7 82.7	82.7	5.7 5.7	5.7	5.7	8.4 8.1	8.3		4.0 5.2	4.6	
				Surface	1	29.2 29.2	29.2	8.2 8.2	8.2	15.6 16.6	16.1	107.4 105.6	106.5	7.6 7.4	7.5	7.5	6.8 7.7	7.3		5.3 4.3	4.8	
6-Jul-13	Cloudy	Moderate	10:51	Middle	-	-	-	-	-	1 1	-	1 1	-	1 1	-	7.5	-	-	8.7	-	-	5.3
				Bottom	3.7	28.5 28.5	28.5	8.1 8.1	8.1	24.4 24.4	24.4	85.3 85.8	85.6	5.9 5.9	5.9	5.9	10.2 10.0	10.1		6.3 5.3	5.8	
				Surface	1	28.9 28.9	28.9	8.2 8.2	8.2	16.2 15.0	15.6	102.6 91.8	97.2	7.2 6.5	6.9	6.9	9.2 8.5	8.9		9.3 8.7	9.0	
8-Jul-13	Sunny	Moderate	12:09	Middle	-	-	-	-	-		-		-		-	0.0	-	-	10.5	-	-	8.9
				Bottom	4.7	27.6 27.6	27.6	8.0 8.0	8.0	28.9 29.0	29.0	75.9 75.7	75.8	5.2 5.1	5.2	5.2	12.8 11.3	12.1		8.3 9.3	8.8	
				Surface	1	29.4 29.4	29.4	8.2 8.2	8.2	19.3 19.2	19.3	100.1 98.2	99.2	6.9 6.8	6.9	6.9	7.2 7.1	7.2		3.1 2.2	2.7	
10-Jul-13	Fine	Moderate	14:05	Middle	-	-	-	-	-	1 1	-	1 1	-	1 1	-	0.5	-	-	8.4	-	-	2.6
				Bottom	4.1	29.4 29.4	29.4	8.1 8.1	8.1	19.3 19.3	19.3	95.0 94.0	94.5	6.5 6.5	6.5	6.5	9.3 9.8	9.6		2.4 2.6	2.5	
				Surface	1	28.6 29.2	28.9	8.3 8.3	8.3	23.6 22.0	22.8	92.7 91.6	92.2	6.6 6.5	6.6	6.6	6.4 6.4	6.4		9.2 10.2	9.7	
12-Jul-13	Sunny	Moderate	15:32	Middle	-	-	-	-	-		-		-		-	0.0	-	-	14.9	-	-	7.9
				Bottom	4.2	27.8 27.6	27.7	8.3 8.2	8.3	26.2 27.0	26.6	73.0 72.3	72.7	5.3 5.2	5.3	5.3	22.3 24.3	23.3		3.7 8.2	6.0	
				Surface	1	28.7 28.6	28.7	8.2 8.1	8.2	14.7 15.4	15.1	88.9 88.8	88.9	6.1 6.1	6.1	6.1	5.8 5.7	5.8		3.1 3.3	3.2	
15-Jul-13	Rainy	Calm	16:19	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	7.6	-	-	3.2
				Bottom	3.9	26.4 26.4	26.4	8.0 8.0	8.0	29.8 30.2	30.0	75.0 74.7	74.9	5.1 5.1	5.1	5.1	9.5 9.2	9.4		3.3 3.1	3.2	
				Surface	1	28.3 28.4	28.4	8.0 8.0	8.0	19.0 18.7	18.9	79.5 79.4	79.5	5.6 5.6	5.6	5.6	3.1 3.1	3.1		2.7 2.7	2.7	
17-Jul-13	Rainy	Moderate	20:04	Middle	-		-	-	-	-	-	-	-	-	-			-	10.4	-	-	2.8
				Bottom	4.5	26.5 26.5	26.5	7.9 7.9	7.9	27.2 27.2	27.2	69.5 70.1	69.8	4.9 5.0	5.0	5.0	17.6 17.7	17.7		3.1 2.6	2.9	

Water Quality Monitoring Results at IS3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI	,		nded Solids	, ,
24.0	Condition	Condition**	Time	Бор	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.1 27.1	27.1	8.1 8.1	8.1	25.8 25.6	25.7	82.9 83.5	83.2	5.7 5.8	5.8	5.8	2.6 2.5	2.6		1.4 6.8	4.1	
19-Jul-13	Cloudy	Calm	08:21	Middle	-		-	-	-		-	-	-	-	-	3.0	-	-	5.9	-	-	5.0
				Bottom	4.3	26.5 26.5	26.5	8.0 8.0	8.0	28.2 28.2	28.2	71.2 71.4	71.3	4.9 4.9	4.9	4.9	9.2 9.2	9.2		6.3 5.3	5.8	
				Surface	1	27.4 27.4	27.4	8.2 8.2	8.2	28.4 28.4	28.4	83.2 83.5	83.4	5.6 5.6	5.6	F.0	10.4 9.6	10.0		3.5 4.0	3.8	
22-Jul-13	Cloudy	Calm	11:31	Middle	-	-	-	-	-	1 1	-	-	-	-	-	5.6	-	-	11.8	-	-	4.6
				Bottom	4.8	27.3 27.4	27.4	8.3 8.3	8.3	29.2 29.5	29.4	76.5 76.8	76.7	5.3 5.3	5.3	5.3	13.6 13.3	13.5		5.8 4.8	5.3	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	26.3 26.3	26.3	92.4 92.3	92.4	6.3 6.3	6.3	6.3	5.0 5.1	5.1		6.0 5.8	5.9	
24-Jul-13	Rainy	Moderate	13:51	Middle	-	-	-	-	-		-	-	-	-	-	0.3	-	-	11.1	-	-	5.6
				Bottom	3	27.8 27.8	27.8	8.2 8.2	8.2	29.2 29.2	29.2	91.2 91.2	91.2	6.1 6.1	6.1	6.1	18.3 15.9	17.1		5.4 5.1	5.3	
				Surface	1	27.6 27.6	27.6	8.2 8.1	8.2	27.3 26.5	26.9	94.8 96.4	95.6	6.5 6.6	6.6	6.6	9.0 8.7	8.9		17.2 6.4	11.8	
26-Jul-13	Rainy	Rough	15:01	Middle	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-	12.7	-	-	8.6
				Bottom	4.3	27.7 27.6	27.7	8.1 8.2	8.2	25.8 27.3	26.6	95.8 94.8	95.3	6.6 6.5	6.6	6.6	15.6 17.1	16.4		5.6 5.0	5.3	
				Surface	1	27.5 28.0	27.8	8.2 8.2	8.2	16.6 16.7	16.7	98.5 99.2	98.9	6.8 6.9	6.9	6.9	5.4 6.1	5.8		3.1 2.7	2.9	
29-Jul-13	Sunny	Calm	17:05	Middle	-	-	-	-	-	1 1	-	-	-	-	-	0.9	-	-	13.7	-	-	3.0
				Bottom	4.4	29.6 27.5	28.6	8.1 8.2	8.2	27.9 27.8	27.9	75.2 75.4	75.3	5.1 5.1	5.1	5.1	21.5 21.6	21.6		3.3 2.7	3.0	
				Surface	1	28.7 28.7	28.7	8.2 8.2	8.2	18.8 19.6	19.2	99.4 99.1	99.3	6.8 6.7	6.8	6.8	2.4 2.4	2.4		2.6 2.0	2.3	
31-Jul-13	Sunny	Calm	07:25	Middle	-	-	-	-	-		-	-	-	-	-	0.0	-	-	4.1	-	-	3.5
				Bottom	4.8	27.9 27.9	27.9	8.2 8.2	8.2	25.1 24.0	24.6	87.1 85.7	86.4	5.8 5.8	5.8	5.8	5.6 5.9	5.8		4.8 4.6	4.7	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	iture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Γurbidity(NT\	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.3 29.2	29.3	8.2 8.2	8.2	16.2 16.2	16.2	126.5 118.6	122.6	8.9 8.3	8.6	8.6	4.4 4.4	4.4		4.3 4.7	4.5	
2-Jul-13	Sunny	Moderate	15:14	Middle	-		-	-	-	-	-	-	-	-	-	0.0	-	-	5.2	-	-	5.2
				Bottom	4.7	29.1 29.2	29.2	8.1 8.2	8.2	17.3 17.1	17.2	122.7 118.9	120.8	8.6 8.3	8.5	8.5	6.6 5.3	6.0		5.8 5.7	5.8	
				Surface	1	30.9 30.9	30.9	8.1 8.1	8.1	7.3 7.4	7.4	113.7 112.4	113.1	8.1 8.0	8.1	8.1	8.5 9.7	9.1		3.3 2.0	2.7	
4-Jul-13	Fine	Calm	16:53	Middle	-		-	-	-	1 1	i	-	i	-	-	0.1	-	-	12.0	-	i	5.8
				Bottom	4.5	29.8 29.9	29.9	8.0 8.0	8.0	13.7 13.8	13.8	111.4 113.9	112.7	7.8 8.0	7.9	7.9	15.2 14.4	14.8		9.7 8.0	8.9	
				Surface	1	29.4 28.5	29.0	8.4 8.1	8.3	13.2 14.6	13.9	129.9 129.6	129.8	9.2 9.1	9.2	9.2	11.0 10.6	10.8		6.7 9.7	8.2	
6-Jul-13	Cloudy	Moderate	19:05	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	10.6	-	-	7.0
				Bottom	3.5	29.6 28.5	29.1	8.6 8.1	8.4	22.9 23.4	23.2	94.3 94.3	94.3	6.5 6.5	6.5	6.5	9.9 10.7	10.3		4.3 7.0	5.7	
				Surface	1	29.4 29.5	29.5	8.2 8.2	8.2	16.4 17.0	16.7	97.5 96.7	97.1	6.8 6.7	6.8	6.8	10.2 10.5	10.4		8.0 21.7	14.9	
8-Jul-13	Fine	Moderate	19:16	Middle	-	-	-	-	-		-	-	-	-	-		-	-	12.5	-	-	17.4
				Bottom	4.1	27.9 28.1	28.0	8.1 8.1	8.1	25.7 25.2	25.5	77.1 77.3	77.2	5.2 5.3	5.3	5.3	15.7 13.5	14.6		15.0 24.7	19.9	
				Surface	1	28.7 28.8	28.8	8.1 8.1	8.1	17.2 17.7	17.5	80.6 78.7	79.7	5.7 5.5	5.6	5.6	6.7 6.3	6.5		4.5 3.7	4.1	
10-Jul-13	Fine	Moderate	06:27	Middle	-	-	-	-	-		-	-	-	-	-		-	-	6.5	-	-	3.8
				Bottom	4.5	28.7 28.7	28.7	8.1 8.1	8.1	18.6 19.1	18.9	75.5 75.1	75.3	5.3 5.2	5.3	5.3	6.3 6.5	6.4		3.5 3.4	3.5	
				Surface	1	29.0 28.9	29.0	8.2 8.2	8.2	16.1 16.5	16.3	99.0 98.2	98.6	7.3 7.2	7.3	7.3	12.7 11.9	12.3		2.5 4.2	3.4	
12-Jul-13	Sunny	Moderate	07:35	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	18.5	-	-	3.0
				Bottom	4.5	27.8 27.8	27.8	8.2 8.2	8.2	25.5 25.5	25.5	75.5 77.2	76.4	5.5 5.6	5.6	5.6	22.9 26.4	24.7		2.1 3.1	2.6	
				Surface	1	29.3 29.3	29.3	8.1 8.1	8.1	14.8 14.9	14.9	90.6 90.0	90.3	6.4 6.3	6.4	6.4	10.2 10.7	10.5		28.7 25.0	26.9	
15-Jul-13	Rainy	Calm	10:43	Middle	-	28.6	-	- - 8.0	-	19.4	-	86.7	-	6.0	-		11.3	-	11.0	2.5	-	14.5
				Bottom	3.8	28.7 28.5	28.7	8.0 8.0	8.0	19.3	19.4	87.4 83.2	87.1	6.0 6.1 5.8	6.1	6.1	11.4	11.4	 	1.5 2.0	2.0	
				Surface	1	28.5	28.5	8.0	8.0	18.3	18.4	83.3	83.3	5.8	5.8	5.8	1.6	1.6		2.0	2.1	
17-Jul-13	Rainy	Moderate	13:09	Middle	-	28.5	-	8.0	-	18.4	-	82.9	-	5.8	-		5.2	-	3.4	2.1	-	2.2
				Bottom	4.3	28.5	28.5	8.0	8.0	18.4	18.4	82.9	82.9	5.8	5.8	5.8	5.1	5.2		2.1	2.3	

Water Quality Monitoring Results at IS3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI	,		ended Solids	
Buto	Condition	Condition**	Time	Бор	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.1 8.1	8.1	24.1 24.1	24.1	88.8 88.7	88.8	6.1 6.1	6.1	6.1	4.1 3.9	4.0		5.8 4.2	5.0	
19-Jul-13	Cloudy	Calm	17:02	Middle	-	-	-	-	-		-	-	-	-	-	0.1	-	-	8.9	-	-	4.4
				Bottom	4.7	27.5 27.5	27.5	8.1 8.1	8.1	25.1 25.1	25.1	76.6 77.0	76.8	5.3 5.3	5.3	5.3	13.7 13.7	13.7		2.6 4.8	3.7	
				Surface	1	28.2 28.2	28.2	8.2 8.2	8.2	25.3 25.4	25.4	83.5 82.5	83.0	5.7 5.6	5.7	5.7	7.3 7.3	7.3		9.8 10.4	10.1	
22-Jul-13	Rainy	Moderate	19:54	Middle	-	-	-	-	-	-	-	-	-	-	-	5.7	-	-	9.2	-	-	10.2
				Bottom	4.2	28.3 28.4	28.4	8.2 8.2	8.2	26.1 25.9	26.0	83.7 83.8	83.8	5.6 5.6	5.6	5.6	11.7 10.5	11.1		9.5 11.0	10.3	
				Surface	1	27.8 27.8	27.8	8.1 8.1	8.1	25.8 25.8	25.8	86.7 85.6	86.2	5.9 5.8	5.9	5.9	5.2 4.8	5.0		6.8 5.6	6.2	
24-Jul-13	Rainy	Moderate	06:32	Middle	-	-	-	-	-		-	-	-	1 1	-	5.9	-	-	19.4	-	-	5.9
				Bottom	3	28.0 28.0	28.0	8.1 8.1	8.1	26.9 26.9	26.9	83.0 82.6	82.8	5.6 5.6	5.6	5.6	30.0 37.5	33.8		5.1 5.9	5.5	
				Surface	1	27.4 27.5	27.5	8.1 8.1	8.1	25.3 26.6	26.0	91.7 88.1	89.9	6.3 6.0	6.2	6.2	15.6 15.7	15.7		19.4 17.8	18.6	
26-Jul-13	Rainy	Rough	08:30	Middle	-	-	-	-	-	-	-	-	-	-	-	0.2	-	-	16.2	-	-	15.8
				Bottom	4.7	27.5 27.4	27.5	8.1 8.1	8.1	26.1 25.0	25.6	90.5 91.5	91.0	6.2 6.3	6.3	6.3	16.0 17.3	16.7		12.0 14.0	13.0	
				Surface	1	29.1 28.3	28.7	8.0 8.1	8.1	15.2 15.5	15.4	83.9 82.5	83.2	5.9 5.8	5.9	5.9	9.7 9.3	9.5		2.3 2.1	2.2	
29-Jul-13	Sunny	Calm	10:57	Middle	-		-	-	-	1 1	-	-	-	1 1	-	5.9	-	-	14.4	-	-	4.4
				Bottom	4.7	28.3 28.9	28.6	8.0 8.0	8.0	19.2 18.2	18.7	81.2 82.9	82.1	5.7 5.9	5.8	5.8	17.1 21.3	19.2		2.4 10.5	6.5	
				Surface	1	30.2 30.2	30.2	8.4 8.4	8.4	14.7 14.7	14.7	107.7 107.7	107.7	7.4 7.4	7.4	7.4	3.0 3.0	3.0		3.2 3.2	3.2	
31-Jul-13	Sunny	Calm	15:17	Middle	-	-	-	-	-		-	-	-		-	7	-	-	2.8	-	-	3.1
				Bottom	4.3	30.0 30.0	30.0	8.4 8.4	8.4	15.0 15.1	15.1	108.8 109.0	108.9	7.4 7.5	7.5	7.5	2.4 2.5	2.5		2.8 3.0	2.9	

Water Quality Monitoring Results at IS4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.8 28.8	28.8	8.3 8.3	8.3	18.4 18.3	18.4	104.6 104.1	104.4	7.3 7.3	7.3	0.0	4.9 4.9	4.9		7.0 7.7	7.4	
2-Jul-13	Sunny	Moderate	10:21	Middle	3.5	28.5 28.5	28.5	8.3 8.3	8.3	20.3 20.0	20.2	91.6 91.8	91.7	6.4 6.4	6.4	6.9	6.8 6.7	6.8	7.3	5.8 5.3	5.6	6.2
				Bottom	6	28.0 28.1	28.1	8.1 8.1	8.1	23.4 23.0	23.2	83.6 82.6	83.1	5.7 5.7	5.7	5.7	10.7 9.9	10.3		5.7 5.5	5.6	
				Surface	1	29.8 29.7	29.8	8.0 8.0	8.0	11.8 12.1	12.0	124.6 123.5	124.1	8.9 8.8	8.9		4.9 4.9	4.9		3.0 3.8	3.4	I.
4-Jul-13	Sunny	Calm	11:53	Middle	4.5	28.8	28.8	8.0 8.0	8.0	18.1 18.1	18.1	93.6 93.8	93.7	6.5 6.6	6.6	7.8	8.8 8.6	8.7	8.5	4.0	3.6	3.1
				Bottom	8	28.0 28.0	28.0	8.1 8.1	8.1	27.0 27.0	27.0	80.0 79.3	79.7	5.4 5.4	5.4	5.4	12.0 11.9	12.0		2.3	2.2	
				Surface	1	29.6	29.6	8.6	8.7	12.0	12.0	123.0	124.0	8.5	8.6		4.6	4.7		5.7	5.2	
6-Jul-13	Cloudy	Moderate	13:02	Middle	4	29.6 28.2	28.2	8.7 8.2	8.2	12.0 26.6	26.8	125.0 80.9	80.1	8.6 6.4	6.4	7.5	4.8 11.2	11.6	11.5	5.3	5.0	5.4
	,			Bottom	7	28.2 27.9	27.9	8.2 8.1	8.1	26.9 28.6	28.6	79.3 76.0	75.5	6.3	6.1	6.1	12.0 17.3	18.1		6.0	6.0	
				Surface	1	27.9 29.1	29.1	8.1	8.2	28.5 15.3	15.8	75.0 95.1	94.4	6.0	6.7		18.9	10.2		11.0	10.2	
8-Jul-13	Sunny	Moderate	11:23	Middle	3.5	29.0	27.7	8.2 8.1	8.1	16.2 28.1	28.0	93.6 78.3	77.9	6.6 5.7	5.7	6.2	10.1	18.6	17.8	9.3	7.8	11.8
	,			Bottom	6	27.7 27.5	27.5	8.1	8.1	27.9 29.3	29.3	77.4 75.6	75.0	5.6 5.5	5.5	5.5	19.1	24.6		7.3 18.0	17.5	
				Surface	1	27.5 28.7	29.1	8.1 8.2	8.2	29.3 21.6	21.1	74.3 92.8	94.5	5.4 6.7	6.8		27.0 7.7	7.6		17.0 3.7	4.7	
10-Jul-13	Fine	Moderate	15:24	Middle	3.5	29.4 28.0	27.9	8.2 8.2	8.2	20.5 24.0	24.8	96.2 77.0	76.7	6.9 5.6	5.6	6.2	7.4	8.0	9.4	5.7 3.8	3.8	4.5
10 001 10	1 1110	Woderate	10.24	Bottom	6	27.8 27.2	27.2	8.2 8.2	8.2	25.5 28.2	28.3	76.4 74.9	73.1	5.5 5.4	5.3	5.3	8.5 12.4	12.5	0.4	3.8 4.1	5.1	1.0
				Surface	1	27.1 29.4	29.5	8.2 8.2	8.2	28.4	20.7	71.3 90.6	90.5	5.1 6.4	6.4	0.0	12.5 5.9	5.7		6.1 4.5	4.1	
12-Jul-13	Sunny	Moderate	16:18	Middle	4	29.5 27.5	27.8	8.2 8.1	8.1	20.5 27.0	25.9	90.4 74.6	75.7	6.4 5.4	5.5	6.0	5.4 9.1	8.5	7.7	3.7 5.5	4.4	5.1
12-Jul-13	Suring	Woderate	10.10		7	28.1 27.2		8.1 8.1		24.8 27.6		76.8 74.1	_	5.6 5.4		F 4	7.8 9.0		7.7	3.3 6.3		3.1
				Bottom		27.6 29.0	27.4 29.0	8.1 8.1	8.1	26.5 16.8	27.1	73.4 93.0	73.8 92.6	5.3 6.5	5.4	5.4	9.0 1.5	9.0		7.3 2.4	6.8	
15-Jul-13	Rainv	Calm	15:32	Surface Middle	3.5	29.0 28.6	28.6	8.1 8.1	8.1 8.1	16.8 19.9	16.8	92.2 80.5	79.8	6.5 5.6	6.5 5.6	6.1	1.3 2.1	2.1	6.4	2.3	2.4	2.3
10-Jul-13	Railly	Callii	15.32			28.6 25.9		8.1 8.0		20.0 29.7		79.1 74.0		5.5 5.0		5.0	2.1 15.8		0.4	2.3		2.3
				Bottom	6	25.9 28.8	25.9	8.0 8.1	8.0	29.9 14.2	29.8	73.5 93.7	73.8	5.0 6.7	5.0	5.0	15.6 4.4	15.7		2.1 0.9	2.2	
47 101 40	Deiny	Madarata	20.52	Surface	1	28.7 28.6	28.8	8.1 8.1	8.1	14.0 17.7	14.1	98.1 80.9	95.9	7.0 5.7	6.9	6.3	4.3 5.7	4.4	F.6	0.5 1.5	0.7	1.0
17-Jul-13	Rainy	Moderate	20:53	Middle	3.5	28.7	28.7	8.1 8.1	8.1	17.1 21.5	17.4	76.7 72.7	78.8	5.4 5.1	5.6		5.6 6.7	5.7	5.6	1.1	1.3	1.2
				Bottom	6	28.2	28.3	8.1	8.1	21.6	21.6	75.0	73.9	5.3	5.2	5.2	6.5	6.6		1.6	1.5	

Water Quality Monitoring Results at IS4 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.0 27.0	27.0	8.2 8.2	8.2	26.9 26.8	26.9	84.9 85.1	85.0	6.0 6.0	6.0	5.8	3.0 3.1	3.1		2.1 1.8	2.0	
19-Jul-13	Cloudy	Calm	11:08	Middle	3.5	26.7 26.7	26.7	8.2 8.2	8.2	28.5 28.6	28.6	79.6 79.3	79.5	5.6 5.6	5.6	5.6	4.8 4.9	4.9	6.1	3.3 1.5	2.4	3.1
				Bottom	6	26.5 26.4	26.5	8.2 8.2	8.2	29.2 29.2	29.2	75.4 75.3	75.4	5.3 5.3	5.3	5.3	9.5 11.3	10.4		5.4 4.4	4.9	
				Surface	1	27.6 27.5	27.6	7.9 8.2	8.1	28.0 28.3	28.2	103.0 88.7	95.9	7.0 6.0	6.5	6.3	11.8 11.5	11.7		5.7 5.7	5.7	
22-Jul-13	Cloudy	Calm	10:39	Middle	3.5	27.4 27.4	27.4	8.1 8.1	8.1	28.3 28.5	28.4	94.1 86.0	90.1	6.4 5.8	6.1	0.5	10.4 11.8	11.1	13.4	4.8 3.9	4.4	4.9
				Bottom	6	27.3 27.3	27.3	8.2 8.2	8.2	28.9 28.9	28.9	90.9 85.9	88.4	6.1 5.8	6.0	6.0	19.3 15.5	17.4		5.2 3.7	4.5	
				Surface	1	27.9 27.9	27.9	8.3 8.3	8.3	28.5 28.5	28.5	86.4 86.2	86.3	5.8 5.8	5.8	5.8	8.1 8.3	8.2		6.8 7.6	7.2	_
24-Jul-13	Rainy	Moderate	15:13	Middle	4	27.9 28.0	28.0	8.3 8.3	8.3	28.7 28.8	28.8	85.6 85.7	85.7	5.7 5.7	5.7	5.0	10.0 10.0	10.0	13.3	7.7 5.6	6.7	6.2
				Bottom	7	27.9 27.9	27.9	8.3 8.3	8.3	29.5 29.5	29.5	85.5 85.5	85.5	5.7 5.7	5.7	5.7	21.1 22.1	21.6		6.5 2.9	4.7	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	25.9 25.9	25.9	97.5 96.9	97.2	6.6 6.6	6.6	6.5	6.1 6.0	6.1		5.5 6.4	6.0	
26-Jul-13	Rainy	Rough	16:56	Middle	4	27.8 27.8	27.8	8.2 8.2	8.2	26.0 26.0	26.0	93.9 94.3	94.1	6.4 6.4	6.4	0.5	8.9 8.2	8.6	9.1	5.5 6.8	6.2	6.2
				Bottom	7	27.7 27.7	27.7	8.2 8.2	8.2	26.4 26.4	26.4	92.4 91.3	91.9	6.3 6.2	6.3	6.3	12.1 13.3	12.7		5.6 7.1	6.4	
				Surface	1	30.1 29.9	30.0	8.1 8.1	8.1	15.0 15.3	15.2	97.5 97.4	97.5	7.4 7.4	7.4	6.7	3.1 2.9	3.0		2.8 2.8	2.8	
29-Jul-13	Sunny	Calm	18:56	Middle	4	27.8 27.8	27.8	8.1 8.1	8.1	24.0 24.0	24.0	76.6 77.5	77.1	5.8 5.9	5.9	5.7	12.4 12.3	12.4	11.1	2.5 3.0	2.8	2.9
				Bottom	7	27.5 27.4	27.5	8.2 8.1	8.2	26.8 26.8	26.8	69.0 68.2	68.6	5.3 5.2	5.3	5.3	18.2 17.5	17.9		3.2 3.0	3.1	
				Surface	1	29.4 29.4	29.4	8.1 8.1	8.1	12.8 12.8	12.8	112.0 112.5	112.3	7.9 7.9	7.9	7.1	2.7 2.7	2.7		5.4 5.2	5.3	
31-Jul-13	Sunny	Calm	09:37	Middle	3.5	28.2 28.2	28.2	8.0 8.0	8.0	21.9 21.9	21.9	91.1 90.9	91.0	6.2 6.2	6.2	,	2.7 2.7	2.7	4.1	5.6 5.4	5.5	5.3
				Bottom	6	27.1 27.1	27.1	8.0 8.0	8.0	28.5 28.5	28.5	75.4 74.9	75.2	5.1 5.0	5.1	5.1	7.1 6.7	6.9		5.0 5.2	5.1	

Water Quality Monitoring Results at IS4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	:h (m)	Tempera	ature (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	ъері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.4 29.4	29.4	8.4 8.4	8.4	14.5 14.7	14.6	109.5 109.4	109.5	7.7 7.7	7.7		3.4 3.3	3.4		5.8 5.2	5.5	
2-Jul-13	Sunny	Moderate	16:01	Middle	3.5	28.9 29.3	29.1	8.3 8.4	8.4	17.5 15.2	16.4	101.5 103.8	102.7	7.1 7.3	7.2	7.5	14.4 13.7	14.1	8.0	5.0 5.0	5.0	5.6
				Bottom	6	28.8 28.8	28.8	8.3 8.3	8.3	18.4 18.9	18.7	96.2 94.5	95.4	6.7 6.6	6.7	6.7	6.2 6.7	6.5		5.2 7.2	6.2	
				Surface	1	30.7	30.7	8.2	8.2	7.7	7.7	132.1	132.1	9.5	9.5		6.4	6.4		7.8	8.3	
4-Jul-13	Fine	Calm	18:54	Middle	4.5	30.7 30.6	30.6	8.2 8.2	8.2	7.7 8.2	8.3	132.1 127.0	127.1	9.5 9.1	9.1	9.3	7.5	7.6	10.9	6.0	6.2	7.7
				Bottom	8	30.5 29.5	29.5	8.2 8.1 8.1	8.1	13.8	14.0	127.1 101.2	101.3	9.1 7.2	7.2	7.2	7.7 18.3	18.7		9.8 7.5	8.7	
				Surface	1	29.5 29.4 29.4	29.4	8.6 8.6	8.6	14.2 15.7 15.9	15.8	101.3 127.9 126.2	127.1	7.1 8.7 8.5	8.6		7.2 7.3	7.3		13.3 13.0	13.2	
6-Jul-13	Cloudy	Moderate	20:00	Middle	3.5	29.4 29.1 29.2	29.2	8.4 8.4	8.4	18.4 17.5	18.0	105.4 106.5	106.0	7.3 7.4	7.4	8.0	13.1 12.0	12.6	12.7	13.3 12.3	12.8	12.9
				Bottom	6	28.9 28.9	28.9	8.3 8.3	8.3	19.4 21.7	20.6	73.0 73.6	73.3	5.1 5.0	5.1	5.1	17.8 18.4	18.1		13.7 11.7	12.7	
				Surface	1	29.1 29.1	29.1	8.2 8.2	8.2	17.1 16.9	17.0	92.8 92.8	92.8	6.5 6.5	6.5	0.4	10.8 11.6	11.2		18.7 17.7	18.2	
8-Jul-13	Fine	Moderate	20:59	Middle	3.5	29.0 29.1	29.1	8.2 8.2	8.2	18.2 17.7	18.0	87.0 89.6	88.3	6.1 6.3	6.2	6.4	17.2 16.8	17.0	17.8	16.0 7.3	11.7	14.2
				Bottom	6	28.4 28.5	28.5	8.1 8.1	8.1	22.6 20.5	21.6	83.5 82.4	83.0	5.9 5.9	5.9	5.9	24.2 26.1	25.2		14.0 11.3	12.7	
				Surface	1	28.8 28.9	28.9	8.2 8.2	8.2	16.0 15.6	15.8	88.4 89.2	88.8	6.2 6.3	6.3	5.9	4.8 4.7	4.8		3.2 2.5	2.9	
10-Jul-13	Fine	Moderate	08:02	Middle	4	28.8 28.8	28.8	8.2 8.2	8.2	18.2 18.1	18.2	78.6 79.4	79.0	5.5 5.5	5.5	5.5	5.6 5.6	5.6	5.7	1.0 1.9	1.5	2.3
				Bottom	7	28.6 28.7	28.7	8.2 8.2	8.2	20.4 20.0	20.2	75.0 75.9	75.5	5.2 5.3	5.3	5.3	7.1 6.5	6.8		2.5 2.2	2.4	
				Surface	1	29.0 29.2	29.1	8.2 8.2	8.2	16.9 16.0	16.5	86.4 86.9	86.7	6.3 6.4	6.4	6.3	4.4 4.2	4.3		2.7 2.9	2.8	
12-Jul-13	Sunny	Moderate	09:41	Middle	3.5	28.0 27.8	27.9	8.1 8.1	8.1	23.8 25.2	24.5	86.7 84.5	85.6	6.3 6.1	6.2		7.4 8.0	7.7	9.9	5.0 4.4	4.7	3.7
				Bottom	6	26.8 26.7	26.8	8.0	8.0	28.9 29.2	29.1	68.6 66.4	67.5	5.0 4.9	5.0	5.0	17.3 17.9	17.6		4.6 2.6	3.6	
				Surface	1	28.1 27.9 27.4	28.0	8.0 8.0 8.0	8.0	22.2 22.9 25.1	22.6	97.8 97.2 90.8	97.5	6.6 6.6 6.1	6.6	6.4	4.3 5.0 6.2	4.7		2.7 2.9 3.4	2.8	
15-Jul-13	Rainy	Calm	09:31	Middle	3.5	27.4 27.5 26.2	27.5	8.0 7.9	8.0	24.6 29.1	24.9	90.6 90.6 76.8	90.7	6.1 5.2	6.1		5.8 10.8	6.0	7.4	4.0 3.7	3.7	3.3
				Bottom	6	26.1 28.1	26.2	8.0 8.2	8.0	29.4	29.3	75.5 83.7	76.2	5.2 5.1 5.9	5.2	5.2	12.0	11.4		3.1 1.1	3.4	
				Surface	1	28.1	28.1	8.2 8.2	8.2	21.0	21.1	83.6 83.6	83.7	5.9 5.8	5.9	5.9	2.5	2.4		1.1	1.1	
17-Jul-13	Rainy	Moderate	12:22	Middle	3.5	28.0 27.8	28.0	8.2 8.2	8.2	22.0	22.0	85.0 79.9	84.3	5.9 5.6	5.9		10.1 12.5	10.6	8.7	1.0	1.1	1.1
				Bottom	6	28.0	27.9	8.2	8.2	22.3	22.6	79.1	79.5	5.5	5.6	5.6	13.8	13.2		1.2	1.1	

Water Quality Monitoring Results at IS4 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI			ended Solids	` 0 /
54.0	Condition	Condition**	Time	Бор	(***)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.0 28.1	28.1	8.3 8.3	8.3	24.1 24.0	24.1	91.0 90.7	90.9	6.2 6.2	6.2		4.0 3.6	3.8		2.5 3.5	3.0	
19-Jul-13	Cloudy	Calm	18:16	Middle	3.5	27.9 27.6	27.8	8.3 8.2	8.3	24.2 24.7	24.5	78.9 78.0	78.5	5.4 5.4	5.4	5.8	7.0 6.2	6.6	7.2	4.5 3.6	4.1	3.6
				Bottom	6	27.5 27.5	27.5	8.2 8.2	8.2	25.2 25.5	25.4	74.7 74.5	74.6	5.1 5.1	5.1	5.1	12.2 10.2	11.2		4.2 2.9	3.6	
				Surface	1	28.2 28.2	28.2	7.7 8.0	7.9	22.4 22.8	22.6	72.1 77.8	75.0	5.0 5.4	5.2	5.3	10.5 10.7	10.6		9.5 8.7	9.1	
22-Jul-13	Rainy	Moderate	17:49	Middle	3.5	28.2 28.2	28.2	7.9 8.0	8.0	22.9 23.4	23.2	77.4 77.6	77.5	5.3 5.3	5.3	5.5	10.8 11.9	11.4	12.9	9.3 9.7	9.5	8.5
				Bottom	6	28.1 28.1	28.1	8.0 8.1	8.1	25.3 25.6	25.5	79.1 78.3	78.7	5.4 5.3	5.4	5.4	16.8 16.3	16.6		3.7 10.2	7.0	
				Surface	1	28.0 28.0	28.0	8.3 8.2	8.3	26.8 26.8	26.8	81.7 80.8	81.3	5.5 5.5	5.5	5.4	11.2 11.4	11.3		6.8 10.0	8.4	
24-Jul-13	Rainy	Moderate	08:40	Middle	4.5	28.0 28.0	28.0	8.3 8.3	8.3	27.2 27.2	27.2	78.9 78.8	78.9	5.3 5.3	5.3	5.4	15.3 16.0	15.7	18.2	10.2 10.2	10.2	8.4
				Bottom	8	28.0 28.0	28.0	8.3 8.3	8.3	27.3 27.3	27.3	78.7 78.6	78.7	5.3 5.3	5.3	5.3	26.6 28.3	27.5		10.0 3.4	6.7	
				Surface	1	27.5 27.5	27.5	8.2 8.2	8.2	24.2 24.2	24.2	93.2 92.4	92.8	6.4 6.4	6.4	6.3	5.0 4.9	5.0		5.5 8.4	7.0	
26-Jul-13	Rainy	Rough	10:20	Middle	4.5	27.5 27.5	27.5	8.2 8.2	8.2	25.2 25.3	25.3	90.2 90.6	90.4	6.2 6.2	6.2	0.5	6.5 6.7	6.6	9.8	5.2 4.5	4.9	5.9
				Bottom	8	27.6 27.6	27.6	8.2 8.2	8.2	25.9 25.8	25.9	87.9 87.5	87.7	6.0 6.0	6.0	6.0	18.1 17.7	17.9		5.9 5.7	5.8	
				Surface	1	28.6 28.7	28.7	8.1 8.2	8.2	18.4 18.3	18.4	84.8 84.5	84.7	6.5 6.4	6.5	6.2	4.0 3.8	3.9		2.8 2.7	2.8	
29-Jul-13	Sunny	Calm	13:05	Middle	4.5	28.0 28.0	28.0	8.1 8.1	8.1	20.5	20.5	77.5 77.9	77.7	5.9 5.9	5.9		4.5 4.6	4.6	8.1	3.1	3.2	3.1
				Bottom	8	27.9 27.9	27.9	8.2 8.2	8.2	22.6 22.6	22.6	76.5 76.2	76.4	5.8 5.8	5.8	5.8	15.3 16.4	15.9		3.5 3.3	3.4	
				Surface	1	30.3 30.3	30.3	8.3 8.3	8.3	10.6 10.6	10.6	102.8 102.0	102.4	7.4 7.4	7.4	7.0	8.7 8.7	8.7		2.4 2.1	2.3	
31-Jul-13	Sunny	Calm	16:01	Middle	4	29.0 29.0	29.0	8.1 8.1	8.1	17.3 17.4	17.4	97.3 96.6	97.0	6.6 6.6	6.6		2.4 2.2	2.3	5.6	2.8 2.5	2.7	2.3
				Bottom	7	28.5 28.5	28.5	8.0 8.0	8.0	20.1 20.1	20.1	85.6 85.4	85.5	5.9 5.9	5.9	5.9	5.4 5.9	5.7		1.8 1.8	1.8	

Water Quality Monitoring Results at SR1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 28.7	-	- - 8.0	-	- - 18.2	-	- - 109.2	-	- - 7.6	-	7.8	- - 4.8	-		4.3	-	
2-Jul-13	Sunny	Moderate	09:09	Middle	0.9	28.7	28.7	8.0	8.0	18.2	18.2	112.9	111.1	7.9	7.8		4.9	4.9	4.9	5.7	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-Jul-13	Sunny	Calm	11:25	Surface Middle	0.8	30.0	30.0	8.0	8.0	7.2	7.3	102.4	102.5	7.4	7.5	7.5	4.1	4.1	4.1	4.8	6.5	6.5
	·			Bottom	-	30.0	-	8.0 -	-	7.3 - -	-	102.5 - -	-	7.5 - -	-	-	4.1 - -	-			-	
				Surface	-	-	-	-	-	-	-	-	-	-	-			-		-	-	
6-Jul-13	Cloudy	Moderate	12:15	Middle	1.2	29.4 29.4	29.4	8.4 8.5	8.5	12.2 12.1	12.2	121.4 124.0	122.7	8.7 8.9	8.8	8.8	4.8 4.7	4.8	4.8	5.0 5.7	5.4	5.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-		-	-	-		-		-		-	7.4		-			-	
8-Jul-13	Sunny	Moderate	13:19	Middle	0.8	29.5 29.3	29.4	8.3 8.3	8.3	13.8 12.9	13.4	102.6 105.1	103.9	7.3 7.5	7.4		5.5 5.5	5.5	5.5	7.3 9.7	8.5	8.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	28.6	-	- - 8.1	-	20.6	-	- - 88.2	-	- - 6.1	-	6.0	4.6	-		2.8	-	
10-Jul-13	Fine	Moderate	12:41	Middle Bottom	0.8	28.6	28.6	8.1	8.1	21.1	20.9	85.8	87.0	5.9	6.0		4.7	4.7	4.7	2.8	2.8	2.8
				Surface	-	-	_	-		-		-		-	_	-	-	- _		-		
12-Jul-13	Sunny	Moderate	14:12	Middle	0.8	28.2	28.4	8.3	8.3	24.3	23.9	98.5	98.7	7.0	7.1	7.1	3.3	3.2	3.2	3.6	3.7	3.7
	,			Bottom	-	28.5	-	8.3	-	23.4	-	98.9	-	7.1 -	-	-	3.1	-		3.8	-	-
				Surface	-	-	-	<u>-</u> -	-	<u>-</u> -	-	-	-	-	-		-	-		-	-	
15-Jul-13	Rainy	Calm	17:29	Middle	1	27.9 27.9	27.9	8.1 8.1	8.1	20.3	20.4	82.0 82.2	82.1	5.5 5.5	5.5	5.5	7.4 7.3	7.4	7.4	2.5 1.9	2.2	2.2
				Bottom	-	-	-	- -	-	- -	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-		-	-	
17-Jul-13	Rainy	Moderate	18:34	Middle	1.4	26.9 26.9	26.9	8.0 8.0	8.0	26.2 26.2	26.2	84.8 84.0	84.4	5.8 5.8	5.8		4.2 4.7	4.5	4.5	4.0 3.1	3.6	3.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-		-	-	
19-Jul-13	Cloudy	Calm	09:51	Middle	0.9	27.1 27.1	27.1	8.1 8.1	8.1	26.7 26.6	26.7	79.9 80.2	80.1	5.5 5.5	5.5		1.4 1.3	1.4	1.4	5.1 2.7	3.9	3.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.5	-	-		-	-	
22-Jul-13	Cloudy	Calm	13:03	Middle	0.7	27.7 27.7	27.7	8.3 8.3	8.3	29.1 29.1	29.1	81.8 82.4	82.1	5.5 5.5	5.5	0.0	4.7 4.8	4.8	4.8	4.4 3.5	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-		-	-	-	-	-	-	-	-	-	6.4	-	-		-	-	
24-Jul-13	Rainy	Moderate	12:40	Middle	1.4	27.8 27.8	27.8	8.2 8.2	8.2	27.0 27.0	27.0	94.0 94.2	94.1	6.4 6.4	6.4	0.4	5.1 4.8	5.0	5.0	5.0 5.9	5.5	5.5
				Bottom	1	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.8	-	-		-	-	
26-Jul-13	Rainy	Rough	14:08	Middle	0.8	27.6 27.6	27.6	8.1 8.1	8.1	25.9 25.9	25.9	99.0 98.7	98.9	6.8 6.8	6.8	0.6	5.8 6.1	6.0	6.0	6.3 5.2	5.8	5.8
				Bottom	1	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-		-	-	
29-Jul-13	Sunny	Calm	16:19	Middle	0.7	29.8 29.6	29.7	8.1 8.1	8.1	16.2 16.8	16.5	88.4 84.4	86.4	6.2 5.9	6.1	0.1	3.2 3.2	3.2	3.2	2.9 3.2	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-		-	-	
31-Jul-13	Sunny	Calm	08:52	Middle	1.2	29.0 29.0	29.0	8.2 8.2	8.2	17.7 17.7	17.7	94.5 94.7	94.6	6.5 6.5	6.5	6.5	2.8 2.9	2.9	2.9	4.0 4.0	4.0	4.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	1 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	0.0	-	-		-	-	
2-Jul-13	Sunny	Moderate	14:07	Middle	0.9	29.4 29.4	29.4	8.0 8.0	8.0	15.4 15.4	15.4	122.4 122.9	122.7	8.6 8.6	8.6	8.6	7.5 6.2	6.9	6.9	4.5 4.7	4.6	4.6
				Bottom	-		-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.3	-	-		-	-	
4-Jul-13	Fine	Calm	17:57	Middle	0.6	30.9 30.9	30.9	8.1 8.1	8.1	7.0 7.1	7.1	101.4 101.7	101.6	7.3 7.3	7.3	7.3	4.9 4.8	4.9	4.9	10.3 8.3	9.3	9.3
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.5	-	-		-	-	
6-Jul-13	Cloudy	Moderate	17:34	Middle	1.2	29.6 29.5	29.6	8.5 8.4	8.5	11.5 12.5	12.0	119.4 119.2	119.3	8.5 8.5	8.5	0.5	7.7 8.2	8.0	8.0	7.3 6.0	6.7	6.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface		-	-	-	-	-	-	-	-	-	-	7.8	-	-		-	-	
8-Jul-13	Fine	Moderate	20:23	Middle	0.8	29.9 29.9	29.9	8.5 8.5	8.5	15.6 15.5	15.6	113.2 112.6	112.9	7.8 7.8	7.8	7.0	18.7 18.3	18.5	18.5	25.3 2.7	14.0	14.0
				Bottom	-	-	-	-	-	-	_	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-		-	-	
10-Jul-13	Fine	Moderate	08:03	Middle	0.6	28.7 28.7	28.7	8.1 8.1	8.1	14.6 14.6	14.6	83.5 84.4	84.0	6.0 6.0	6.0	0.0	4.5 4.4	4.5	4.5	3.5 3.8	3.7	3.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.4	-	-		-	-	
12-Jul-13	Sunny	Moderate	08:54	Middle	0.8	29.2 29.1	29.2	8.3 8.3	8.3	14.5 14.6	14.6	99.3 101.6	100.5	7.3 7.5	7.4	7.4	3.7 3.5	3.6	3.6	2.7 2.6	2.7	2.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-		-	-	
15-Jul-13	Rainy	Calm	11:53	Middle	8.0	29.3 29.3	29.3	8.1 8.0	8.1	12.8 12.9	12.9	81.9 82.0	82.0	5.8 5.8	5.8	0.0	4.6 4.7	4.7	4.7	1.9 2.1	2.0	2.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-		-	-	
17-Jul-13	Rainy	Moderate	14:50	Middle	0.9	28.6 28.6	28.6	8.0 8.0	8.0	17.5 17.6	17.6	83.6 83.6	83.6	5.9 5.9	5.9	0.0	1.3 1.4	1.4	1.4	1.7 1.4	1.6	1.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	ŗ	Н		ity ppt	DO Satu	ıration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
54.0	Condition	Condition**	Time	Борс	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	1	-	-	-	-	-	1 1	-	-	-	5.6	-	-		-	-	
19-Jul-13	Cloudy	Calm	15:27	Middle	1.3	27.9 27.9	27.9	8.1 8.1	8.1	24.3 24.3	24.3	81.0 81.2	81.1	5.6 5.6	5.6	5.0	3.0 3.1	3.1	3.1	5.0 4.7	4.9	4.9
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-		-	-	
22-Jul-13	Rainy	Moderate	18:16	Middle	0.9	28.3 28.2	28.3	8.1 8.1	8.1	22.6 23.3	23.0	78.3 78.4	78.4	5.4 5.4	5.4	5.4	7.8 8.4	8.1	8.1	11.2 9.8	10.5	10.5
				Bottom	-		-	-	-		-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	0.4	-	-		-	-	
24-Jul-13	Rainy	Moderate	07:53	Middle	1.4	27.8 27.8	27.8	8.1 8.1	8.1	24.8 24.9	24.9	88.3 89.1	88.7	6.0 6.1	6.1	6.1	8.5 8.0	8.3	8.3	3.9 3.8	3.9	3.9
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
26-Jul-13	Rainy	Rough	09:23	Middle	0.9	27.5 27.5	27.5	8.1 8.1	8.1	24.7 24.7	24.7	90.7 90.1	90.4	6.3 6.2	6.3	0.3	5.2 5.3	5.3	5.3	8.6 30.0	19.3	19.3
				Bottom	-	1 1	-	-	-	1 1	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.9	-	-		-	-	
29-Jul-13	Sunny	Calm	11:41	Middle	0.9	29.1 29.1	29.1	8.0 8.0	8.0	15.3 15.3	15.3	83.1 84.1	83.6	5.9 5.9	5.9	5.9	3.6 3.3	3.5	3.5	2.4 2.0	2.2	2.2
				Bottom	-	1 1	-	-	-	1 -	-	1 1	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
31-Jul-13	Sunny	Calm	13:35	Middle	0.8	30.1 30.1	30.1	8.4 8.4	8.4	14.6 14.5	14.6	102.3 102.1	102.2	7.0 7.0	7.0	7.0	2.7 2.9	2.8	2.8	2.4 2.2	2.3	2.3
				Bottom	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	1	Н	Salir	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTU	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 28.6	-	- - 8.0	-	- - 17.5	-	- - 115.4	-	- - 8.1	-	8.1	- - 9.8	-		- - 4.0	-	
2-Jul-13	Sunny	Moderate	07:59	Middle	0.6	28.6	28.6	8.0	8.0	17.5	17.5	115.7	115.6	8.1	8.1		9.8	9.8	9.8	5.7	4.9	4.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-Jul-13	Sunny	Calm	09:36	Surface Middle	0.6	29.7	29.7	8.0	8.0	10.7	10.7	101.7	101.7	7.3	7.3	7.3	5.8	5.9	5.9	4.5	4.3	4.3
4-Jul-13	Sullily	Callli	09.30	Bottom	-	29.7	-	8.0	-	10.7	-	101.6	-	7.3	7.5	-	5.9	5.9	5.9	4.0	-	4.3
				Surface	-	-	_	-	_	-	_	-	_	-	_		-	_		-	_	
6-Jul-13	Cloudy	Moderate	10:45	Middle	1	29.7	29.7	8.3	8.3	13.2	13.3	103.8	104.4	7.3	7.4	7.4	8.6	8.7	8.7	6.3	6.2	6.2
				Bottom	-	29.7 - -	-	8.3 - -	-	13.3 - -	-	104.9 - -	-	7.4 - -	-	-	8.8 - -	-		6.0	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.5		-			-	
8-Jul-13	Sunny	Moderate	11:58	Middle	1.1	28.9 28.9	28.9	8.2 8.2	8.2	14.7 14.7	14.7	91.0 92.0	91.5	6.5 6.5	6.5	0.5	10.1 10.0	10.1	10.1	6.3 7.7	7.0	7.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	20.5	-	- - 86.9	-	-	-	6.5	13.2	-		-	-	
10-Jul-13	Fine	Moderate	14:13	Middle	0.7	28.9 29.5	29.2	8.1 8.2	8.2	18.4	19.5	101.4	94.2	6.0 7.0	6.5		11.7	12.5	12.5	3.0 2.4	2.7	2.7
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	- - 29.6	-	8.4	-	20.6	-	- - 95.2	-	6.8	-	6.8	- - 11.2	-		3.7	-	
12-Jul-13	Sunny	Moderate	15:40	Middle	0.7	29.4	29.5	8.3	8.4	21.0	20.8	94.8	95.0	6.8	6.8		13.5	12.4	12.4	3.0	3.4	3.4
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-Jul-13	Rainy	Calm	16:03	Surface Middle	0.9	28.4	28.4	8.2	8.2	17.3	17.3	86.3	86.1	5.8	5.8	5.8	5.8	5.9	5.9	4.7	4.6	4.6
.5 001 10	Tuniy	Juin	10.00	Bottom	-	28.4	-	8.2	-	17.3	-	85.8	-	5.8 -	-	_	5.9	-	0.0	4.5	-	7.0
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
17-Jul-13	Rainy	Moderate	20:12	Middle	0.8	28.2 28.1	28.2	8.0 8.0	8.0	18.3 18.1	18.2	78.0 79.3	78.7	5.5 5.6	5.6	5.6	5.3 5.9	5.6	5.6	4.1 4.6	4.4	4.4
				Bottom	-		-		-		-	- - -	-		-	-		-			-	

Water Quality Monitoring Results at SR2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTL	J)	Suspe	ended Solids	(mg/L)
Dute	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
19-Jul-13	Cloudy	Calm	08:16	Middle	0.7	27.1 27.1	27.1	8.0 8.0	8.0	25.5 25.5	25.5	80.7 80.1	80.4	5.6 5.6	5.6		11.2 10.8	11.0	11.0	2.0 1.6	1.8	1.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-		-	5.3	-	-		-	-	
22-Jul-13	Cloudy	Calm	11:24	Middle	1.1	27.4 27.4	27.4	8.2 8.2	8.2	28.2 28.2	28.2	76.5 77.2	76.9	5.2 5.3	5.3	0.0	16.3 16.6	16.5	16.5	3.9 3.4	3.7	3.7
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-		-	-	
24-Jul-13	Rainy	Moderate	13:59	Middle	0.9	27.8 27.8	27.8	8.2 8.2	8.2	26.3 26.3	26.3	93.4 92.7	93.1	6.3 6.3	6.3	0.3	4.1 5.0	4.6	4.6	5.7 5.0	5.4	5.4
				Bottom	-		-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.6	-	-		-	-	
26-Jul-13	Rainy	Rough	15:00	Middle	0.7	27.6 27.6	27.6	8.1 8.1	8.1	25.9 26.5	26.2	96.0 96.5	96.3	6.6 6.6	6.6	0.0	14.2 13.9	14.1	14.1	9.2 17.0	13.1	13.1
				Bottom	1	-	-	-	-	-	-	-	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-		-	-	
29-Jul-13	Sunny	Calm	17:04	Middle	0.6	29.6 28.0	28.8	8.1 8.2	8.2	22.9 23.1	23.0	85.6 87.2	86.4	5.9 6.0	6.0	6.0	10.5 9.4	10.0	10.0	3.2 3.5	3.4	3.4
				Bottom	-		-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
31-Jul-13	Sunny	Calm	07:13	Middle	0.7	29.0 29.1	29.1	8.2 8.2	8.2	17.4 16.0	16.7	101.3 101.1	101.2	6.9 7.0	7.0	7.0	4.5 4.4	4.5	4.5	3.8 4.6	4.2	4.2
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	iture (°C)	p	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Turbidity(NTU	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	1 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
2-Jul-13	Sunny	Moderate	15:27	Middle	0.6	29.4 29.4	29.4	8.1 8.1	8.1	18.5 18.5	18.5	112.5 112.6	112.6	7.8 7.8	7.8	7.8	15.3 14.3	14.8	14.8	4.8 4.2	4.5	4.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	0.5	-	-		-	-	
4-Jul-13	Fine	Calm	16:32	Middle	0.5	30.6 30.6	30.6	8.2 8.2	8.2	13.1 13.1	13.1	120.6 122.1	121.4	8.4 8.5	8.5	8.5	13.5 12.1	12.8	12.8	2.7 2.5	2.6	2.6
				Bottom	-	1 1	-	-	-	-	-	-	-	-	-	ı	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.8	-	-		-	-	
6-Jul-13	Cloudy	Moderate	19:15	Middle	1	30.1 30.1	30.1	8.4 8.4	8.4	15.3 15.3	15.3	111.1 112.2	111.7	7.7 7.8	7.8	7.0	8.5 8.0	8.3	8.3	6.7 4.7	5.7	5.7
				Bottom	-		-	-	-	-	-	-	-	-	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.3	-	-		-	-	
8-Jul-13	Fine	Moderate	19:07	Middle	0.7	30.3 30.3	30.3	8.3 8.3	8.3	15.4 15.4	15.4	119.4 119.9	119.7	8.3 8.3	8.3	0.5	15.5 13.3	14.4	14.4	23.0 16.0	19.5	19.5
				Bottom	-	-	-	-	-	-	_	-	-	-	-	-	-	-		-	-	
				Surface	-	1 1	-	-	-	-	-	-	-	-	-	5.5	-	-		-	-	
10-Jul-13	Fine	Moderate	06:19	Middle	0.6	28.7 28.7	28.7	8.0 8.0	8.0	16.7 16.7	16.7	76.8 77.4	77.1	5.4 5.5	5.5	5.5	8.0 7.4	7.7	7.7	3.8 4.5	4.2	4.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.6	-	-		-	-	
12-Jul-13	Sunny	Moderate	07:24	Middle	0.6	29.2 29.2	29.2	8.2 8.2	8.2	18.0 18.0	18.0	104.6 104.6	104.6	7.6 7.6	7.6	7.0	5.8 6.9	6.4	6.4	2.6 5.0	3.8	3.8
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.7	-	-		-	-	
15-Jul-13	Rainy	Calm	10:29	Middle	0.5	29.4 29.4	29.4	8.1 8.1	8.1	18.7 18.7	18.7	96.2 96.7	96.5	6.6 6.7	6.7		10.2 9.5	9.9	9.9	2.4 2.6	2.5	2.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
17-Jul-13	Rainy	Moderate	13:05	Middle	0.6	28.2 28.3	28.3	8.0 8.0	8.0	20.4 20.4	20.4	80.3 79.5	79.9	5.6 5.5	5.6	0.0	11.7 11.5	11.6	11.6	8.4 7.9	8.2	8.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	J)	Suspe	ended Solids	(mg/L)
Dute	Condition	Condition**	Time	Борг	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	1 1	-	1 1	-	5.9	-	-		-	-	
19-Jul-13	Cloudy	Calm	17:09	Middle	0.9	28.7 28.7	28.7	8.1 8.1	8.1	24.1 24.1	24.1	86.3 86.0	86.2	5.9 5.9	5.9	5.5	15.6 15.6	15.6	15.6	5.0 4.5	4.8	4.8
				Bottom	-	-	-	-	-	-	-	1 1	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.0	-	-		-	-	
22-Jul-13	Rainy	Moderate	20:05	Middle	0.2	28.5 28.5	28.5	8.1 8.1	8.1	25.5 25.6	25.6	88.7 88.7	88.7	6.0 6.0	6.0	0.0	16.6 16.6	16.6	16.6	9.4 9.9	9.7	9.7
				Bottom	-	-	-	-	-	-	-	1 1	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.6	-	-		-	-	
24-Jul-13	Rainy	Moderate	06:25	Middle	0.7	27.9 27.9	27.9	8.0 8.0	8.0	24.6 24.6	24.6	82.5 80.3	81.4	5.6 5.5	5.6	5.0	8.4 7.9	8.2	8.2	7.4 7.4	7.4	7.4
				Bottom	-	-	-	-	-	-	-	1 1	-	1 1	-	1	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.1	-	-		-	-	
26-Jul-13	Rainy	Rough	08:32	Middle	0.9	27.5 27.5	27.5	8.1 8.1	8.1	26.2 26.5	26.4	90.8 88.0	89.4	6.2 6.0	6.1	0.1	13.8 14.0	13.9	13.9	14.6 13.8	14.2	14.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	1 1	-	1 1	-	5.8	-	-		-	-	
29-Jul-13	Sunny	Calm	10:59	Middle	0.9	28.3 28.2	28.3	8.0 8.1	8.1	18.1 19.5	18.8	79.7 84.6	82.2	5.6 5.9	5.8	5.0	19.5 19.0	19.3	19.3	2.3 1.9	2.1	2.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	1 1	-	1 1	-	6.7	-	-		-	-	
31-Jul-13	Sunny	Calm	15:39	Middle	0.5	29.9 29.9	29.9	8.2 8.2	8.2	17.9 17.9	17.9	99.3 99.3	99.3	6.7 6.7	6.7	0.7	15.1 15.6	15.4	15.4	3.7 2.4	3.1	3.1
				Bottom	-	-	-	-	-	-	-	1 1	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	F	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Dale	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	- - 28.7	-	- - 8.0	-	- - 17.8	-	- - 117.1	-	- - 8.2	-	8.2	9.2	-		6.2	-	
2-Jul-13	Sunny	Moderate	07:40	Middle	0.6	28.7	28.7	8.0	8.0	17.8	17.8	116.0	116.6	8.1	8.2		8.9	9.1	9.1	4.7	5.5	5.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
4-Jul-13	Cunny	Calm	09:13	Surface Middle	0.8	29.9	29.9	8.0	8.0	- 11.6	11.6	119.2	119.4	8.5	8.5	8.5	6.6	6.5	6.5	8.6	9.1	9.1
4-Jul-13	Sunny	Calm	09.13	Bottom	-	29.8	29.9	8.0	-	11.6	-	119.6 -	-	8.5 -	-	-	6.4	-	0.5	9.6	9.1	9.1
				Surface		-		-		-		-		-	_		-			-		
6-Jul-13	Cloudy	Moderate	10:34	Middle	1.1	30.2	30.2	8.3	8.3	12.9	12.9	113.4	113.2	8.0	8.0	8.0	13.4	13.4	13.4	8.0	7.9	7.9
				Bottom	-	30.2 - -	-	8.3 - -	-	12.9 - -	-	112.9 - -	-	7.9 - -	-	-	13.4	-		7.7 - -	-	
				Surface	-	- 1	-	-	-	1 1	-	-	-	1 1	-	7.4	-	-		-	-	
8-Jul-13	Sunny	Moderate	11:42	Middle	1.3	29.2 29.3	29.3	8.2 8.2	8.2	14.8 14.8	14.8	102.8 104.2	103.5	7.3 7.4	7.4	7.4	7.4 7.1	7.3	7.3	10.3 9.3	9.8	9.8
				Bottom	-	-	-	_	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	29.4	-	- - 8.2	-	- - 18.1	-	- - 99.1	-	6.9	-	6.9	22.1	-		3.8	-	
10-Jul-13	Fine	Moderate	14:42	Middle	0.8	29.4	29.4	8.2	8.2	18.1	18.1	98.5	98.8	6.8	6.9		18.2	20.2	20.2	3.3	3.6	3.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	30.2	-	- - 8.5	-	- - 19.3	-	- - 91.3	-	6.5	-	6.7	9.5	-		14.8	-	
12-Jul-13	Sunny	Moderate	16:03	Middle	0.7	30.3	30.3	8.5 -	8.5	19.3	19.3	95.1	93.2	6.8	6.7		10.2	9.9	9.9	6.3	10.6	10.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
15-Jul-13	Rainy	Calm	15:36	Surface Middle	1	29.0	29.0	8.2	8.2	- 16.5	16.9	98.7	98.6	6.7	6.7	6.7	4.2	4.2	4.2	8.8	7.8	7.8
.5 001 10	rumy	Julii	10.00	Bottom	-	29.0	-	8.2	-	17.2	-	98.5	-	6.7	-	_	4.1	-	7.2	6.8	-	7.5
				Surface	-	-	-	<u>-</u> - -	-	-	-	<u>-</u> -	_	-	_		-	-		-	-	
17-Jul-13	Rainy	Moderate	20:35	Middle	0.8	28.1 28.1	28.1	8.1 8.1	8.1	19.9 19.9	19.9	89.6 88.9	89.3	6.3 6.2	6.3	6.3	5.1 5.1	5.1	5.1	5.4 5.4	5.4	5.4
				Bottom	-		-		-	-	-	-	-	-	-	-		-			-	

Water Quality Monitoring Results at SR3 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTl			nded Solids	
20.0	Condition	Condition**	Time	Борг	,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
19-Jul-13	Cloudy	Calm	08:04	Middle	0.7	27.6 27.6	27.6	7.9 7.9	7.9	22.8 22.8	22.8	83.8 83.5	83.7	5.8 5.8	5.8	5.8	5.0 5.1	5.1	5.1	4.2 2.2	3.2	3.2
				Bottom	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	
22-Jul-13	Cloudy	Calm	11:10	Middle	1	28.0 28.0	28.0	8.1 8.1	8.1	24.9 25.0	25.0	84.3 84.1	84.2	5.7 5.7	5.7	5.7	3.4 4.0	3.7	3.7	2.3 3.3	2.8	2.8
				Bottom	-		-	-	-	-	-	-	-		-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.5	-	-		-	-	
24-Jul-13	Rainy	Moderate	14:18	Middle	0.8	27.8 27.8	27.8	8.1 8.1	8.1	26.4 26.4	26.4	96.2 95.4	95.8	6.5 6.5	6.5	0.5	5.8 5.7	5.8	5.8	5.3 4.9	5.1	5.1
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-		-	-	-	-	-	-	-	1 1	-	6.8	-	-		-	-	
26-Jul-13	Rainy	Rough	15:59	Middle	0.9	27.5 27.5	27.5	8.0 8.0	8.0	23.4 23.4	23.4	97.0 96.1	96.6	6.8 6.7	6.8	0.0	7.4 7.6	7.5	7.5	8.0 9.2	8.6	8.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	1 1	-	6.3	-	-		-	-	
29-Jul-13	Sunny	Calm	17:41	Middle	0.9	29.7 29.6	29.7	8.2 8.2	8.2	19.9 19.9	19.9	91.9 91.9	91.9	6.3 6.3	6.3	0.5	9.6 9.7	9.7	9.7	3.6 2.6	3.1	3.1
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	1 1	-	7.6	-	-		-	-	
31-Jul-13	Sunny	Calm	06:52	Middle	1.1	29.8 29.8	29.8	8.2 8.2	8.2	17.0 17.0	17.0	111.6 111.0	111.3	7.6 7.6	7.6	7.0	5.7 5.6	5.7	5.7	4.2 3.0	3.6	3.6
				Bottom	-	-	-	- -	-	- -	-	-	-	-	-	-	-	-		-	-	

Water Quality Monitoring Results at SR3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Depti	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NTL	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-		-		-	7.3	-	-		-	-	
2-Jul-13	Sunny	Moderate	15:42	Middle	0.7	29.2 29.2	29.2	8.2 8.2	8.2	19.3 19.3	19.3	104.7 105.9	105.3	7.2 7.3	7.3		8.4 8.1	8.3	8.3	4.0 6.0	5.0	5.0
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	8.2	-	-		-	-	
4-Jul-13	Fine	Calm	16:18	Middle	0.7	30.7 30.7	30.7	8.0 8.0	8.0	13.6 13.6	13.6	123.2 122.0	122.6	8.2 8.1	8.2		13.4 13.0	13.2	13.2	13.0 16.0	14.5	14.5
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	30.1	-	8.2	-	- - 15.3	-	113.0	-	- - 7.8	-	7.9	12.6	-		5.7	-	
6-Jul-13	Cloudy	Moderate	19:45	Middle	1	30.1	30.1	8.2	8.2	15.3	15.3	113.5	113.3	7.9	7.9		11.1	11.9	11.9	8.3	7.0	7.0
				Bottom	-	-	-	-	-		-	-	-	-	-	-	-	-		-	-	
				Surface	-	29.6	-	8.0	-	15.7	-	117.3	-	8.2	-	8.2	10.9	-		23.0	-	
8-Jul-13	Fine	Moderate	18:45	Middle	1	29.6	29.6	8.0	8.0	15.7	15.7	116.3	116.8	8.1	8.2		11.0	11.0	11.0	18.7	20.9	20.9
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	29.1	-	8.0	-	- 17.1	-	84.2	-	5.9	-	5.9	10.8	-		2.9	-	
10-Jul-13	Fine	Moderate	06:04	Middle	0.7	29.1	29.1	8.0	8.0	17.3	17.2	82.5	83.4	5.8	5.9		10.7	10.8	10.8	4.3	3.6	3.6
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	29.0	-	8.1	-	20.2	-	99.6	-	7.2	-	7.2	6.7	-		4.2	-	
12-Jul-13	Sunny	Moderate	07:08	Middle	0.7	29.0	29.0	8.1	8.1	20.1	20.2	98.6	99.1	7.1	7.2		6.6	6.7	6.7	4.3	4.3	4.3
				Bottom Surface	-	-	-	-	<u> </u>	-		-	-	-	-	-	-	<u> </u>		-	-	
15-Jul-13	Rainy	Calm	10:13	Middle	0.7	29.4	29.4	8.0	8.0	19.3	19.3	92.2	92.0	6.3	6.3	6.3	8.0	8.0	8.0	6.7	6.1	6.1
.0 001 10	ranny	Juni	10.10	Bottom	-	29.4	-	8.0	-	19.3	-	91.7	-	6.3	-	_	8.0	-	0.0	5.5	-	0.1
				Surface		-	_	-	_	-	_	-	_	-	_		-	_		-	_	
17-Jul-13	Rainy	Moderate	12:47	Middle	0.6	28.4	28.4	8.1	8.1	20.5	20.5	94.9	95.0	6.6	6.6	6.6	8.8	8.8	8.8	8.8	10.0	10.0
53. 10	,			Bottom	-	28.4	-	8.1	-	20.5	-	95.0	-	6.6	-	-	8.8	-	0.0	11.2	-	
				Dottom	•	_				-	_	-	-	-	-		<u> </u>			<u> </u>		

Water Quality Monitoring Results at SR3 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTl			nded Solids	
54.0	Condition	Condition**	Time	Борс	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	-	-	-	-	-	-	-	-	-	1 1	-	7.2	-	-		-	-	
19-Jul-13	Cloudy	Calm	17:23	Middle	0.9	28.4 28.4	28.4	8.1 8.2	8.2	23.6 23.6	23.6	105.0 104.8	104.9	7.2 7.2	7.2	7.2	9.2 8.7	9.0	9.0	4.1 5.0	4.6	4.6
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	7.0	-	-		-	-	
22-Jul-13	Rainy	Moderate	20:19	Middle	0.7	28.5 28.6	28.6	8.1 8.1	8.1	24.8 24.8	24.8	103.7 102.6	103.2	7.0 6.9	7.0	7.0	8.5 9.2	8.9	8.9	10.7 11.3	11.0	11.0
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	5.8	-	-		-	-	
24-Jul-13	Rainy	Moderate	06:09	Middle	1.1	27.9 27.9	27.9	7.9 8.0	8.0	24.0 24.0	24.0	84.5 84.0	84.3	5.8 5.8	5.8	5.6	11.0 10.9	11.0	11.0	9.8 9.8	9.8	9.8
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	-	-	6.2	-	-		-	-	
26-Jul-13	Rainy	Rough	07:37	Middle	1.3	27.3 27.3	27.3	7.8 7.9	7.9	24.0 24.0	24.0	89.9 86.3	88.1	6.3 6.0	6.2	0.2	14.0 13.3	13.7	13.7	4.9 11.4	8.2	8.2
				Bottom	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	
				Surface	-	-	-	-	-	-	-	-	-	1 1	-	6.2	-	-		-	-	
29-Jul-13	Sunny	Calm	10:14	Middle	1.3	28.3 28.3	28.3	8.0 8.0	8.0	20.5 20.5	20.5	87.4 90.0	88.7	6.1 6.3	6.2	0.2	16.0 16.0	16.0	16.0	4.5 2.5	3.5	3.5
				Bottom	-	-	-	-	-	-	-	-	-	1 1	-	-	-	-		-	-	
			-	Surface	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-		-	-	
31-Jul-13	Sunny	Calm	15:55	Middle	0.6	30.0 30.0	30.0	7.5 7.5	7.5	18.3 18.4	18.4	119.2 120.2	119.7	8.1 8.1	8.1	0.1	5.2 5.3	5.3	5.3	3.2 3.3	3.3	3.3
				Bottom	-	-		-	-	-	-	-	-	1 1	-	-	-	-		-	-	

Water Quality Monitoring Results at SR6 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.6 28.7	28.7	8.3 8.3	8.3	16.8 16.7	16.8	115.8 114.7	115.3	8.2 8.1	8.2	0.0	3.3 2.9	3.1		6.7 4.5	5.6	
2-Jul-13	Sunny	Moderate	08:05	Middle	-	-	-	-	-		-		-	-	-	8.2	-	-	4.8	-	-	6.0
				Bottom	3.1	28.5 28.5	28.5	8.2 8.2	8.2	17.4 17.4	17.4	103.1 103.7	103.4	7.3 7.3	7.3	7.3	6.2 6.8	6.5		5.5 7.0	6.3	
				Surface	1	29.9 29.9	29.9	8.2 8.2	8.2	6.4 6.4	6.4	122.6 123.4	123.0	9.0 9.0	9.0	9.0	4.8 4.8	4.8		1.8 2.0	1.9	
4-Jul-13	Sunny	Calm	09:33	Middle	-	-	-	-	-	-	-	-	-	-	-	9.0	-	-	4.6	-	-	2.1
				Bottom	4.1	28.7 28.7	28.7	8.0 8.0	8.0	18.5 18.6	18.6	93.5 92.1	92.8	6.5 6.4	6.5	6.5	4.4 4.3	4.4		1.2 3.3	2.3	
				Surface	1	29.7 29.7	29.7	8.5 8.5	8.5	10.7 10.7	10.7	125.0 125.6	125.3	9.0 9.0	9.0	9.0	4.4 4.4	4.4		7.0 7.7	7.4	
6-Jul-13	Cloudy	Moderate	10:54	Middle	-		-	-	-	1 1	-	1 1	-		-	5.0	-	-	3.8	-	-	6.8
				Bottom	3.3	28.3 28.3	28.3	8.1 8.1	8.1	26.7 26.9	26.8	77.9 77.4	77.7	5.9 5.9	5.9	5.9	3.0 3.1	3.1		5.0 7.3	6.2	
				Surface	1	29.4 29.4	29.4	8.2 8.2	8.2	12.8 12.8	12.8	98.3 98.0	98.2	7.0 7.0	7.0	7.0	5.4 5.6	5.5		8.0 8.0	8.0	
8-Jul-13	Sunny	Moderate	12:22	Middle	-		-	-	-	1 1	-	1 1	-	-	-	-	-	-	6.2	-	-	6.9
				Bottom	3.4	28.3 28.6	28.5	8.1 8.2	8.2	21.3 17.3	19.3	81.4 83.0	82.2	5.8 6.0	5.9	5.9	7.4 6.4	6.9		6.7 4.7	5.7	
				Surface	1	29.6 29.9	29.8	8.3 8.4	8.4	16.8 15.2	16.0	129.3 129.9	129.6	9.3 9.3	9.3	9.3	4.5 4.5	4.5		3.8 4.3	4.1	
10-Jul-13	Fine	Moderate	13:09	Middle	-		-	-	-	1 1	-	1 1	-	-	-		-	-	8.2	-	-	3.9
				Bottom	3.3	27.5 27.5	27.5	8.1 8.1	8.1	26.2 26.3	26.3	70.0 69.2	69.6	5.1 5.0	5.1	5.1	12.1 11.4	11.8		4.3 2.8	3.6	
				Surface	1	29.7 29.6	29.7	8.2 8.2	8.2	17.2 18.8	18.0	90.7 89.3	90.0	6.6 6.4	6.5	6.5	3.6 3.7	3.7		3.7 3.0	3.4	
12-Jul-13	Sunny	Moderate	14:09	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	5.9	-	-	6.4
				Bottom	4	26.5 26.6	26.6	8.0 8.1	8.1	29.6 28.9	29.3	67.2 67.6	67.4	4.9 5.0	5.0	5.0	7.5 8.7	8.1		8.8 9.7	9.3	
				Surface	1	29.0 29.0	29.0	8.1 8.1	8.1	16.9 16.9	16.9	84.9 84.1	84.5	6.0 5.9	6.0	6.0	1.5 1.6	1.6		2.0 2.3	2.2	
15-Jul-13	Rainy	Calm	17:40	Middle	-	26.4	-	- - 8.0	-	28.3	-	75.2	-	- - 5.1	-		5.5	-	3.7	2.3	-	2.2
				Bottom	4.5	26.4 26.4 28.5	26.4	8.0 8.2	8.0	28.3 17.2	28.3	70.6 90.3	72.9	4.8	5.0	5.0	5.8	5.7		2.3 2.1	2.2	
				Surface	1	28.5	28.5	8.2	8.2	17.2	17.2	90.0	90.2	6.4 6.4	6.4	6.4	2.0	2.1		1.9	1.9	
17-Jul-13	Rainy	Moderate	18:23	Middle	-	26.8	-	- - 8.2	-	- - 27.1	-	- 88.9	-	- - 6.1	-		3.4	-	2.7	2.3	-	2.2
				Bottom	2.9	27.3	27.1	8.2	8.2	24.6	25.9	85.7	87.3	5.9	6.0	6.0	3.4	3.3		2.5	2.4	

Water Quality Monitoring Results at SR6 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI	,		ended Solids	, ,
24.0	Condition	Condition**	Time	Бор	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.6 27.6	27.6	8.2 8.2	8.2	23.8 24.1	24.0	81.6 81.0	81.3	5.6 5.6	5.6	5.6	2.0 2.0	2.0		3.5 5.1	4.3	
19-Jul-13	Cloudy	Calm	08:42	Middle	-		-	-	-		-	1 1	-	1 1	-	3.0	-	-	3.8	-	-	4.9
				Bottom	3.3	26.4 26.4	26.4	8.2 8.2	8.2	29.3 29.2	29.3	72.6 72.7	72.7	4.9 4.9	4.9	4.9	5.9 5.3	5.6		7.7 3.1	5.4	
				Surface	1	27.8 27.7	27.8	8.2 8.2	8.2	27.1 27.8	27.5	79.9 80.3	80.1	5.4 5.4	5.4	<i>-</i> 4	7.5 6.5	7.0		5.2 4.0	4.6	
22-Jul-13	Cloudy	Calm	12:43	Middle	-	-	-	-	-	1 1	-		-		-	5.4	-	-	7.2	-	-	5.0
				Bottom	4.1	27.4 27.4	27.4	8.2 8.2	8.2	28.6 28.7	28.7	81.7 80.9	81.3	5.5 5.5	5.5	5.5	7.1 7.4	7.3		5.5 5.3	5.4	
				Surface	1	27.9 27.9	27.9	8.3 8.3	8.3	26.9 27.0	27.0	91.2 90.9	91.1	6.2 6.1	6.2	6.2	5.4 5.3	5.4		3.8 4.6	4.2	
24-Jul-13	Rainy	Moderate	12:58	Middle	-	-	-	-	-		-		-		-	0.2	-	-	11.3	-	-	3.7
				Bottom	4.4	27.9 27.9	27.9	8.3 8.3	8.3	29.9 29.9	29.9	89.3 89.4	89.4	5.9 5.9	5.9	5.9	17.2 17.0	17.1		2.7 3.7	3.2	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	25.2 25.2	25.2	89.4 89.3	89.4	6.1 6.1	6.1	6.1	8.8 8.5	8.7		3.6 4.0	3.8	
26-Jul-13	Rainy	Rough	14:37	Middle	-	-	-	-	-	-	-		-	-	-	0.1	-	-	9.0	-	-	4.2
				Bottom	4.5	27.7 27.7	27.7	8.3 8.3	8.3	27.4 27.4	27.4	86.7 85.7	86.2	5.9 5.8	5.9	5.9	9.3 9.2	9.3		4.6 4.6	4.6	
				Surface	1	30.2 30.2	30.2	8.1 8.1	8.1	14.6 14.6	14.6	95.9 95.9	95.9	7.3 7.3	7.3	7.3	2.9 2.9	2.9		3.1 2.8	3.0	
29-Jul-13	Sunny	Calm	16:36	Middle	-		-	-	-	1 1	-	1 1	-	1 1	-	7.5	-	-	4.5	-	-	3.1
				Bottom	4.2	27.7 27.6	27.7	8.2 8.2	8.2	25.8 24.8	25.3	76.1 77.3	76.7	5.8 5.9	5.9	5.9	6.1 5.8	6.0		3.2 3.0	3.1	
				Surface	1	28.9 28.9	28.9	8.0 8.0	8.0	15.6 15.5	15.6	101.6 101.3	101.5	7.2 7.2	7.2	7.2	2.1 2.2	2.2		4.4 5.0	4.7	
31-Jul-13	Sunny	Calm	07:31	Middle	-		-	-	-	1 1	-	1 1	-	1 1	-	1.2		-	2.2	-	-	5.1
				Bottom	4.8	27.8 28.1	28.0	8.0 8.0	8.0	24.2 21.8	23.0	79.5 79.0	79.3	5.5 5.5	5.5	5.5	2.0 2.2	2.1		6.6 4.4	5.5	

Water Quality Monitoring Results at SR6 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NT	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.3 29.3	29.3	8.3 8.3	8.3	13.6 13.6	13.6	111.4 109.6	110.5	7.9 7.8	7.9	7.0	5.0 5.0	5.0		6.3 6.8	6.6	
2-Jul-13	Sunny	Moderate	13:56	Middle	-	-	-	-	-		-		-		-	7.9	-	-	7.1	-	-	6.1
				Bottom	3.5	28.7 28.7	28.7	8.2 8.2	8.2	17.2 17.6	17.4	84.9 84.9	84.9	6.0 6.0	6.0	6.0	10.0 8.3	9.2		5.2 6.0	5.6	
				Surface	1	30.1 30.1	30.1	8.1 8.1	8.1	11.1 11.1	11.1	110.6 110.5	110.6	7.9 7.9	7.9	7.0	8.6 8.5	8.6		5.7 5.0	5.4	
4-Jul-13	Fine	Calm	16:34	Middle	-	-	-	-	-		-		-		-	7.9	-	-	12.1	-	-	7.0
				Bottom	4.9	29.1 29.2	29.2	8.0 8.0	8.0	14.6 14.3	14.5	87.3 87.4	87.4	6.2 6.2	6.2	6.2	15.6 15.6	15.6		6.8 10.2	8.5	
				Surface	1	29.7 29.7	29.7	8.4 8.5	8.5	10.4 10.5	10.5	118.9 117.7	118.3	8.5 8.5	8.5	8.5	7.1 7.3	7.2		6.7 5.7	6.2	
6-Jul-13	Cloudy	Moderate	17:52	Middle	-	-	-	-	-		-		-		-	0.5	-	-	10.0	-	-	7.1
				Bottom	3.4	28.5 28.5	28.5	8.1 8.1	8.1	20.8 22.8	21.8	83.7 84.5	84.1	6.4 6.4	6.4	6.4	13.4 12.2	12.8		7.3 8.7	8.0	
				Surface	1	29.0 29.0	29.0	8.1 8.0	8.1	14.0 14.0	14.0	94.8 93.0	93.9	6.8 6.6	6.7	6.7	7.6 8.2	7.9		16.7 14.3	15.5	
8-Jul-13	Fine	Moderate	19:01	Middle	-	-	-	-	-	-	-	-	-	-	-	· · ·	-	-	8.8	-	-	28.9
				Bottom	3.1	28.5 28.4	28.5	8.0 8.0	8.0	17.0 19.2	18.1	82.2 82.5	82.4	5.8 5.8	5.8	5.8	9.2 10.1	9.7		32.0 52.3	42.2	
				Surface	1	28.8 28.7	28.8	8.1 8.2	8.2	14.0 13.9	14.0	96.7 95.9	96.3	6.9 6.9	6.9	6.9	4.2 4.2	4.2		2.1 1.3	1.7	
10-Jul-13	Fine	Moderate	06:04	Middle	-	-	-	-	-		-		-		-	0.0	-	-	5.1	-	-	2.3
				Bottom	3.1	28.6 28.6	28.6	8.1 8.1	8.1	17.7 17.9	17.8	78.0 77.7	77.9	5.5 5.5	5.5	5.5	5.9 6.1	6.0		3.0 2.6	2.8	
				Surface	1	29.4 29.3	29.4	8.2 8.2	8.2	14.6 14.8	14.7	88.3 87.9	88.1	6.5 6.5	6.5	6.5	3.2 3.4	3.3		4.6 24.7	14.7	
12-Jul-13	Sunny	Moderate	07:20	Middle	-	-	-	-	-	-	-	-	-	-	-		-	-	3.9	-	-	8.9
				Bottom	3.2	28.7 28.6	28.7	8.2 8.1	8.2	16.9 18.0	17.5	80.9 77.9	79.4	6.0 5.7	5.9	5.9	4.4 4.5	4.5		2.7 3.5	3.1	
				Surface	1	28.2 28.2	28.2	8.1 8.1	8.1	22.1 22.0	22.1	87.1 89.1	88.1	5.9 6.0	6.0	6.0	5.9 5.5	5.7		3.1 3.1	3.1	
15-Jul-13	Rainy	Calm	11:56	Middle	-	-	-	-	-	-	-	-	-	-	-			-	9.2	-	-	3.4
				Bottom	4.7	26.3 26.5	26.4	8.0 8.0	8.0	28.9 27.9	28.4	77.0 76.9	77.0	5.2 5.2	5.2	5.2	13.1 12.1	12.6		3.9 3.4	3.7	
				Surface	1	28.5 28.1	28.3	8.2 8.2	8.2	17.4 20.4	18.9	91.9 92.2	92.1	6.5 6.5	6.5	6.5	1.8 1.9	1.9		2.0 1.1	1.6	
17-Jul-13	Rainy	Moderate	14:52	Middle	-	-	-	-	-	-	-		-	-	-			-	2.1	-	-	1.7
				Bottom	3.1	28.0 28.1	28.1	8.2 8.2	8.2	20.8 21.0	20.9	87.9 87.1	87.5	6.2 6.1	6.2	6.2	2.1 2.2	2.2		1.4 1.9	1.7	

Water Quality Monitoring Results at SR6 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI	,		ended Solids	
Buto	Condition	Condition**	Time	Бор	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.7 27.7	27.7	8.2 8.2	8.2	24.2 24.2	24.2	82.5 82.2	82.4	5.7 5.7	5.7	5.7	3.9 3.4	3.7		3.7 2.5	3.1	
19-Jul-13	Cloudy	Calm	15:52	Middle	-	-	-	-	-		-		-	-	-	0.7	-	-	6.3	-	-	3.5
				Bottom	3.1	27.6 27.6	27.6	8.2 8.2	8.2	24.2 24.2	24.2	79.5 79.6	79.6	5.5 5.5	5.5	5.5	8.8 8.9	8.9		3.3 4.5	3.9	
				Surface	1	28.2 28.2	28.2	8.0 8.0	8.0	21.4 21.4	21.4	73.8 73.6	73.7	5.1 5.1	5.1	5.1	8.3 8.1	8.2		11.5 9.8	10.7	
22-Jul-13	Rainy	Moderate	19:47	Middle	-	-	-	-	-	-	-	-	-	-	-	5.1	-	-	10.3	-	-	10.7
				Bottom	4	27.8 27.8	27.8	8.0 8.0	8.0	22.9 23.5	23.2	72.8 72.4	72.6	5.0 5.0	5.0	5.0	13.5 11.3	12.4		10.5 10.7	10.6	
				Surface	1	28.0 27.9	28.0	8.1 8.1	8.1	23.0 23.0	23.0	86.1 86.0	86.1	5.9 5.9	5.9	5.9	3.4 3.5	3.5		2.9 3.4	3.2	
24-Jul-13	Rainy	Moderate	06:29	Middle	-	-	-	-	-		-		-	-	-	5.9	-	-	3.6	-	-	3.2
				Bottom	4.8	27.9 28.0	28.0	8.2 8.2	8.2	25.8 26.1	26.0	88.7 88.9	88.8	6.0 6.0	6.0	6.0	3.5 3.6	3.6		3.3 3.0	3.2	
				Surface	1	27.5 27.5	27.5	8.2 8.2	8.2	23.6 23.6	23.6	87.8 88.1	88.0	6.1 6.1	6.1	6.1	7.2 6.3	6.8		5.6 5.5	5.6	
26-Jul-13	Rainy	Rough	08:06	Middle	-		-	-	-	1 1	-	1 1	-	1 1	-	0.1	-	-	9.2	-	-	5.9
				Bottom	4.6	27.6 27.6	27.6	8.2 8.2	8.2	26.2 26.3	26.3	86.3 86.7	86.5	5.9 5.9	5.9	5.9	11.9 11.2	11.6		5.8 6.3	6.1	
				Surface	1	28.3 28.2	28.3	8.1 8.1	8.1	19.4 19.7	19.6	83.4 83.4	83.4	6.4 6.4	6.4	6.4	7.2 7.1	7.2		3.9 3.2	3.6	
29-Jul-13	Sunny	Calm	10:45	Middle	-	-	-	-	-	1 1	-	1 1	-		-	0.7	-	-	12.5	-	-	3.4
				Bottom	4.6	27.8 27.8	27.8	8.2 8.2	8.2	23.0 23.1	23.1	75.3 74.6	75.0	5.7 5.7	5.7	5.7	17.7 17.9	17.8		3.3 3.1	3.2	
				Surface	1	30.1 30.1	30.1	8.3 8.3	8.3	13.7 13.7	13.7	105.8 106.4	106.1	7.5 7.5	7.5	7.5	3.4 3.2	3.3		3.1 3.0	3.1	_
31-Jul-13	Sunny	Calm	13:45	Middle	-		-	-	-	1 1	-	1 1	-	1 1	-	7.5	-	-	2.6	-	-	3.0
				Bottom	4	28.8 28.8	28.8	8.0 8.0	8.0	18.1 18.0	18.1	91.1 90.7	90.9	6.3 6.2	6.3	6.3	1.8 1.7	1.8		2.2 3.5	2.9	

Water Quality Monitoring Results at SRA - Mid-Ebb Tide

Data	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Dept	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.7	28.7	8.0	8.0	17.7	17.7	122.0	118.0	8.6	8.3		9.6	9.5		7.0	6.4	
				Ouriacc		28.7	20.7	8.0	0.0	17.6	17.7	113.9	110.0	8.0	0.0	8.1	9.4	5.5		5.7	0.4	
2-Jul-13	Sunnv	Moderate	07:48	Middle	3.5	28.4	28.5	8.0	8.0	21.4	22.0	112.7	113.8	7.8	7.9	0	7.9	8.5	9.1	4.7	5.0	5.3
	,					28.5		8.0		22.6		114.9		7.9			9.0			5.2		
				Bottom	6	28.3 28.3	28.3	8.0	8.0	23.2 23.3	23.3	104.5 106.1	105.3	7.2	7.3	7.3	9.2	9.3		4.8	4.4	
						28.3		8.0		12.1		120.1		7.3 8.5			9.3			4.0		
				Surface	1	29.8	29.8	8.0	8.0	12.1	12.2	120.1	120.1	8.5	8.5		6.3	6.2		7.3 7.2	7.3	
						29.0	1	7.9		17.7		94.2		6.6		7.6	10.1	+		4.8		
4-Jul-13	Sunny	Calm	09:19	Middle	4	29.0	29.0	7.9	7.9	18.0	17.9	93.9	94.1	6.6	6.6		10.4	10.3	11.9	6.5	5.7	6.1
					_	28.3	22.2	7.8		22.6		74.9		5.2			18.8	40.0		5.0		
				Bottom	7	28.3	28.3	7.8	7.8	23.0	22.8	74.4	74.7	5.1	5.2	5.2	19.6	19.2		5.3	5.2	
				Curfoss	1	29.7	29.7	8.3	8.3	13.3	13.4	102.9	102.9	7.3	7.3		6.1	6.1		5.7	6.7	
				Surface		29.7	29.1	8.3	6.3	13.4	13.4	102.8	102.9	7.3	7.3	7.0	6.1	0.1		7.7	0.7	
6-Jul-13	Cloudy	Moderate	10:38	Middle	4	28.7	28.7	8.1	8.1	22.4	22.1	95.8	96.9	6.6	6.7	7.0	11.5	11.2	19.4	7.3	6.2	5.8
0 001 10	Cloudy	Moderate	10.00	Middle	,	28.7	20.7	8.1	0.1	21.8		97.9	00.0	6.8	0.7		10.8	11.2	10.4	5.0	0.2	0.0
				Bottom	7	28.1	28.2	8.0	8.0	26.7	26.5	82.8	82.0	5.7	5.7	5.7	45.1	40.9		4.0	4.5	
						28.2		8.0		26.2		81.1		5.6			36.6			5.0		
				Surface	1	29.0	29.0	8.2	8.2	14.0	14.1	107.4	104.8	7.9	7.6		7.4	7.6		11.3	10.3	
						28.9 28.5		8.1 8.0		14.2 19.5		102.1 92.9		7.3 6.5		7.1	7.8 13.0			9.3 8.0		
8-Jul-13	Sunny	Moderate	11:45	Middle	4	28.5 28.5	28.5	8.0 8.0	8.0	20.6	20.1	92.9	93.1	6.5	6.5		13.0	13.0	11.4	9.3	8.7	8.6
						27.9		8.0		25.9		78.8		5.6			13.5			6.0		
				Bottom	7	28.0	28.0	8.0	8.0	25.7	25.8	78.2	78.5	5.5	5.6	5.6	13.5	13.5		7.7	6.9	
						29.5		8.2		18.3		92.9		6.4			7.7			2.5		
				Surface	1	28.6	29.1	8.1	8.2	20.7	19.5	93.3	93.1	6.4	6.4		7.8	7.8		1.9	2.2	
40 1 1 40	- :		44.00			28.2	20.0	8.1	0.4	22.9	00.4	81.8	00.0	5.8		6.1	13.5	40.7	45.0	2.9	0.0	0.5
10-Jul-13	Fine	Moderate	14:33	Middle	4	28.2	28.2	8.1	8.1	23.2	23.1	79.4	80.6	5.7	5.8		13.8	13.7	15.8	2.7	2.8	2.5
				Bottom	7	27.3	27.3	8.0	8.0	27.6	27.6	71.7	71.5	5.1	5.1	5.1	26.3	25.8		2.5	2.5	
				DOLLOITI	'	27.3	27.5	8.0	0.0	27.6	27.0	71.3	71.5	5.0	5.1	J. I	25.3	25.0		2.4	2.5	
				Surface	1	30.0	30.0	8.3	8.3	19.8	19.8	89.6	89.1	6.4	6.4		6.5	6.6		8.8	7.4	
				0411400	·	30.0	00.0	8.3	0.0	19.8	10.0	88.5	00.1	6.3	0	6.1	6.6	0.0		6.0		
12-Jul-13	Sunny	Moderate	15:47	Middle	4	28.0	28.1	8.3	8.3	25.1	25.1	78.6	79.2	5.8	5.8	-	9.1	8.9	15.5	8.2	8.2	7.4
	•					28.1		8.3		25.1		79.8		5.8			8.7	+		8.2		
				Bottom	7	27.2 27.2	27.2	8.2 8.2	8.2	28.5 28.5	28.5	67.2 68.7	68.0	5.0 5.1	5.1	5.1	30.0 32.1	31.1		4.2 9.0	6.6	
						28.7		8.1		16.3		94.9		6.4			4.3			5.0		
				Surface	1	28.7	28.7	8.1	8.1	16.9	16.6	95.0	95.0	6.4	6.4		4.4	4.4		4.7	4.9	
						27.1		8.0		26.6		82.1		5.6		6.0	9.3	+		4.7		
15-Jul-13	Rainy	Calm	15:47	Middle	4	27.1	27.1	8.0	8.0	26.7	26.7	81.3	81.7	5.5	5.6		9.7	9.5	10.1	3.8	4.2	4.5
					_	26.5		7.9		28.7		74.1		5.0			16.2	40.5		4.8		
				Bottom	7	26.5	26.5	7.9	7.9	30.0	29.4	73.9	74.0	4.9	5.0	5.0	16.8	16.5		3.7	4.3	
				Surface	1	28.1	28.1	8.0	8.0	20.0	20.1	89.7	89.5	6.3	6.2		5.1	F 2		3.1	2.2	
				Surface	<u>'</u>	28.1	20.1	8.0	0.0	20.1	20.1	89.2	09.5	6.3	6.3	5.8	5.4	5.3		3.2	3.2	
17-Jul-13	Rainy	Moderate	20:19	Middle	4	27.5	27.5	8.0	8.0	23.3	23.4	73.9	73.6	5.2	5.2	5.0	10.0	10.2	13.6	3.0	3.1	3.2
17-00I-10	ranny	moderate	20.10	Middle	7	27.4	21.0	8.0	0.0	23.4	20.7	73.2	70.0	5.1	5.2		10.4	10.2	10.0	3.2	0.1	0.2
				Bottom	7	26.9	27.0	7.9	7.9	25.8	25.7	70.3	70.0	5.0	5.0	5.0	24.1	25.2		4.0	3.4	
						27.0		7.9		25.6		69.6		4.9			26.2			2.8	Ţ	

Water Quality Monitoring Results at SRA - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.4 27.4	27.4	8.0 8.0	8.0	23.5 23.5	23.5	81.8 81.4	81.6	5.7 5.7	5.7	5.6	3.1 3.1	3.1		2.6 3.2	2.9	
19-Jul-13	Cloudy	Calm	08:07	Middle	3.5	26.9 27.0	27.0	8.0 8.0	8.0	26.1 25.9	26.0	79.2 79.6	79.4	5.5 5.5	5.5	5.0	15.0 12.3	13.7	12.9	3.3 2.1	2.7	2.7
				Bottom	6	26.8 26.8	26.8	8.0 8.0	8.0	27.3 27.3	27.3	76.6 76.5	76.6	5.3 5.3	5.3	5.3	21.7 22.3	22.0		1.9 3.3	2.6	
				Surface	1	27.7 27.6	27.7	8.1 8.1	8.1	26.6 26.8	26.7	81.1 80.3	80.7	5.5 5.5	5.5	5.3	5.0 5.8	5.4		3.2 3.5	3.4	
22-Jul-13	Cloudy	Calm	11:14	Middle	3.5	27.5 27.4	27.5	8.2 8.2	8.2	27.6 27.7	27.7	75.7 75.0	75.4	5.1 5.1	5.1	0.0	8.6 9.4	9.0	10.0	3.5 3.4	3.5	3.9
				Bottom	6	27.4 27.4	27.4	8.2 8.2	8.2	28.0 27.9	28.0	73.6 73.2	73.4	5.0 5.0	5.0	5.0	15.0 16.2	15.6		5.1 4.6	4.9	
				Surface	1	27.8 27.8	27.8	8.1 8.1	8.1	26.4 26.4	26.4	94.3 93.8	94.1	6.4 6.4	6.4	6.3	5.6 5.5	5.6		5.1 5.5	5.3	
24-Jul-13	Rainy	Moderate	14:08	Middle	4	27.9 27.8	27.9	8.2 8.2	8.2	29.0 29.1	29.1	91.6 91.8	91.7	6.1 6.1	6.1	0.5	14.3 14.7	14.5	14.2	4.7 59.0	31.9	14.1
				Bottom	7	27.8 27.8	27.8	8.2 8.2	8.2	29.3 29.3	29.3	91.3 91.2	91.3	6.1 6.1	6.1	6.1	21.4 23.5	22.5		4.9 5.2	5.1	
				Surface	1	27.6 27.6	27.6	8.1 8.1	8.1	23.4 23.4	23.4	101.0 100.6	100.8	7.0 7.0	7.0	6.9	10.5 10.7	10.6		12.6 10.2	11.4	
26-Jul-13	Rainy	Rough	15:48	Middle	6.5	27.5 27.5	27.5	8.1 8.1	8.1	24.6 24.5	24.6	97.6 98.5	98.1	6.8 6.8	6.8	0.0	12.5 10.4	11.5	13.5	9.8 13.8	11.8	13.4
				Bottom	12	27.5 27.5	27.5	8.1 8.1	8.1	24.6 24.6	24.6	96.8 95.7	96.3	6.7 6.6	6.7	6.7	18.7 17.9	18.3		16.6 17.2	16.9	
				Surface	1	29.3 29.3	29.3	8.1 8.1	8.1	18.0 17.9	18.0	87.2 83.9	85.6	6.0 5.8	5.9	5.8	5.3 5.9	5.6		2.7 2.8	2.8	
29-Jul-13	Sunny	Calm	17:34	Middle	6.5	28.9 28.9	28.9	8.1 8.1	8.1	18.9 18.9	18.9	81.0 81.3	81.2	5.6 5.7	5.7	0.0	8.1 8.3	8.2	8.3	3.1 3.1	3.1	3.0
				Bottom	12	28.9 28.8	28.9	8.1 8.1	8.1	19.1 19.4	19.3	79.3 78.7	79.0	5.5 5.5	5.5	5.5	10.9 11.0	11.0		3.0 3.1	3.1	
				Surface	1	29.3 29.3	29.3	8.2 8.2	8.2	16.1 16.1	16.1	107.3 107.1	107.2	7.4 7.4	7.4	6.8	4.1 4.1	4.1		4.8 3.2	4.0	
31-Jul-13	Sunny	Calm	06:53	Middle	4	28.1 28.0	28.1	8.2 8.2	8.2	24.0 24.2	24.1	91.4 91.2	91.3	6.2 6.1	6.2	0.0	6.2 6.3	6.3	6.3	3.8 9.2	6.5	5.1
				Bottom	7	27.6 27.6	27.6	8.2 8.2	8.2	26.6 26.6	26.6	86.8 86.6	86.7	5.8 5.8	5.8	5.8	8.6 8.4	8.5		5.4 4.4	4.9	

Water Quality Monitoring Results at SRA - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)		Turbidity(NTI	U)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.2 29.2	29.2	8.2 8.2	8.2	19.0 19.0	19.0	105.6 103.3	104.5	7.3 7.1	7.2		6.8 6.5	6.7		5.7 6.3	6.0	
2-Jul-13	Sunny	Moderate	15:34	Middle	4	28.7 28.8	28.8	8.1 8.1	8.1	20.3 20.2	20.3	98.5 99.9	99.2	6.8 6.9	6.9	7.1	8.8 8.4	8.6	10.1	5.7 5.3	5.5	6.1
				Bottom	7	28.2 28.6	28.4	7.9 8.0	8.0	23.1	22.8	83.4 97.2	90.3	5.7 6.7	6.2	6.2	15.9 14.3	15.1		6.8	6.8	
				Surface	1	31.1	31.2	8.3	8.3	13.3	13.3	140.8	134.8	9.7	9.3		4.3	3.9		20.3	17.3	
4-Jul-13	Fine	Calm	16:24	Middle	4	31.2 28.9	29.0	7.9	7.9	13.3 20.8	20.7	128.8 102.0	97.6	7.0	6.7	8.0	3.5 9.8	9.8	9.1	14.3	7.7	10.8
				Bottom	7	29.0 28.3	28.3	7.9 7.8	7.9	20.5 24.3	24.2	93.2 80.5	79.9	6.4 5.5	5.5	5.5	9.8 15.2	13.7		2.3 12.0	7.4	
				Dottom	<u>'</u>	28.3	20.0	7.9	7.0	24.1	21.2	79.3	70.0	5.4	0.0	0.0	12.2	10.7		2.7	77	
				Surface	1	30.1 29.1	29.6	8.3 8.1	8.2	15.5 16.3	15.9	106.0 101.1	103.6	7.3 7.0	7.2	6.8	14.0 12.1	13.1		10.0 7.3	8.7	
6-Jul-13	Cloudy	Moderate	19:31	Middle	4	30.0 28.5	29.3	8.3 8.0	8.2	19.8 20.3	20.1	93.5 89.2	91.4	6.4 6.1	6.3		16.1 15.5	15.8	17.4	7.0 7.0	7.0	7.2
				Bottom	7	29.3 28.7	29.0	8.1 8.0	8.1	23.0 23.7	23.4	82.8 80.3	81.6	5.7 5.6	5.7	5.7	22.4 24.4	23.4		5.3 6.7	6.0	
				Surface	1	29.7 29.7	29.7	8.1 8.2	8.2	15.6 15.7	15.7	118.2 116.8	117.5	8.3 8.0	8.2	7.4	7.3 6.9	7.1		18.0 21.3	19.7	
8-Jul-13	Fine	Moderate	18:50	Middle	4	29.1 28.7	28.9	8.0 8.0	8.0	21.4 20.6	21.0	97.6 95.3	96.5	6.7 6.5	6.6	7.4	9.4 8.8	9.1	8.9	18.0 7.0	12.5	17.8
				Bottom	7	28.3 28.2	28.3	7.9 7.9	7.9	23.9 24.0	24.0	86.7 85.9	86.3	6.0 5.8	5.9	5.9	11.0 10.2	10.6		24.3 18.0	21.2	
				Surface	1	29.1 29.1	29.1	8.1 8.1	8.1	17.3 17.3	17.3	92.1 89.8	91.0	6.4 6.2	6.3		7.8 8.3	8.1		5.2 4.7	5.0	I.
10-Jul-13	Fine	Moderate	06:09	Middle	4	28.2	28.2	8.0	8.0	22.5	22.5	80.3	81.1	5.6	5.7	6.0	12.6	12.7	14.7	3.6	3.7	4.4
				Bottom	7	28.2 28.0	28.1	8.0 8.0	8.0	22.5 23.5	23.4	81.9 72.1	72.7	5.7 5.0	5.1	5.1	12.7 22.2	23.2		3.7 4.0	4.4	
				Surface	1	28.1 29.3	29.3	8.0 8.1	8.1	23.2 19.7	19.8	73.2 105.3	105.0	5.1 7.5	7.5		24.2 4.3	4.4		4.7 5.4	5.7	
12-Jul-13	Sunny	Moderate	07:13	Middle	4	29.2 28.9	28.9	8.1 8.1	8.1	19.8 20.4	20.5	104.7 91.0	91.6	7.5 6.6	6.7	7.1	4.5 8.1	7.4	9.1	5.9 9.3	7.8	6.8
12-Jul-13	Sullily	Woderate	07.13			28.9 28.2		8.1 8.1		20.5 24.0		92.1 77.7		6.7 5.6		5.0	6.7 15.1		9.1	6.3 9.8		0.0
				Bottom	7	28.1 29.5	28.2	8.1 8.1	8.1	24.1 19.3	24.1	76.9 102.1	77.3	5.6 7.2	5.6	5.6	15.7 10.0	15.4	1	3.8	6.8	
				Surface	1	29.5 28.0	29.5	8.1 7.8	8.1	19.3 24.8	19.3	98.1 87.0	100.1	7.0	7.1	6.5	9.6	9.8		9.2	9.6	
15-Jul-13	Rainy	Calm	10:19	Middle	3.5	28.0 27.0	28.0	7.9 7.7	7.9	24.6 29.0	24.7	84.1 75.3	85.6	5.8 5.1	5.9		12.3	12.4	11.8	9.4	10.7	9.5
				Bottom	6	26.9	27.0	7.7	7.7	29.1	29.1	74.7	75.0	5.1	5.1	5.1	12.7	13.1		6.6	8.3	
				Surface	1	28.5 28.5	28.5	8.0 8.0	8.0	19.8 19.8	19.8	84.0 84.2	84.1	5.8 5.9	5.9	5.6	7.3 7.3	7.3		6.8 6.2	6.5	
17-Jul-13	Rainy	Moderate	12:53	Middle	3.5	27.3 27.3	27.3	8.0 8.0	8.0	23.9 23.9	23.9	72.3 72.8	72.6	5.2 5.2	5.2	0.0	8.7 9.3	9.0	10.1	6.2 5.6	5.9	6.2
				Bottom	6	26.5 26.5	26.5	8.0 8.0	8.0	27.6 27.5	27.6	69.2 68.6	68.9	5.1 5.1	5.1	5.1	13.9 14.2	14.1		5.4 7.0	6.2	

Water Quality Monitoring Results at SRA - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI	,		ended Solids	` ' '
20.0	Condition	Condition**	Time	Бор	(***)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.4 28.4	28.4	8.2 8.2	8.2	23.6 23.7	23.7	106.0 106.1	106.1	7.3 7.3	7.3	7.1	9.6 9.6	9.6		11.0 4.9	8.0	
19-Jul-13	Cloudy	Calm	17:17	Middle	3.5	28.3 28.3	28.3	8.2 8.2	8.2	23.8 23.8	23.8	100.7 100.4	100.6	6.9 6.9	6.9	7.1	10.7 10.6	10.7	10.9	7.8 5.6	6.7	6.5
				Bottom	6	28.0 28.2	28.1	8.1 8.1	8.1	24.2 24.1	24.2	92.8 91.4	92.1	6.4 6.3	6.4	6.4	12.5 12.4	12.5		5.3 4.5	4.9	
				Surface	1	28.3 28.3	28.3	8.1 8.1	8.1	24.9 25.0	25.0	92.4 92.2	92.3	6.3 6.3	6.3		11.4 10.9	11.2		10.9 10.0	10.5	
22-Jul-13	Rainy	Moderate	20:07	Middle	3.5	28.3 28.3	28.3	8.1 8.1	8.1	25.0 25.0	25.0	91.7 91.6	91.7	6.2	6.2	6.3	13.9	14.0	13.7	10.4	9.9	9.7
				Bottom	6	28.3 28.3	28.3	8.1 8.1	8.1	25.0 25.0	25.0	91.1 91.0	91.1	6.2	6.2	6.2	15.9 16.1	16.0		8.6 8.5	8.6	
				Surface	1	28.0 28.0	28.0	8.0 8.0	8.0	24.1 24.1	24.1	86.2 83.9	85.1	5.9 5.8	5.9	F 7	5.8 5.8	5.8		7.2 6.8	7.0	
24-Jul-13	Rainy	Moderate	06:13	Middle	4.5	28.0 28.0	28.0	8.0 8.0	8.0	24.1 24.1	24.1	78.6 78.8	78.7	5.4 5.4	5.4	5.7	8.2 7.6	7.9	14.4	6.5 7.6	7.1	7.0
				Bottom	8	28.0 28.0	28.0	7.9 8.0	8.0	24.1 24.1	24.1	77.4 77.4	77.4	5.3 5.3	5.3	5.3	30.7 28.4	29.6		6.8 6.9	6.9	
				Surface	1	27.1 27.2	27.2	8.0 8.0	8.0	22.7 22.8	22.8	89.5 88.7	89.1	6.3 6.2	6.3	6.2	11.6 11.6	11.6		16.2 11.7	14.0	
26-Jul-13	Rainy	Rough	07:43	Middle	7.5	27.3 27.2	27.3	8.0 8.0	8.0	23.9 23.9	23.9	85.0 85.5	85.3	5.9 6.0	6.0	0.2	12.8 12.7	12.8	12.9	5.4 5.0	5.2	9.7
				Bottom	14	27.3 27.3	27.3	8.0 8.0	8.0	24.2 24.2	24.2	83.9 83.3	83.6	5.8 5.8	5.8	5.8	14.2 14.6	14.4		6.6 13.2	9.9	
				Surface	1	28.5 28.5	28.5	8.1 8.1	8.1	19.7 19.8	19.8	89.3 90.6	90.0	6.2 6.3	6.3	6.2	7.1 6.3	6.7		2.8 2.6	2.7	
29-Jul-13	Sunny	Calm	10:18	Middle	7.5	28.2 28.2	28.2	8.1 8.1	8.1	20.9 20.9	20.9	86.7 86.8	86.8	6.0 6.0	6.0	0.2	8.7 8.4	8.6	10.9	2.4 1.8	2.1	2.5
				Bottom	14	27.8 27.8	27.8	8.1 8.1	8.1	24.0 24.0	24.0	81.1 79.9	80.5	5.6 5.5	5.6	5.6	17.3 17.6	17.5		2.7 2.8	2.8	
				Surface	1	30.5 30.5	30.5	7.9 7.9	7.9	17.7 17.7	17.7	113.9 114.1	114.0	7.7 7.7	7.7	6.8	5.3 5.4	5.4		4.2 3.0	3.6	
31-Jul-13	Sunny	Calm	15:47	Middle	3.5	28.8 28.8	28.8	7.7 7.7	7.7	22.1 22.2	22.2	88.3 88.0	88.2	5.9 5.9	5.9	0.0	6.6 6.8	6.7	7.0	3.2 2.8	3.0	3.5
				Bottom	6	27.7 27.7	27.7	7.7 7.7	7.7	26.7 26.7	26.7	78.0 77.6	77.8	5.2 5.2	5.2	5.2	8.7 8.8	8.8		3.2 4.6	3.9	

Water Quality Monitoring Results at ST1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	-	Turbidity(NTl	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бери	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.7	28.7	8.3	8.3	16.8	16.8	107.3	106.0	7.6	7.5		2.9	3.0		8.5	7.7	
						28.6 28.6		8.3 8.3		16.8 16.9		104.7 83.1		7.4 5.8		6.6	3.0 2.9			6.8 7.5		
2-Jul-13	Sunny	Moderate	08:46	Middle	5	28.6	28.6	8.3	8.3	16.8	16.9	79.9	81.5	5.5	5.7		3.0	3.0	5.7	6.5	7.0	6.8
				Bottom	9	28.2	28.3	8.2	8.2	22.4	21.8	80.8	78.2	5.6	5.5	5.5	11.4	11.2		4.8	5.6	
				DOLLOITI	9	28.4	20.5	8.2	0.2	21.1	21.0	75.5	70.2	5.3	3.3	5.5	10.9	11.2		6.3	3.0	
				Surface	1	30.0	30.0	8.2	8.2	6.1	6.1	119.2	119.4	8.7	8.7		5.2	5.2		6.7	5.5	
						30.0 29.1		8.2 8.0		6.1 14.5		119.5 94.5		8.7 6.7		7.7	5.2 4.8			4.2		
4-Jul-13	Sunny	Calm	10:54	Middle	4.5	29.1	29.1	8.0	8.0	14.5	14.5	94.6	94.6	6.7	6.7		4.8	4.8	4.8	3.5	4.2	4.7
				Bottom	8	28.7	28.7	8.1	8.1	19.4	19.4	85.8	86.0	6.0	6.0	6.0	4.3	4.3		5.2	4.4	
				Dottom	Ů	28.7	20.7	8.0	0.1	19.3	10.4	86.1	00.0	6.0	0.0	0.0	4.3	1.0		3.5	7.7	
				Surface	1	29.8 29.8	29.8	8.6 8.6	8.6	10.9 10.8	10.9	119.7 119.4	119.6	8.3 8.2	8.3		4.4 4.2	4.3		8.0 7.7	7.9	
0 1 1 40	01. 1		44.40	14:1.0		28.9	00.0	8.2	0.0	21.3	04.7	99.2	00.5	7.7	7.0	8.1	4.2	4.0		8.7	0.0	
6-Jul-13	Cloudy	Moderate	11:49	Middle	5.5	28.8	28.9	8.2	8.2	22.1	21.7	99.8	99.5	7.8	7.8		4.4	4.3	6.5	7.3	8.0	7.5
				Bottom	10	27.7	27.7	8.1	8.1	29.5	29.5	76.9	76.6	6.1	6.1	6.1	10.2	10.8		7.7	6.7	
						27.7 29.7		8.1 8.4		29.5 12.3		76.2 120.2		6.1 8.5			11.4 5.2			5.7 8.0		
				Surface	1	29.7	29.7	8.4	8.4	12.3	12.3	117.7	119.0	8.4	8.5		5.2	5.1		7.3	7.7	
8-Jul-13	Sunny	Moderate	13:19	Middle	5.5	28.3	28.4	8.1	8.1	19.4	19.8	107.6	107.5	7.8	7.8	8.2	4.3	4.3	10.0	6.3	7.2	6.6
0-Jul- 13	Suring	Woderate	13.19	Midule	5.5	28.5	20.4	8.1	0.1	20.2	19.0	107.4	107.5	7.8	7.0		4.2	4.3	10.0	8.0	1.2	0.0
				Bottom	10	27.1 27.1	27.1	8.0 8.1	8.1	30.6 30.5	30.6	76.6 75.3	76.0	5.5 5.4	5.5	5.5	18.9 22.1	20.5		5.3 4.3	4.8	
						29.0		8.3		17.3		111.2		8.1			3.7			5.0		
				Surface	1	29.3	29.2	8.3	8.3	16.9	17.1	112.2	111.7	8.1	8.1	7.2	4.1	3.9		4.3	4.7	
10-Jul-13	Fine	Moderate	14:05	Middle	5	27.7	27.9	8.2	8.3	26.9	25.8	86.8	86.4	6.2	6.2	1.2	3.1	3.1	7.1	4.2	3.7	3.9
					•	28.0 26.9		8.3 8.1		24.6 29.1		86.0 70.4		6.2 5.1			3.1 15.2			3.2		
				Bottom	9	26.9	26.9	8.2	8.2	29.1	29.1	70.4 70.5	70.5	5.1 5.1	5.1	5.1	13.3	14.3		3.6	3.4	
				Surface	1	30.6	30.2	8.3	8.3	16.1	16.7	104.3	103.0	7.4	7.4		2.5	2.7		3.9	3.1	
				Surface		29.8	30.2	8.3	6.3	17.3	10.7	101.6	103.0	7.3	7.4	6.6	2.9	2.1		2.2	3.1	
12-Jul-13	Sunny	Moderate	15:10	Middle	5	27.6 27.7	27.7	8.1 8.1	8.1	25.7 25.4	25.6	79.5 80.6	80.1	5.8	5.8		9.6 8.3	9.0	8.3	3.2 2.7	3.0	4.1
						26.4		8.0		30.0		70.2		5.8 5.2			13.3			6.6		
				Bottom	9	26.4	26.4	8.0	8.0	29.8	29.9	69.2	69.7	5.1	5.2	5.2	13.0	13.2		5.7	6.2	
				Surface	1	29.0	29.0	8.2	8.2	16.9	16.9	85.9	86.6	6.0	6.1		1.8	1.9		2.4	2.3	
				Ouridoc		29.0	20.0	8.2	0.2	16.9	10.0	87.2	00.0	6.1	0.1	5.9	1.9	1.0		2.2	2.0	
15-Jul-13	Rainy	Calm	16:50	Middle	5	26.7 26.6	26.7	8.0 8.0	8.0	26.4 28.4	27.4	81.5 83.4	82.5	5.6 5.7	5.7		6.6 6.6	6.6	6.9	2.7 2.0	2.4	2.3
				D. 11.	_	25.9	05.0	8.0	0.0	29.9	00.0	72.9	70.0	4.9	4.0	4.0	12.8	40.4		2.2	0.4	
				Bottom	9	25.8	25.9	8.0	8.0	30.1	30.0	72.7	72.8	4.9	4.9	4.9	11.4	12.1		2.0	2.1	
				Surface	1	28.5	28.5	8.2	8.2	17.2	17.2	83.6	83.2	5.9	5.9		1.9	2.1		1.2	1.3	
						28.5 27.1		8.2 8.2		17.1 26.1		82.8 75.1		5.9 5.4		5.7	3.3			1.3 3.0		
17-Jul-13	Rainy	Moderate	19:28	Middle	5	27.1	27.1	8.2	8.2	23.9	25.0	75.1 74.6	74.9	5.4 5.4	5.4		3.3	3.3	4.9	1.9	2.5	1.7
				Bottom	9	25.7	25.7	8.2	8.2	30.6	30.6	73.8	74.4	5.1	5.2	5.2	9.2	9.4		1.4	1.4	1
				טטנטווו	Ð	25.7	20.1	8.2	0.2	30.6	30.0	74.9	/4.4	5.2	5.2	5.2	9.5	9.4		1.4	1.4	

Water Quality Monitoring Results at ST1 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	(111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.1 28.1	28.1	8.2 8.2	8.2	21.0 21.0	21.0	84.2 82.1	83.2	5.9 5.7	5.8	5.6	1.8 1.9	1.9		2.6 2.3	2.5	
19-Jul-13	Cloudy	Calm	09:58	Middle	5	26.9 27.3	27.1	8.3 8.3	8.3	28.3 27.4	27.9	78.6 79.1	78.9	5.4 5.4	5.4	5.0	2.0 2.1	2.1	6.5	1.6 1.4	1.5	2.0
				Bottom	9	26.2 26.2	26.2	8.2 8.2	8.2	29.8 29.8	29.8	71.2 71.6	71.4	5.0 5.0	5.0	5.0	16.0 14.8	15.4		2.2 1.7	2.0	
				Surface	1	27.8 27.7	27.8	8.1 8.2	8.2	27.3 26.8	27.1	83.7 80.3	82.0	5.7 5.4	5.6	5.6	4.4 5.1	4.8		6.7 7.3	7.0	
22-Jul-13	Cloudy	Calm	11:45	Middle	5	27.4 27.4	27.4	8.2 8.2	8.2	28.8 28.8	28.8	80.8 81.1	81.0	5.4 5.5	5.5	5.0	7.7 7.5	7.6	7.5	4.7 5.9	5.3	5.6
				Bottom	9	27.4 27.4	27.4	8.2 8.2	8.2	29.0 28.9	29.0	80.1 80.2	80.2	5.4 5.4	5.4	5.4	11.2 9.2	10.2		3.9 5.2	4.6	
				Surface	1	27.9 27.9	27.9	8.3 8.3	8.3	27.6 27.6	27.6	90.0 89.9	90.0	6.1 6.1	6.1	5.9	4.8 4.6	4.7		9.3 11.5	10.4	
24-Jul-13	Rainy	Moderate	13:13	Middle	4.5	27.9 27.9	27.9	8.3 8.3	8.3	29.3 29.4	29.4	85.4 85.5	85.5	5.7 5.7	5.7	5.9	11.3 12.0	11.7	17.2	8.5 6.7	7.6	9.1
				Bottom	8	27.9 27.9	27.9	8.3 8.3	8.3	29.9 29.9	29.9	86.0 86.0	86.0	5.7 5.7	5.7	5.7	34.5 35.6	35.1		5.1 13.2	9.2	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	24.5 24.5	24.5	91.4 91.6	91.5	6.3 6.3	6.3	6.3	8.7 8.0	8.4		7.2 5.0	6.1	
26-Jul-13	Rainy	Rough	14:52	Middle	4.5	27.7 27.7	27.7	8.2 8.2	8.2	25.1 25.2	25.2	90.7 90.5	90.6	6.2 6.2	6.2	0.3	7.3 7.6	7.5	10.3	8.0 8.1	8.1	6.8
				Bottom	8	27.6 27.6	27.6	8.2 8.2	8.2	26.3 26.4	26.4	87.6 87.5	87.6	6.0 6.0	6.0	6.0	14.8 15.1	15.0		6.0 6.3	6.2	
				Surface	1	30.3 30.3	30.3	8.1 8.1	8.1	14.7 14.7	14.7	98.7 99.1	98.9	7.5 7.5	7.5	6.8	2.9 2.9	2.9		4.3 5.0	4.7	
29-Jul-13	Sunny	Calm	18:00	Middle	4.5	27.9 27.9	27.9	8.2 8.2	8.2	23.2 23.2	23.2	79.1 79.8	79.5	6.0 6.1	6.1	0.0	5.2 4.5	4.9	5.8	3.6 3.0	3.3	3.7
				Bottom	8	27.2 27.2	27.2	8.2 8.2	8.2	28.8 28.7	28.8	69.3 68.2	68.8	5.3 5.2	5.3	5.3	9.3 9.6	9.5		3.0 3.0	3.0	
				Surface	1	29.4 29.4	29.4	8.0 8.0	8.0	12.9 12.9	12.9	112.8 113.3	113.1	8.0 8.0	8.0	7.4	2.7 2.7	2.7		6.2 5.0	5.6	
31-Jul-13	Sunny	Calm	08:16	Middle	4.5	28.8 28.8	28.8	7.9 7.9	7.9	17.2 17.6	17.4	96.4 95.5	96.0	6.7 6.6	6.7	7.4	2.0 2.0	2.0	3.5	5.6 5.4	5.5	5.5
				Bottom	8	27.1 27.1	27.1	8.0 8.0	8.0	28.3 28.2	28.3	75.5 75.2	75.4	5.1 5.1	5.1	5.1	6.0 5.8	5.9		5.8 5.2	5.5	

Water Quality Monitoring Results at ST1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	h (m)	Tempera	ture (°C)	р	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)	٦	Γurbidity(NT\	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	БСРІ	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.4 29.5	29.5	8.4 8.4	8.4	13.7 14.2	14.0	106.7 107.8	107.3	7.6 7.6	7.6		2.4 2.6	2.5		8.2 5.5	6.9	
2-Jul-13	Sunny	Moderate	14:49	Middle	5.5	28.6 28.7	28.7	8.2 8.2	8.2	18.7 18.4	18.6	78.7 80.8	79.8	5.5 5.7	5.6	6.6	5.3 5.6	5.5	5.8	4.2 5.2	4.7	6.1
				Bottom	10	28.1 28.2	28.2	8.1 8.1	8.1	21.6 21.6	21.6	72.8 71.3	72.1	5.2 5.2	5.2	5.2	10.0 8.7	9.4		6.5 7.0	6.8	
				Surface	1	30.8 30.8	30.8	8.0 8.0	8.0	5.9 5.8	5.9	102.4 102.1	102.3	7.4 7.4	7.4		6.4 6.3	6.4		5.2 4.7	5.0	
4-Jul-13	Fine	Calm	18:04	Middle	5	30.6 30.6	30.6	8.0 8.0	8.0	6.4 6.4	6.4	101.9 102.2	102.1	7.4 7.4	7.4	7.4	6.1 6.1	6.1	6.1	5.3 8.2	6.8	5.5
				Bottom	9	30.5 30.5	30.5	8.0 8.0	8.0	7.7 7.6	7.7	102.2 102.0	102.1	7.4 7.3	7.4	7.4	5.7 5.6	5.7		6.2 3.3	4.8	
				Surface	1	29.6 29.6	29.6	8.4 8.4	8.4	11.4 10.4	10.9	112.9 113.6	113.3	8.1 8.2	8.2		7.3 7.9	7.6		11.0 11.7	11.4	
6-Jul-13	Cloudy	Moderate	18:50	Middle	6	29.1 29.1	29.1	8.3 8.3	8.3	15.6 16.7	16.2	90.8 92.0	91.4	6.4 6.4	6.4	7.3	11.9 12.0	12.0	11.2	10.7 12.7	11.7	10.5
				Bottom	11	28.3 28.3	28.3	8.1 8.1	8.1	24.1 23.5	23.8	75.8 76.0	75.9	5.8 5.8	5.8	5.8	14.3 13.7	14.0		8.7 8.0	8.4	
				Surface	1	29.4 29.4	29.4	8.1 8.1	8.1	11.8 12.1	12.0	93.7 92.0	92.9	6.7 6.6	6.7	6.4	6.3 7.2	6.8		5.0 1.7	3.4	
8-Jul-13	Fine	Moderate	19:54	Middle	5	29.1 28.7	28.9	8.0 8.0	8.0	14.3 15.6	15.0	85.7 81.8	83.8	6.1 5.8	6.0	0.4	9.5 9.2	9.4	13.5	15.7 16.3	16.0	9.3
				Bottom	9	28.2 28.3	28.3	8.0 8.0	8.0	20.9 20.3	20.6	78.2 78.6	78.4	5.6 5.6	5.6	5.6	23.9 24.5	24.2		5.3 11.7	8.5	
				Surface	1	29.0 28.9	29.0	8.2 8.2	8.2	14.6 14.1	14.4	93.4 93.6	93.5	6.6 6.7	6.7	6.0	4.8 4.4	4.6		2.6 1.6	2.1	
10-Jul-13	Fine	Moderate	06:57	Middle	5.5	28.5 28.6	28.6	8.1 8.1	8.1	18.9 18.7	18.8	74.6 73.1	73.9	5.2 5.1	5.2	0.0	5.9 5.9	5.9	5.7	2.4 2.2	2.3	2.3
				Bottom	10	28.1 28.1	28.1	8.2 8.2	8.2	22.6 22.8	22.7	73.4 72.5	73.0	5.1 5.0	5.1	5.1	5.8 7.2	6.5		2.2 2.5	2.4	
				Surface	1	28.7 28.6	28.7	8.1 8.1	8.1	19.5 20.2	19.9	78.1 77.5	77.8	5.7 5.6	5.7	5.3	3.8 4.1	4.0		3.0 3.5	3.3	
12-Jul-13	Sunny	Moderate	08:26	Middle	5.5	26.2 26.4	26.3	8.0 8.1	8.1	30.4 29.8	30.1	68.3 66.1	67.2	5.0 4.8	4.9	0.0	5.6 5.4	5.5	7.5	4.4 5.0	4.7	7.7
				Bottom	10	26.0 26.0	26.0	8.0 8.0	8.0	31.2 31.1	31.2	67.4 66.8	67.1	5.0 4.9	5.0	5.0	12.9 13.2	13.1		16.0 14.3	15.2	
				Surface	1	28.0 28.0	28.0	8.1 8.1	8.1	22.8 22.9	22.9	96.4 93.7	95.1	6.5 6.3	6.4	5.9	4.5 4.5	4.5		4.1 0.5	2.3	
15-Jul-13	Rainy	Calm	10:55	Middle	5	26.7 26.7	26.7	8.0 8.0	8.0	27.6 27.7	27.7	80.4 80.3	80.4	5.4 5.4	5.4		7.5 7.3	7.4	8.9	2.4	2.3	2.5
				Bottom	9	26.2 26.3	26.3	8.0 8.0	8.0	29.2 28.9	29.1	73.4 72.3	72.9	4.9 4.8	4.9	4.9	14.0 15.4	14.7		2.5 3.3	2.9	
				Surface	1	28.4 28.4	28.4	8.2 8.2	8.2	17.3 17.9	17.6	91.1 92.4	91.8	6.5 6.5	6.5	6.1	2.6 2.6	2.6		3.1 2.2	2.7	
17-Jul-13	Rainy	Moderate	13:44	Middle	5	28.0 28.0	28.0	8.2 8.2	8.2	20.9	20.9	81.1 80.7	80.9	5.7 5.7	5.7		2.3	2.3	3.1	2.2 1.3	1.8	2.1
				Bottom	9	27.5 27.6	27.6	8.2 8.2	8.2	23.6 23.0	23.3	73.3 73.5	73.4	5.1 5.1	5.1	5.1	4.3 4.5	4.4		1.5 1.8	1.7	

Water Quality Monitoring Results at ST1 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dent	th (m)	Tempera	ature (°C)	p	Н	Salin	ity ppt	DO Satu	ıration (%)	Disso	lved Oxygen	(mg/L)		Turbidity(NT	J)	Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борс	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.1 28.0	28.1	8.3 8.3	8.3	22.8 23.1	23.0	97.2 95.1	96.2	6.7 6.5	6.6	6.2	2.5 2.6	2.6		4.5 2.1	3.3	
19-Jul-13	Cloudy	Calm	16:53	Middle	5.5	27.9 27.8	27.9	8.2 8.2	8.2	23.5 24.5	24.0	83.2 82.3	82.8	5.7 5.6	5.7	0.2	2.7 2.8	2.8	5.4	10.7 5.3	8.0	5.1
				Bottom	10	26.8 26.8	26.8	8.2 8.2	8.2	27.3 27.3	27.3	75.5 74.4	75.0	5.2 5.1	5.2	5.2	10.3 11.1	10.7		4.2 3.6	3.9	
				Surface	1	28.2 28.2	28.2	8.0 8.0	8.0	21.4 21.4	21.4	76.0 74.7	75.4	5.3 5.2	5.3	5.3	9.6 9.7	9.7		8.2 10.2	9.2	
22-Jul-13	Rainy	Moderate	18:57	Middle	5	28.2 28.1	28.2	7.9 8.0	8.0	21.7 21.9	21.8	76.3 75.7	76.0	5.3 5.2	5.3	5.3	9.0 9.5	9.3	10.8	8.5 8.7	8.6	9.0
				Bottom	9	27.6 27.9	27.8	8.0 8.0	8.0	25.0 24.4	24.7	74.1 75.0	74.6	5.1 5.1	5.1	5.1	13.9 13.1	13.5		9.2 9.2	9.2	
				Surface	1	27.9 27.9	27.9	8.1 8.1	8.1	23.1 23.0	23.1	83.5 83.4	83.5	5.8 5.8	5.8	5.8	3.7 3.4	3.6		9.0 8.7	8.9	
24-Jul-13	Rainy	Moderate	07:46	Middle	5	27.9 27.9	27.9	8.2 8.2	8.2	25.0 25.1	25.1	85.5 85.4	85.5	5.8 5.8	5.8	3.0	3.5 3.5	3.5	9.9	37.0 3.4	20.2	15.9
				Bottom	9	28.0 28.0	28.0	8.3 8.3	8.3	27.8 27.7	27.8	85.6 85.7	85.7	5.7 5.8	5.8	5.8	24.0 20.9	22.5		32.0 5.4	18.7	
				Surface	1	27.5 27.5	27.5	8.1 8.1	8.1	23.3 23.3	23.3	93.0 93.3	93.2	6.5 6.5	6.5	6.4	6.4 5.8	6.1		6.0 3.8	4.9	
26-Jul-13	Rainy	Rough	09:25	Middle	5	27.6 27.6	27.6	8.2 8.2	8.2	24.7 24.7	24.7	91.3 92.1	91.7	6.3 6.3	6.3	0.4	5.8 5.5	5.7	8.7	5.6 5.8	5.7	5.3
				Bottom	9	27.6 27.6	27.6	8.2 8.2	8.2	26.5 26.6	26.6	90.4 89.9	90.2	6.1 6.1	6.1	6.1	13.7 14.9	14.3		5.6 5.2	5.4	
				Surface	1	28.2 28.1	28.2	8.2 8.2	8.2	20.6 20.8	20.7	84.0 84.2	84.1	6.4 6.4	6.4	6.3	4.4 4.6	4.5		3.2 3.0	3.1	
29-Jul-13	Sunny	Calm	12:09	Middle	4.5	27.9 27.9	27.9	8.2 8.2	8.2	22.4 22.4	22.4	79.2 79.5	79.4	6.0 6.1	6.1	0.0	5.8 6.0	5.9	6.7	3.8 3.3	3.6	3.3
				Bottom	8	27.6 27.6	27.6	8.2 8.2	8.2	25.1 25.2	25.2	74.1 73.3	73.7	5.6 5.6	5.6	5.6	9.7 9.7	9.7		3.0 3.3	3.2	
				Surface	1	30.6 30.6	30.6	8.3 8.3	8.3	10.7 10.7	10.7	104.5 105.0	104.8	7.3 7.3	7.3	6.8	3.4 3.5	3.5		2.5 1.9	2.2	
31-Jul-13	Sunny	Calm	14:40	Middle	4.5	29.0 29.0	29.0	8.0 8.0	8.0	17.5 17.5	17.5	91.6 90.8	91.2	6.2 6.1	6.2	0.0	1.7 1.6	1.7	4.7	2.6 3.4	3.0	2.5
				Bottom	8	27.3 27.3	27.3	8.0 8.0	8.0	27.8 27.8	27.8	5.0 5.1	5.1	5.0 5.1	5.1	5.1	8.5 9.3	8.9		2.1 2.3	2.2	

Water Quality Monitoring Results at ST2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	lved Oxygen	(mg/L)	-	Turbidity(NTI	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.7	28.7	8.3	8.3	16.7	16.8	113.9	113.3	8.0	8.0		3.0	3.0		6.0	6.2	
						28.7 28.6		8.3 8.3		16.8 16.8		112.6 110.0		7.9 7.8		7.9	3.0 2.9			6.3	-	
2-Jul-13	Sunny	Moderate	08:29	Middle	4	28.6	28.6	8.3	8.3	16.8	16.8	109.9	110.0	7.8	7.8		3.1	3.0	6.0	5.0	5.6	5.9
				Bottom	7	28.2	28.2	8.2	8.2	21.5	21.5	80.0	79.7	5.6	5.6	5.6	12.6	12.0		6.0	5.9	
				Dottom	·	28.2	20.2	8.2	0.2	21.4	20	79.3	,	5.5	0.0	0.0	11.3	.2.0		5.7	0.0	
				Surface	1	29.9 29.9	29.9	8.1 8.1	8.1	6.0 6.0	6.0	126.8 126.4	126.6	9.3 9.3	9.3		5.2 5.2	5.2		4.3 4.2	4.3	
4 1 42	Cunni	Calm	10.20	Middle	4	28.9	28.9	7.9	7.9	15.1	15.5	92.4	92.3	6.6	6.6	8.0	4.6	4.6	4.6	6.2	E 1	4.5
4-Jul-13	Sunny	Calm	10:20	Middle	4	28.9	28.9	7.9	7.9	15.8	15.5	92.1	92.3	6.5	0.0		4.6	4.6	4.6	4.0	5.1	4.5
				Bottom	7	28.6	28.6	8.0	8.0	18.4	19.1	84.1	83.8	5.9	5.9	5.9	4.1	4.1		4.2	4.2	
						28.6 29.7		8.0 8.5		19.8 15.7		83.5 121.1		5.8 8.7			4.0			7.3		
				Surface	1	29.7	29.7	8.5	8.5	15.4	15.6	121.4	121.3	8.5	8.6	7.7	4.6	4.5		8.3	7.8	
6-Jul-13	Cloudy	Moderate	11:24	Middle	4	29.0	28.9	8.2	8.2	20.4	21.3	90.8	90.1	6.9	6.8	7.7	4.3	4.2	5.8	8.3	8.8	8.0
0 001 10	Oloddy	Moderate	11.24	iviladio		28.8	20.0	8.2	0.2	22.1	21.0	89.3	00.1	6.7	0.0		4.1	7.2	0.0	9.3	0.0	0.0
				Bottom	7	27.7 27.7	27.7	8.1 8.1	8.1	29.5 29.6	29.6	67.4 66.5	67.0	5.2 5.1	5.2	5.2	8.6 8.7	8.7		7.3 7.7	7.5	
				O. orfo	4	29.8	00.0	8.3	0.4	11.8	44.0	127.7	404.7	9.1	0.0		5.2	5.0		7.0	0.7	
				Surface	1	29.8	29.8	8.4	8.4	11.8	11.8	121.7	124.7	8.7	8.9	8.4	5.4	5.3		6.3	6.7	
8-Jul-13	Sunny	Moderate	12:54	Middle	4	28.9	28.8	8.2	8.2	14.3	14.5	106.1	105.6	7.7	7.8	0.4	4.5	4.5	7.9	8.3	7.7	7.2
	,					28.7 27.2		8.1 8.1		14.6 30.6		105.1 78.2		7.8 5.6			4.4 13.8			7.0 4.7		
				Bottom	7	27.2	27.2	8.1	8.1	30.3	30.5	77.7	78.0	5.6	5.6	5.6	14.0	13.9		9.7	7.2	
				Surface	1	30.0	30.0	8.4	8.4	15.1	15.3	134.6	133.5	9.7	9.6		4.4	4.5		3.4	4.2	
				Oundoc		29.9	00.0	8.4	0.1	15.4	10.0	132.3	100.0	9.5	0.0	8.0	4.6	4.0		5.0	7.2	
10-Jul-13	Fine	Moderate	13:40	Middle	5	28.3 28.1	28.2	8.2 8.2	8.2	21.6 22.2	21.9	87.6 85.9	86.8	6.4 6.3	6.4		5.1 5.2	5.2	8.5	4.2 4.2	4.2	4.2
				D	_	27.0	07.0	8.1	0.4	28.6	00.0	70.9	70.7	5.1			15.5	45.0		4.2	4.0	
				Bottom	9	27.0	27.0	8.1	8.1	28.6	28.6	70.5	70.7	5.1	5.1	5.1	16.1	15.8		4.3	4.3	
				Surface	1	29.8	29.5	8.2	8.2	19.4	18.7	105.4	103.1	7.5	7.4		3.5	3.8		2.5	2.4	
						29.2 26.4		8.2 8.0		17.9 30.0		100.8 69.5		7.3 5.1		6.3	9.7			7.6		
12-Jul-13	Sunny	Moderate	14:40	Middle	3.5	26.5	26.5	8.0	8.0	29.2	29.6	68.7	69.1	5.0	5.1		8.2	9.0	8.7	18.9	13.3	7.9
				Bottom	6	26.3	26.3	8.0	8.0	30.3	30.3	70.3	69.9	5.2	5.2	5.2	14.7	13.3		8.1	8.1	
				Dottom	Ů	26.3	20.0	8.0	0.0	30.3	30.5	69.4	00.0	5.1	J. <u>Z</u>	5.2	11.9	10.0		8.0	0.1	
				Surface	1	29.0 29.0	29.0	8.2 8.2	8.2	16.9 16.9	16.9	87.1 85.4	86.3	6.1 6.0	6.1		1.3 1.5	1.4		2.4 3.1	2.8	
45 1 140	5	0.1	47.40			26.8	00.0	8.0	0.0	27.4	07.4	80.0	70.0	5.5		5.8	5.3	5.0		2.0	0.0	0.0
15-Jul-13	Rainy	Calm	17:19	Middle	4	26.8	26.8	8.0	8.0	27.4	27.4	78.4	79.2	5.4	5.5		6.3	5.8	5.9	2.0	2.0	2.2
				Bottom	7	25.9	25.9	8.0	8.0	30.0	30.2	73.3	73.2	5.0	5.0	5.0	10.6	10.5		2.0	1.9	
						25.8 28.5	<u> </u> 	8.0 8.2		30.3 17.3		73.0 86.6	l 	5.0 6.1	<u> </u>	<u> </u>	10.3	1	l 	1.8 2.6		
				Surface	1	28.5	28.5	8.2	8.2	17.3	17.4	86.6	86.6	6.1	6.1	<i>-</i> -	1.0	1.9		1.2	1.9	
17-Jul-13	Rainy	Moderate	18:49	Middle	3.5	27.8	27.8	8.2	8.2	21.5	21.3	73.6	73.5	5.2	5.2	5.7	2.6	2.7	4.3	1.6	1.5	1.6
17 341-13	rainy	····ouciaic	10.40	Miladic	0.0	27.7	27.0	8.2	5.2	21.1	21.0	73.4	, 5.5	5.2	J.2		2.7		7.5	1.4	1.0	1.0
				Bottom	6	25.8 25.7	25.8	8.2 8.2	8.2	30.5 30.5	30.5	72.0 72.5	72.3	4.9 5.0	5.0	5.0	8.1 8.5	8.3		1.2 1.6	1.4	
		l		l .		20.1	<u>l</u>	0.2	<u> </u>	30.5		12.5	<u> </u>	5.0	L	l	0.0	l		1.0		1

Water Quality Monitoring Results at ST2 - Mid-Ebb Tide

Date	Weather	Sea	Sampling	Dent	th (m)		ature (°C)		Н		ity ppt		ration (%)		lved Oxygen			Turbidity(NTI			ended Solids	` 0 /
54.0	Condition	Condition**	Time	Бор	,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.6 28.1	27.9	8.2 8.2	8.2	24.0 21.0	22.5	82.4 82.4	82.4	5.7 5.7	5.7		1.6 1.9	1.8		1.7 1.5	1.6	
19-Jul-13	Cloudy	Calm	09:20	Middle	4	26.4 26.4	26.4	8.2 8.2	8.2	29.1 29.1	29.1	76.9 77.0	77.0	5.4 5.4	5.4	5.6	5.2 5.1	5.2	5.4	1.8 5.2	3.5	2.9
				Bottom	7	26.3 26.3	26.3	8.2 8.2	8.2	29.7 29.7	29.7	75.9 75.9	75.9	5.3 5.3	5.3	5.3	9.3 9.2	9.3		3.9 3.2	3.6	
				Surface	1	27.8 27.8	27.8	8.2 8.2	8.2	27.4 27.4	27.4	81.0 80.6	80.8	5.5 5.4	5.5	5.6	6.0 6.6	6.3		3.7 6.7	5.2	
22-Jul-13	Cloudy	Calm	12:15	Middle	3.5	27.4 27.5	27.5	8.2 8.2	8.2	28.6 28.6	28.6	82.1 83.6	82.9	5.5 5.6	5.6	5.0	6.5 6.2	6.4	6.4	4.5 5.7	5.1	5.1
				Bottom	6	27.4 27.4	27.4	8.2 8.2	8.2	29.0 28.9	29.0	80.0 80.2	80.1	5.4 5.4	5.4	5.4	6.8 6.3	6.6		4.8 5.2	5.0	
				Surface	1	27.9 27.9	27.9	8.3 8.3	8.3	27.1 27.1	27.1	89.6 89.6	89.6	6.0 6.0	6.0	6.0	5.6 5.5	5.6		41.0 46.3	43.7	
24-Jul-13	Rainy	Moderate	13:41	Middle	4	27.9 27.9	27.9	8.3 8.3	8.3	29.5 29.6	29.6	88.1 88.5	88.3	5.9 5.9	5.9	0.0	10.5 10.6	10.6	18.2	40.3 40.3	40.3	38.1
				Bottom	7	27.9 27.9	27.9	8.3 8.3	8.3	30.0 30.0	30.0	88.7 88.6	88.7	5.9 5.9	5.9	5.9	38.9 38.1	38.5		30.0 30.8	30.4	
				Surface	1	27.8 27.8	27.8	8.1 8.1	8.1	24.5 24.6	24.6	96.8 96.0	96.4	6.6 6.6	6.6	6.4	6.5 6.5	6.5		5.2 7.4	6.3	
26-Jul-13	Rainy	Rough	15:20	Middle	4	27.6 27.6	27.6	8.2 8.2	8.2	26.0 26.1	26.1	89.6 89.9	89.8	6.1 6.1	6.1	0.4	8.6 7.0	7.8	8.5	5.3 6.0	5.7	5.8
				Bottom	7	27.6 27.6	27.6	8.2 8.2	8.2	26.4 26.4	26.4	88.2 88.1	88.2	6.0 6.0	6.0	6.0	11.0 11.3	11.2		5.7 4.8	5.3	
				Surface	1	29.5 29.8	29.7	8.1 8.1	8.1	15.3 14.9	15.1	100.7 99.3	100.0	7.7 7.6	7.7	7.1	3.0 2.9	3.0		3.4 3.0	3.2	
29-Jul-13	Sunny	Calm	17:19	Middle	4	28.0 28.0	28.0	8.1 8.1	8.1	20.3	20.7	84.5 84.8	84.7	6.4 6.5	6.5		3.5 3.5	3.5	5.1	3.0 2.8	2.9	3.3
				Bottom	7	27.2 27.2	27.2	8.2 8.2	8.2	28.7 28.5	28.6	68.9 68.3	68.6	5.2 5.2	5.2	5.2	8.6 9.0	8.8		2.9 4.5	3.7	
				Surface	1	29.4 29.4	29.4	7.9 8.0	8.0	13.3 13.2	13.3	110.3 110.9	110.6	7.8 7.8	7.8	7.0	2.7 2.8	2.8		3.7 5.0	4.4	
31-Jul-13	Sunny	Calm	07:52	Middle	4	28.1 28.2	28.2	8.0 8.0	8.0	22.4 22.1	22.3	90.2 88.8	89.5	6.2 6.1	6.2		2.3 2.2	2.3	3.8	5.2 5.0	5.1	5.0
				Bottom	7	27.1 27.1	27.1	8.0 8.0	8.0	28.3 28.3	28.3	80.8 78.3	79.6	5.4 5.3	5.4	5.4	6.0 6.4	6.2		5.6 5.2	5.4	

Water Quality Monitoring Results at ST2 - Mid-Flood Tide

Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	р	Н	Salir	nity ppt	DO Satu	ration (%)	Disso	lved Oxygen	(mg/L)	1	Γurbidity(NTl	J)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	29.3 29.3	29.3	8.4 8.4	8.4	13.6 13.7	13.7	107.6 107.6	107.6	7.6 7.6	7.6		4.9 4.8	4.9		5.5 6.0	5.8	
2-Jul-13	Sunny	Moderate	14:29	Middle	3.5	28.6 28.7	28.7	8.2 8.2	8.2	18.2 17.9	18.1	82.7 81.9	82.3	5.8 5.7	5.8	6.7	8.6 9.2	8.9	8.6	5.5 5.8	5.7	5.9
				Bottom	6	28.2 28.2	28.2	8.1 8.1	8.1	21.4 21.6	21.5	78.0 72.1	75.1	5.5 5.2	5.4	5.4	11.1 12.7	11.9		6.5 5.7	6.1	
				Surface	1	30.7 30.7	30.7	8.0 8.0	8.0	5.8 5.8	5.8	111.7 111.5	111.6	8.1 8.1	8.1		6.3 6.4	6.4		4.3 4.7	4.5	
4-Jul-13	Fine	Calm	17:18	Middle	4.5	30.5	30.5	8.0	8.0	6.9 7.0	7.0	113.1	113.2	8.2 8.2	8.2	8.2	5.9 5.9	5.9	5.8	3.8	3.8	4.0
				Bottom	8	30.5 30.4	30.4	8.0 8.1	8.1	8.0	8.0	113.3 114.6	114.6	8.2	8.2	8.2	5.1	5.1		3.8	3.6	
				Surface	1	30.4 29.6	29.6	8.1 8.4	8.4	8.0 10.5	10.3	114.5 112.9	112.5	8.2 8.1	8.1		5.1 7.7	7.7		4.0 8.0	9.0	
6-Jul-13	Cloudy	Moderate	18:24	Middle	3.5	29.6 29.1	29.1	8.4 8.3	8.3	10.0 14.9	15.1	112.0 91.1	92.0	8.1 6.4	6.5	7.3	7.7 14.2	13.4	12.0	10.0 6.7	4.0	7.4
0-Jul-13	Cloudy	Moderate	10.24			29.1 28.3		8.3 8.1		15.3 23.9		92.8 77.0		6.6 5.9		5.0	12.5 14.8		12.0	1.3 9.7		7.4
		1		Bottom	6	28.3 29.0	28.3	8.1 8.1	8.1	23.9 14.0	23.9	76.4 91.2	76.7	5.8 6.5	5.9	5.9	15.0 9.3	14.9		8.7 17.3	9.2	
				Surface	1	29.0 28.6	29.0	8.0	8.1	14.1	14.1	88.9 85.3	90.1	6.3 6.0	6.4	6.2	8.3 10.5	8.8		18.0	17.7	
8-Jul-13	Fine	Moderate	19:29	Middle	4	28.6 28.2	28.6	8.0 8.0	8.0	16.4	16.3	83.4 83.6	84.4	5.9 6.0	6.0		9.8	10.2	12.4	31.7 38.3	29.2	28.6
				Bottom	7	28.2	28.2	8.0	8.0	20.2	20.5	82.1	82.9	5.9	6.0	6.0	18.9	18.1		39.7	39.0	
				Surface	1	28.8 28.8	28.8	8.1 8.2	8.2	14.2 14.0	14.1	93.7 93.5	93.6	6.7 6.7	6.7	6.1	4.4 4.3	4.4		2.8 2.2	2.5	
10-Jul-13	Fine	Moderate	06:36	Middle	3.5	28.7 28.8	28.8	8.1 8.1	8.1	17.1 16.8	17.0	76.7 76.0	76.4	5.4 5.3	5.4		5.6 5.8	5.7	5.6	3.0 2.3	2.7	2.5
				Bottom	6	28.3 28.3	28.3	8.1 8.1	8.1	21.5 21.5	21.5	78.7 78.1	78.4	5.4 5.3	5.4	5.4	6.7 6.9	6.8		2.2 2.2	2.2	
				Surface	1	29.3 29.4	29.4	8.2 8.2	8.2	14.9 14.8	14.9	88.5 87.0	87.8	6.5 6.4	6.5	6.3	3.4 3.4	3.4		2.4 2.8	2.6	
12-Jul-13	Sunny	Moderate	07:50	Middle	4	28.8 28.8	28.8	8.2 8.2	8.2	16.7 16.5	16.6	80.1 81.3	80.7	5.9 6.0	6.0	0.3	4.4 4.1	4.3	7.1	5.8 8.2	7.0	4.1
				Bottom	7	27.0 27.0	27.0	8.1 8.1	8.1	28.2 28.2	28.2	67.3 67.2	67.3	4.9 4.9	4.9	4.9	13.9 13.4	13.7		2.7 2.5	2.6	
				Surface	1	28.1 28.1	28.1	8.1 8.1	8.1	22.5 22.6	22.6	96.7 96.0	96.4	6.5 6.5	6.5		4.4 4.4	4.4		2.7 2.3	2.5	
15-Jul-13	Rainy	Calm	11:23	Middle	3.5	26.7 26.6	26.7	8.0 8.0	8.0	27.6 27.8	27.7	80.2 79.2	79.7	5.4 5.3	5.4	6.0	7.4 6.3	6.9	8.6	3.2 3.9	3.6	2.9
				Bottom	6	26.2 26.3	26.3	8.0 8.0	8.0	29.2 28.9	29.1	72.8 72.4	72.6	4.9 4.8	4.9	4.9	14.5 14.3	14.4		2.7 2.6	2.7	
				Surface	1	28.6	28.6	8.2 8.2	8.2	16.1 17.4	16.8	93.3 93.5	93.4	6.6	6.6		2.2	2.2		2.1	2.1	
17-Jul-13	Rainy	Moderate	14:32	Middle	4	28.6 27.9	27.9	8.2	8.2	21.2	21.4	80.9	80.6	6.6 5.7	5.7	6.2	1.8	1.9	6.7	4.5	3.4	5.3
	-			Bottom	7	27.8 25.7	25.7	8.2 8.1	8.1	30.9	31.0	71.3	71.2	5.6 5.0	5.0	5.0	2.0 15.8	16.0		17.6	10.4	
				'		25.7	-	8.1	-	31.0		71.1		5.0			16.1			3.1	-	

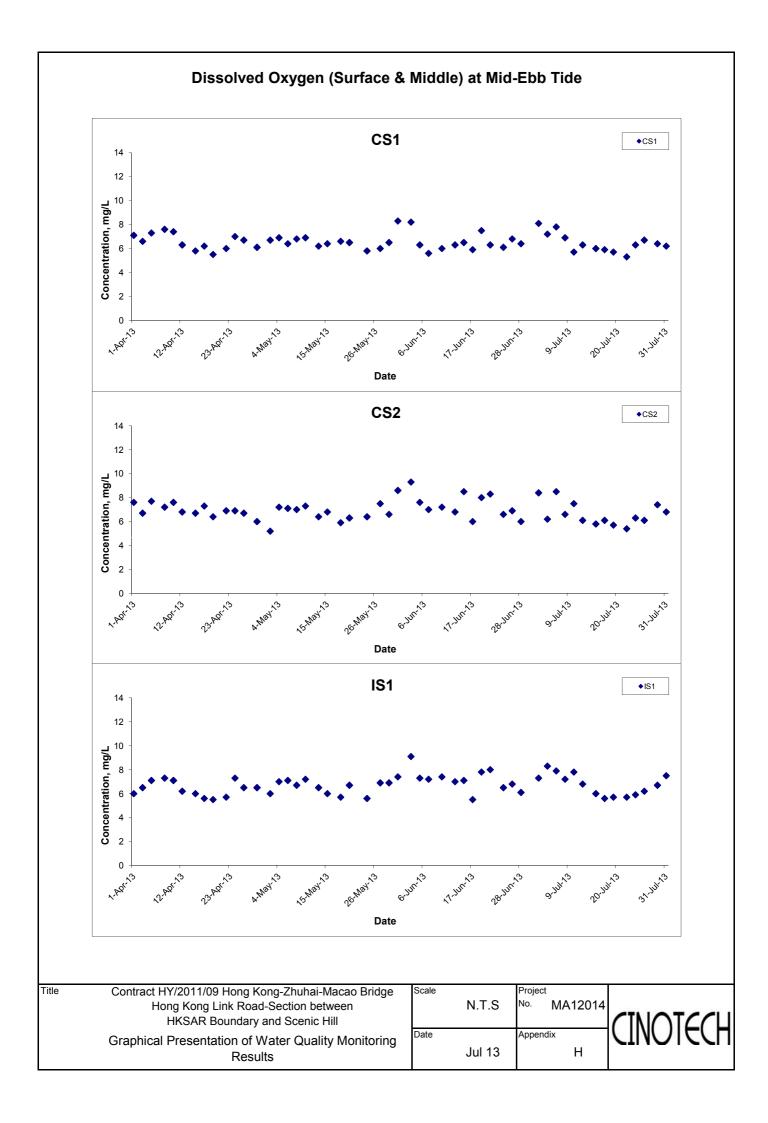
Water Quality Monitoring Results at ST2 - Mid-Flood Tide

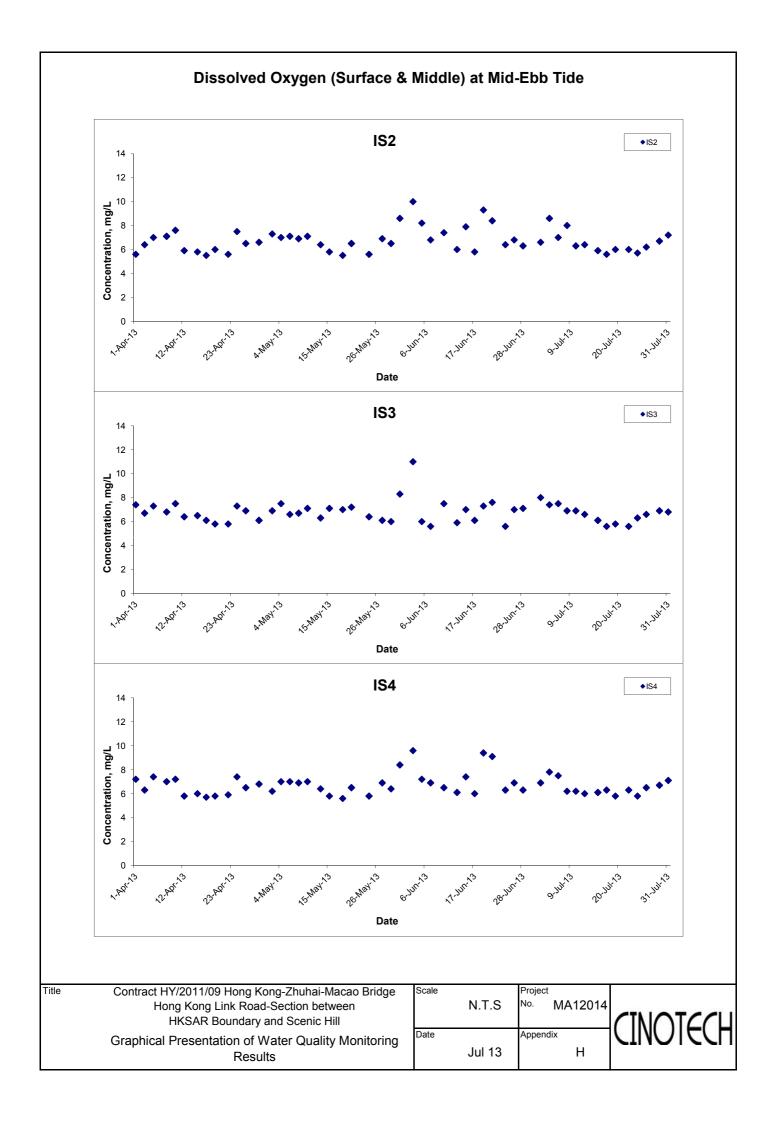
Date	Weather	Sea	Sampling	Dept	h (m)	Tempera	ature (°C)		Н		ity ppt	DO Satu	ıration (%)		lved Oxygen	(mg/L)	-	Turbidity(NTI		Suspe	ended Solids	(mg/L)
Date	Condition	Condition**	Time	Борс	(,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.7 27.7	27.7	8.2 8.2	8.2	24.2 24.1	24.2	82.7 81.4	82.1	5.7 5.6	5.7	5.6	3.3 3.7	3.5		4.3 3.0	3.7	
19-Jul-13	Cloudy	Calm	16:20	Middle	3.5	27.7 27.7	27.7	8.2 8.2	8.2	24.2 24.1	24.2	80.2 79.6	79.9	5.5 5.5	5.5	5.0	3.5 3.7	3.6	6.7	9.0 4.2	6.6	4.8
				Bottom	6	26.7 26.7	26.7	8.1 8.1	8.1	27.4 27.5	27.5	71.4 71.1	71.3	4.9 4.9	4.9	4.9	12.6 13.3	13.0		3.8 4.2	4.0	
				Surface	1	28.2 28.2	28.2	8.0 8.0	8.0	21.4 21.4	21.4	73.7 72.7	73.2	5.1 5.0	5.1	5.2	11.4 14.2	12.8		9.8 8.5	9.2	
22-Jul-13	Rainy	Moderate	19:22	Middle	3.5	28.1 28.0	28.1	8.0 8.0	8.0	21.9 22.5	22.2	75.2 73.9	74.6	5.2 5.1	5.2	5.2	9.9 11.8	10.9	11.4	9.7 9.0	9.4	9.7
				Bottom	6	27.6 27.7	27.7	8.0 8.0	8.0	24.9 24.8	24.9	71.7 73.3	72.5	4.9 5.0	5.0	5.0	10.5 10.3	10.4		10.2 10.8	10.5	
				Surface	1	27.9 27.9	27.9	8.1 8.1	8.1	22.9 23.0	23.0	84.1 84.0	84.1	5.8 5.8	5.8	5.9	3.6 3.5	3.6		3.6 3.0	3.3	
24-Jul-13	Rainy	Moderate	07:04	Middle	4.5	27.9 27.9	27.9	8.2 8.2	8.2	25.7 25.7	25.7	87.4 87.2	87.3	5.9 5.9	5.9	5.9	4.1 4.6	4.4	9.4	4.0 27.7	15.9	25.5
				Bottom	8	28.0 28.0	28.0	8.2 8.2	8.2	27.7 27.6	27.7	86.9 87.0	87.0	5.8 5.8	5.8	5.8	20.4 19.7	20.1		60.0 54.7	57.4	
				Surface	1	27.5 27.5	27.5	8.1 8.1	8.1	23.4 23.4	23.4	96.2 95.6	95.9	6.7 6.6	6.7	6.6	5.9 5.9	5.9		6.1 6.2	6.2	
26-Jul-13	Rainy	Rough	08:42	Middle	4.5	27.6 27.6	27.6	8.1 8.1	8.1	24.2 24.3	24.3	92.6 93.0	92.8	6.4 6.4	6.4	0.0	6.0 5.7	5.9	10.1	6.1 6.3	6.2	6.1
				Bottom	8	27.6 27.6	27.6	8.2 8.2	8.2	26.6 26.5	26.6	91.1 91.0	91.1	6.2 6.2	6.2	6.2	18.6 18.2	18.4		5.2 6.3	5.8	
				Surface	1	28.1 28.3	28.2	8.2 8.2	8.2	21.0 20.4	20.7	85.3 85.6	85.5	6.5 6.5	6.5	6.4	4.6 3.7	4.2		4.2 1.7	3.0	
29-Jul-13	Sunny	Calm	11:32	Middle	4.5	27.9 27.9	27.9	8.2 8.2	8.2	22.5 22.5	22.5	80.4 81.0	80.7	6.1 6.2	6.2	0.7	5.7 5.9	5.8	7.6	3.2 3.9	3.6	3.4
				Bottom	8	27.6 27.6	27.6	8.2 8.2	8.2	25.3 25.3	25.3	74.5 73.6	74.1	5.7 5.6	5.7	5.7	12.1 13.4	12.8		3.2 3.7	3.5	
				Surface	1	30.2 30.2	30.2	8.4 8.4	8.4	13.6 13.6	13.6	110.6 111.0	110.8	7.6 7.6	7.6	6.9	2.8 2.9	2.9		1.5 2.5	2.0	
31-Jul-13	Sunny	Calm	14:09	Middle	4	28.9 28.9	28.9	8.0 8.0	8.0	17.9 17.9	17.9	90.9 90.5	90.7	6.2 6.2	6.2	0.5	1.6 1.7	1.7	5.4	2.1 4.2	3.2	2.4
				Bottom	7	27.9 27.9	27.9	8.0 8.0	8.0	24.1 24.2	24.2	85.1 84.5	84.8	5.8 5.8	5.8	5.8	11.6 11.7	11.7		1.7 2.0	1.9	

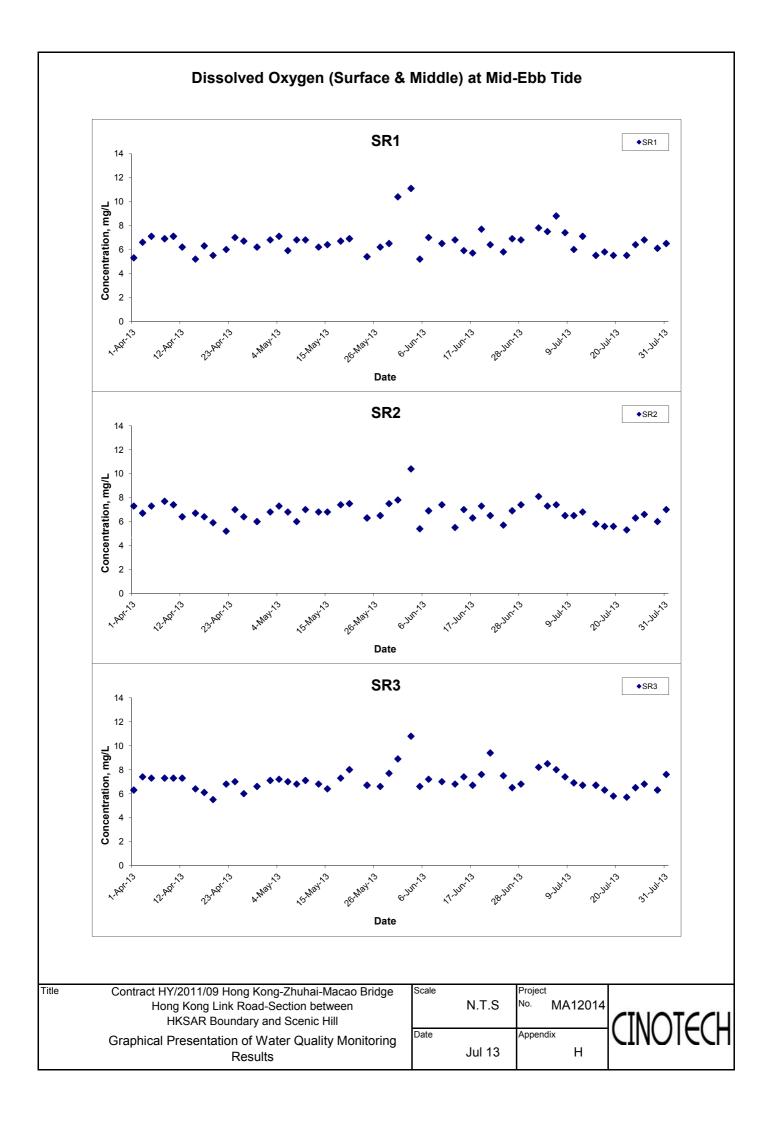
Water Quality Monitoring Results at ST3 - Mid-Ebb Tide

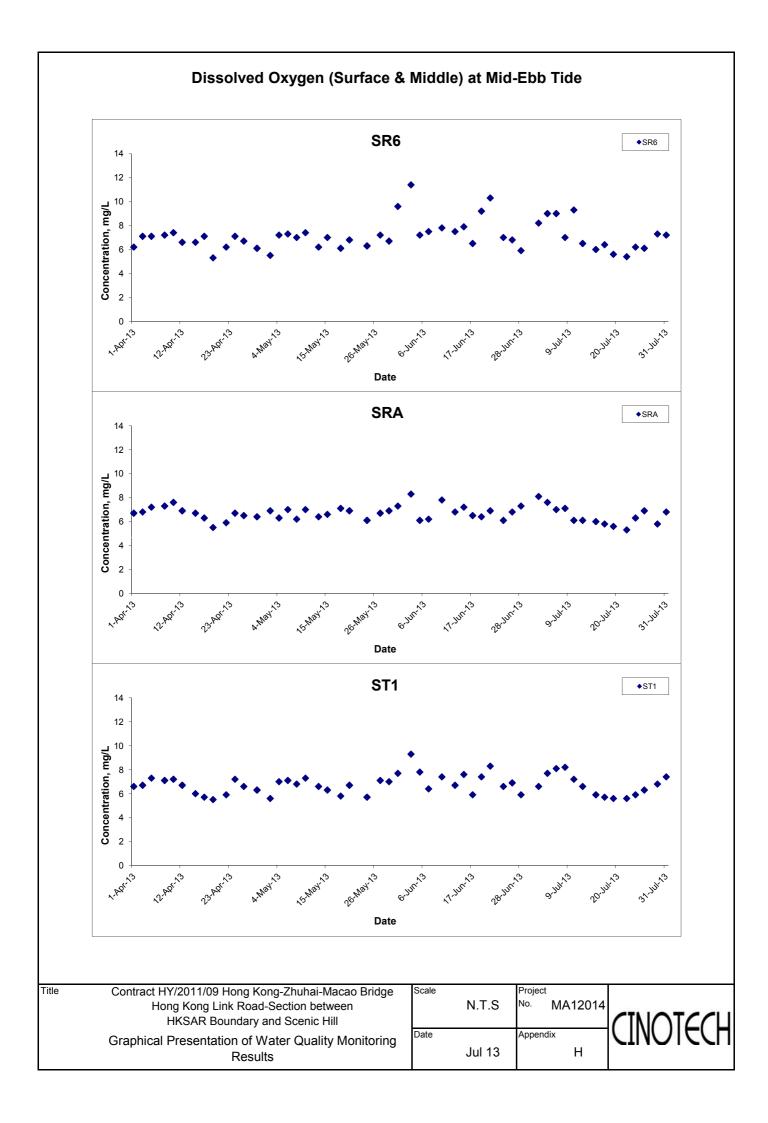
Date	Weather	Sea	Sampling	Dont	h (m)	Tempera	ature (°C)	ŗ	Н	Salin	ity ppt	DO Satu	ration (%)	Dissol	ved Oxygen	(mg/L)		Turbidity(NT	U)	Suspe	nded Solids	(mg/L)
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	28.7 28.7	28.7	8.0 8.0	8.0	18.2 18.1	18.2	116.3 116.6	116.5	8.1 8.2	8.2		7.4 8.3	7.9		7.3 6.2	6.8	
	_				_	28.4		8.0		23.7		112.3		7.7		8.0	11.6		1	7.2		
2-Jul-13	Sunny	Moderate	08:49	Middle	5	28.4	28.4	7.9	8.0	23.7	23.7	116.5	114.4	7.9	7.8		12.2	11.9	12.2	5.5	6.4	6.4
				Bottom	9	28.4 28.4	28.4	8.0 8.0	8.0	23.8 23.8	23.8	109.3 107.9	108.6	7.5 7.4	7.5	7.5	16.9 16.5	16.7		6.3 5.7	6.0	
				Surface	1	30.0	30.0	8.0	8.0	7.4	7.4	115.0	115.3	8.3	8.4		4.3	4.3		11.8	8.0	
4-Jul-13	Sunny	Calm	10:56	Middle	5.5	30.0 29.0	29.1	7.9	7.9	7.4 16.1	16.1	115.5 93.6	94.0	8.4 6.6	6.6	7.5	4.3	4.9	12.8	4.2	3.1	4.8
4 001 10	Cumy	Cum	10.00			29.1 28.0		7.9 7.9		16.1 27.6		94.3 74.8		6.6 5.1			4.9 29.8		12.0	2.0 3.7		1.0
				Bottom	10	28.0	28.0	7.9	7.9	27.6	27.6	74.4	74.6	5.0	5.1	5.1	28.8	29.3		2.8	3.3	
				Surface	1	29.5 29.5	29.5	8.5 8.5	8.5	11.0 11.1	11.1	122.2 124.3	123.3	8.8 8.9	8.9	7.8	4.6 4.6	4.6		8.3 8.0	8.2	
6-Jul-13	Cloudy	Moderate	11:36	Middle	8	28.5 28.5	28.5	8.2 8.1	8.2	25.9 24.8	25.4	96.0 98.0	97.0	6.6 6.7	6.7	7.0	2.5 3.0	2.8	5.3	6.7 6.7	6.7	6.8
				Bottom	15	27.6 27.6	27.6	8.1 8.1	8.1	29.4 29.4	29.4	79.4 75.8	77.6	5.4 5.2	5.3	5.3	8.7 8.5	8.6		5.0 5.7	5.4	
				Surface	1	29.0	29.0	8.2	8.3	14.2	14.2	103.0	101.7	7.6	7.4		5.7	5.6		7.0	7.4	
8-Jul-13	Sunny	Moderate	12:53	Middle	5	29.0 27.7	27.9	8.3 8.1	8.1	14.2 27.6	27.8	100.4 95.8	100.2	7.2 6.5	6.8	7.1	5.4 4.9	5.1	7.1	7.7 8.0	8.4	7.7
0 00. 10	ouy	ouorato	12.00		9	28.0 27.3	27.3	8.1 8.1	8.1	28.0	30.0	104.6 86.1	88.1	7.1 6.0	6.2	6.2	5.2 9.8	10.7	1	8.7 8.7	7.2	1
				Bottom		27.3 28.5		8.1 8.1		30.6 21.6		90.0		6.3 6.2		0.2	11.5 4.6	1		5.7 4.4		
				Surface	1	28.5	28.5	8.1	8.1	21.6	21.6	90.4	90.5	6.2	6.2	6.0	4.6	4.6	1	3.9	4.2	
10-Jul-13	Fine	Moderate	13:04	Middle	5.5	27.7 27.8	27.8	8.1 8.1	8.1	25.4 25.4	25.4	85.7 83.1	84.4	5.9 5.7	5.8		6.2 7.2	6.7	9.5	5.1 4.3	4.7	4.4
				Bottom	10	27.0 27.0	27.0	8.0 8.0	8.0	29.0 29.0	29.0	76.3 75.3	75.8	5.3 5.2	5.3	5.3	16.4 17.7	17.1		4.3 4.0	4.2	
				Surface	1	28.6 28.5	28.6	8.4 8.3	8.4	21.9 23.1	22.5	100.2 97.7	99.0	7.2 7.0	7.1		3.1 3.2	3.2		6.6 3.1	4.9	
12-Jul-13	Sunny	Moderate	14:42	Middle	5.5	27.9	27.9	8.3	8.3	25.8	25.8	78.8	79.1	5.7	5.7	6.4	4.9	5.0	7.2	2.5	1.8	3.1
				Bottom	10	27.8 26.4	26.4	8.3 8.2	8.2	25.8 30.9	30.9	79.4 77.9	76.5	5.7 5.7	5.6	5.6	5.0 13.2	13.4	1	1.0 2.6	2.7	
						26.4 28.3		8.2 8.2		30.9 17.9		75.1 92.8		5.5 6.3		0.0	13.6 4.9	1		2.8		
				Surface	1	28.3 26.8	28.3	8.2 8.0	8.2	17.9 27.4	17.9	92.9 80.6	92.9	6.3 5.5	6.3	5.9	4.9 5.2	4.9	1	2.2 1.9	2.2	
15-Jul-13	Rainy	Calm	16:57	Middle	6.5	26.8	26.8	8.0	8.0	27.4	27.4	79.1	79.9	5.4	5.5		5.4	5.3	9.1	2.4	2.2	2.3
				Bottom	12	25.8 25.7	25.8	8.0 8.0	8.0	34.2 34.0	34.1	74.2 73.4	73.8	4.9 4.9	4.9	4.9	16.9 17.0	17.0		3.0 2.0	2.5	
				Surface	1	28.6 28.6	28.6	8.0 8.0	8.0	16.5 16.6	16.6	90.8 90.8	90.8	6.4 6.4	6.4	F 0	1.9 1.8	1.9		1.5 1.8	1.7	
17-Jul-13	Rainy	Moderate	19:01	Middle	5.5	26.8 26.8	26.8	8.0 8.1	8.1	27.2 27.1	27.2	75.6 74.8	75.2	5.2 5.2	5.2	5.8	2.2	2.2	2.5	1.9 0.9	1.4	1.5
				Bottom	10	26.1	26.1	8.0	8.0	29.4	29.4	69.3	69.2	5.0	5.0	5.0	3.4	3.3	1	1.3	1.3	1
		<u> </u>				26.1		8.0	<u> </u>	29.3		69.1	<u> </u>	5.0	<u> </u>		3.1	<u> </u>	<u> </u>	1.2		<u> </u>

Water Quality Monitoring Results at ST3 - Mid-Ebb Tide

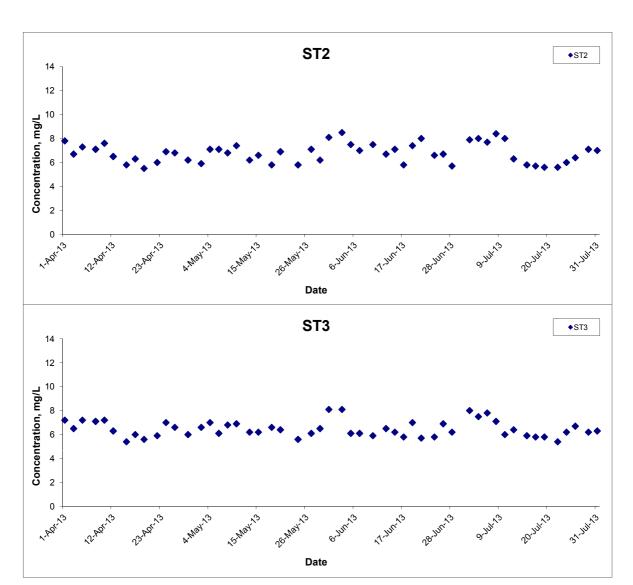

Date	Weather	Sea	Sampling	Depth (m)		Depth (m)		Temperature (°C		pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)						Suspended Solids (n		` ' '
20.0	Condition	Condition**	Time	Борі	,	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*		
				Surface	1	27.1	27.1	8.1	8.1	26.6	26.6	85.8	85.9	6.0	6.0		1.3	1.3		3.6	3.1			
						27.1 26.8		8.1 8.1		26.6 27.8		85.9 79.7		6.0 5.6		5.8	1.2 2.3			2.5		2.6		
19-Jul-13	Cloudy	Calm	09:25	Middle	6.5	26.8	26.8	8.1	8.1	27.8 27.8	27.8	79.7 79.8	79.8	5.6	5.6		2.3	2.4	3.5	3.2 2.5	2.1			
				Bottom	12	26.3	26.3	8.0	8.0	29.1	29.1	72.6	72.1	5.1	5.1	5.1	6.7	6.8			2.5			
				Dottom	12	26.3	20.5	8.0	0.0	29.1	29.1	71.6	12.1	5.1	5.1	5.1	6.9	0.0		1.8	2.5			
				Surface	1	27.6	27.6	8.3	8.3	28.4	28.4	77.9	78.0	5.2	5.3		5.4	5.4		6.6	5.3			
						27.6 27.6		8.3 8.3		28.4 29.5		78.1 80.0		5.3 5.4		5.4	5.3 5.6			3.9 5.5				
22-Jul-13	Cloudy	Calm	12:41	Middle	3.5	27.6	27.6	8.3	8.3	29.4	29.5	79.9	80.0	5.4	5.4		5.5	5.6	9.0	3.8	4.7	4.5		
				Bottom	6	27.4	27.4	8.3	8.3	29.6	29.6	76.7	76.6	5.1	5.1	5.1	15.8	16.1		3.6	3.6			
				DOLLOITI	U	27.4	27.4	8.3	0.3	29.6	29.0	76.4	70.0	5.1	5.1	5.1	16.4	10.1		3.3	3.5			
				Surface	1	27.8	27.8	8.2	8.2	27.0	27.0	94.6	94.7	6.4	6.4		4.6	4.7		6.3	7.2			
						27.8 27.9		8.2 8.2		27.0 28.5		94.8 89.8		6.4 6.0		6.2	4.8 10.6			8.1 5.4				
24-Jul-13	Rainy	Moderate	13:06	Middle	7.5	27.9	27.9	8.2	8.2	28.5	28.5	89.8	89.8	6.0	6.0		10.8	10.7	14.1	4.9	5.2	6.3		
				Bottom	14	27.8	27.8	8.2	8.2	29.2	29.3	90.3	90.3	6.0	6.0	6.0	25.6	26.9		7.2	6.4			
				Dottom	14	27.8	21.0	8.2	0.2	29.3	29.5	90.3	90.5	6.0	0.0	0.0	28.2	20.9		5.5	0.4			
				Surface	1	27.6 27.6	27.6	8.1 8.1	8.1	25.9 25.9	25.9	98.0 97.8	97.9	6.7	6.7		5.9 6.0	6.0		6.6 9.1	7.9			
						27.6		8.2		26.9		98.7		6.7 6.7		6.7	4.5			8.5				
26-Jul-13	Rainy	Rough	14:34	Middle	3.5	27.6	27.6	8.2	8.2	27.0	27.0	98.3	98.5	6.7	6.7		5.3	4.9	11.3	6.4	7.5	6.8		
				Bottom	6	27.6	27.6	8.2	8.2	27.4	27.4	95.4 a	95.4	6.5	6.5	6.5	23.9	23.0		5.3	5.1	, 		
				Dottom	Ů	27.6	27.0	8.2	0.2	27.4	27.1	95.4	00.1	6.5	0.0	0.0	22.1	4.9	0.1	<u> </u>				
				Surface	1	29.8 29.8	29.8	8.1 8.1	8.1	16.2 16.3	16.3	95.2 91.9	93.6	6.5 6.4	6.5		3.1 3.0	3.1		3.6 2.8	3.2			
			40.00			28.0		8.1		23.1	20.4	86.0		5.9		6.2	5.3	-		3.0	-			
29-Jul-13	Sunny	Calm	16:39	Middle	3.5	28.0	28.0	8.1	8.1	23.1	23.1	85.1	85.6	5.9	5.9		5.4	5.4	6.9	3.2	3.1	3.1		
				Bottom	6	27.4	27.4	8.2	8.2	28.4	28.5	74.1	73.8	5.0	5.0	5.0	11.8	12.2		2.9	3.1			
					-	27.4		8.2	*	28.5		73.4		5.0			12.6	1		3.2				
				Surface	1	29.0 29.0	29.0	8.2 8.2	8.2	17.5 16.8	17.2	93.8 94.0	93.9	6.4 6.4	6.4		2.7 2.7	2.7		5.8 5.0	5.4			
04 1 1 40		0.1	00.00			28.3	00.0	8.2	0.0	22.7	00.0	90.9	00.0	6.1	0.4	6.3	2.3	0.4		4.6	4.7	- 4		
31-Jul-13	Sunny	Calm	08:26	Middle	7	28.3	28.3	8.2	8.2	21.8	22.3	90.7	90.8	6.1	6.1		2.4	2.4	5.4	4.8	4.7	5.4		
				Bottom	13	27.1 27.1	27.1	8.2 8.2	8.2	29.4 28.1	28.8	80.1 79.1	79.6	5.3 5.3	5.3	5.3	10.0 12.2	11.1		6.2 6.0	6.1			

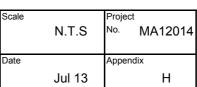

Water Quality Monitoring Results at ST3 - Mid-Flood Tide


Date Weather		Sea	Sampling	Depth (m)		Temperature (°C)			pН		Salinity ppt		DO Saturation (%)		Dissolved Oxygen (mg/L)			Turbidity(NTl	J)	Suspended Solids (mg/L)			
Date	Condition	Condition**	Time	Бері	11 (111)	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*	
		Moderate		Surface	1	29.4 29.4	29.4	8.0 8.0	8.0	15.5 15.4	15.5	119.6 113.5	116.6	8.4 8.0	8.2		4.5 5.3	4.9		5.2 5.0	5.1		
2-Jul-13	Sunny		14:24	Middle	5	28.7 28.7	28.7	7.9 7.9	7.9	18.9 18.9	18.9	114.9 105.4	110.2	8.0 7.3	7.7	8.0	7.9 7.1	7.5	6.8	7.2 5.8	6.5	5.5	
				Bottom	9	28.6 28.6	28.6	7.9 7.9	7.9	19.2 19.5	19.4	103.1 96.4	99.8	7.2 6.7	7.0	7.0	8.1 7.6	7.9		5.0 4.8	4.9		
				Surface	1	30.8 30.8	30.8	8.1 8.1	8.1	7.3 7.2	7.3	101.3 100.4	100.9	7.3 7.2	7.3		5.0 4.9	5.0		4.5 5.0	4.8		
4-Jul-13	Fine	Calm	17:38	Middle	5.5	29.4 29.6	29.5	8.0	8.0	15.2 16.5	15.9	92.1 97.6	94.9	6.5 6.8	6.7	7.0	6.2 5.7	6.0	5.9	4.8 8.2	6.5	6.3	
				Bottom	10	28.9 29.0	29.0	7.9 7.9	7.9	19.2 19.5	19.4	85.4 94.5	90.0	5.9 6.5	6.2	6.2	7.0 6.6	6.8		7.3 7.8	7.6		
				Surface	1	29.6 29.2	29.4	8.4 8.2	8.3	11.6 12.0	11.8	118.9 118.6	118.8	8.5 8.5	8.5	7.6	8.2 9.3	8.8		9.0 10.0	9.5		
6-Jul-13	Cloudy	Moderate	17:58	Middle	7	29.6 28.3	29.0	8.4 8.0	8.2	18.2 18.6	18.4	96.0 95.9	96.0	6.7 6.6	6.7	7.0	8.2 8.5	8.4	8.9	10.3 8.7	4.8 6.5 7.6 9.5 9.5 14.5 3.3 6.9 11.4 3.8 3.5 3.1	11.2	
				Bottom	13	29.2 28.3	28.8	8.2 8.0	8.1	24.0 24.0	24.0	88.1 85.7	86.9	6.1 5.9	6.0	6.0	9.1 9.8	9.8 9.5 13.3 7.5 8.0 3.3 8.5 10.5	14.5				
				Surface	1	29.5 29.4	29.5	8.2 8.2	8.2	13.0 13.3	13.2	89.2 79.6	84.4	6.3 5.7	6.0	6.2	1	8.0			6.9		
8-Jul-13	Fine	Moderate	19:58	Middle	6	28.6 28.4	28.5	8.1 8.1	8.1	21.4 21.6	21.5	91.9 93.3	92.6	6.3 6.5	6.4	0.2	10.5 11.8	11.2	12.1	10.0 3.7	6.9	7.2	
				Bottom	11	28.2 28.2	28.2	8.1 8.1	8.1	23.3 22.9	23.1	85.8 81.1	83.5	6.1 5.8	6.0	6.0	18.4 15.8	5.8		11.0 11.7	11.4		
				Surface	1	28.9 28.9	28.9	8.1 8.1	8.1	15.2 15.2	15.2	79.9 80.8	80.4	5.7 5.7	5.7	5.6	5.4 4.9	5.2		3.3 4.3	3.8		
10-Jul-13	Fine	Moderate	07:28	Middle	5.5	28.6 28.6	28.6	8.0 8.0	8.0	18.6 18.6	18.6	74.1 74.8	74.5	5.3 5.4	5.4		7.0 7.1	7.1	10.9	3.5 3.5	3.5	3.5	
				Bottom	10	27.8 27.9	27.9	8.0 8.0	8.0	24.5 24.8	24.7	72.8 71.3	72.1	5.1 5.0	5.1	5.1	18.7 22.3	20.5	<u> </u>	<u> </u>	2.9 3.2	3.1	
				Surface	1	29.3 29.3	29.3	8.3 8.3	8.3	14.2 14.3	14.3	102.1 102.9	102.5	7.5 7.6	7.6	6.6	3.5 3.4	3.5		2.7 2.6	2.7		
12-Jul-13	Sunny	Moderate	08:29	Middle	5.5	27.2 27.2	27.2	8.2 8.2	8.2	27.6 26.7	27.2	72.8 74.8	73.8	5.4 5.5	5.5		13.2 13.4	13.3	15.1	3.1 3.3	3.2	4.3	
				Bottom	10	27.0 27.0	27.0	8.2 8.2	8.2	28.3 28.3	28.3	70.1 69.8	70.0	5.2 5.2	5.2 5.2 27.5 28.4 29.3 28.4	28.4		10.8 3.3	7.1				
				Surface	1	29.2 29.2	29.2	8.0	8.0	13.1 13.1	13.1	81.3 81.1	81.2	5.7 5.7	5.7	5.6	5.6 5.6	5.6		2.7 1.8	2.3		
15-Jul-13	Rainy	Calm	11:23	Middle	6.5	28.5 28.5	28.5	8.0 8.0	8.0	19.1 19.0	19.1	77.0 78.7	77.9	5.4 5.5	5.5		7.1 6.9	7.0	6.9	1.9 2.3	2.1	2.0	
				Bottom	12	27.7 27.7	27.7	8.0 8.0	8.0	24.8 24.9	24.9	72.2 75.1	73.7	5.0 5.1	5.1	5.1	8.1 7.8	8.0		1.7 1.6	1.7		
				Surface	1	28.6 28.7	28.7	8.0 8.0	8.0	16.5 16.4	16.5	81.3 81.8	81.6	5.7 5.8	5.8	5.7	2.3	2.3		2.0	2.2		
17-Jul-13	Rainy	Moderate	14:26	Middle	6	27.5 27.5 25.9	27.5	8.0 8.0	8.0	22.4	22.5	78.8 77.9	78.4	5.5 5.4	5.5		4.8 4.9 17.3	4.9	8.1	2.4 2.6 2.1	2.5	2.3	
				Bottom	11	25.9 26.0	26.0	8.0 8.0	8.0	28.8 28.6	28.7	73.2 73.1	73.2	5.1 5.1	5.1	5.1	17.3 16.8	17.1		2.1	2.2		

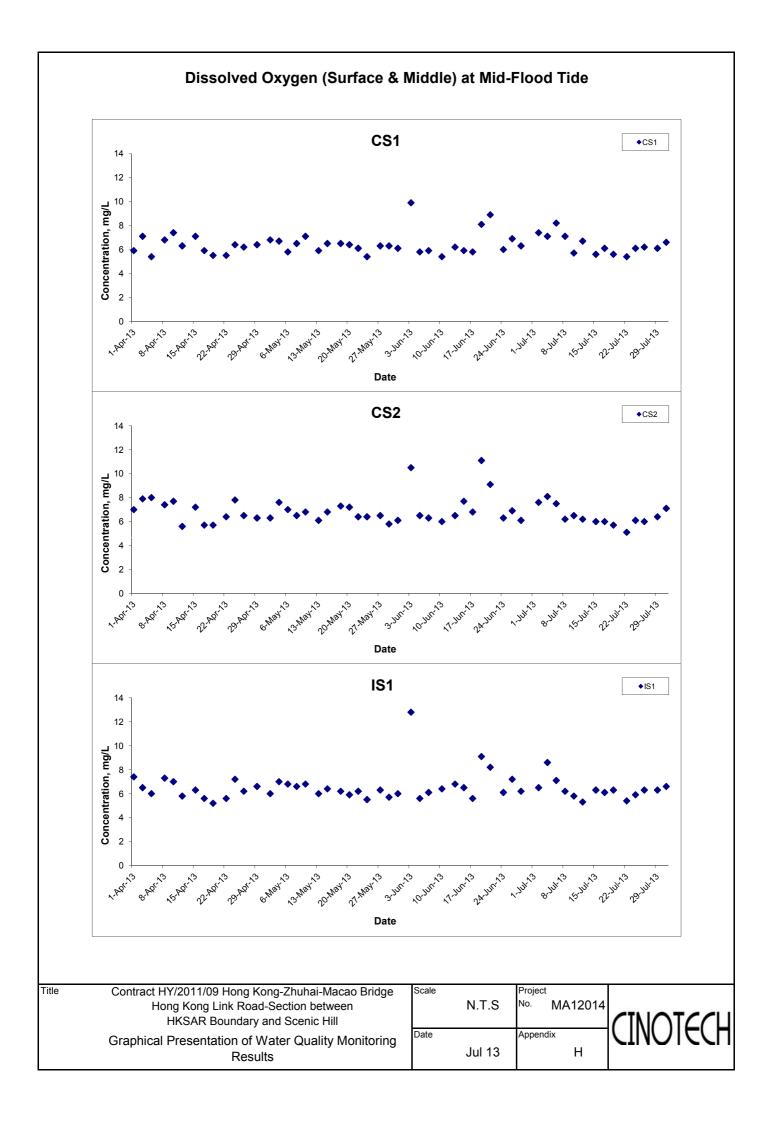

Water Quality Monitoring Results at ST3 - Mid-Flood Tide

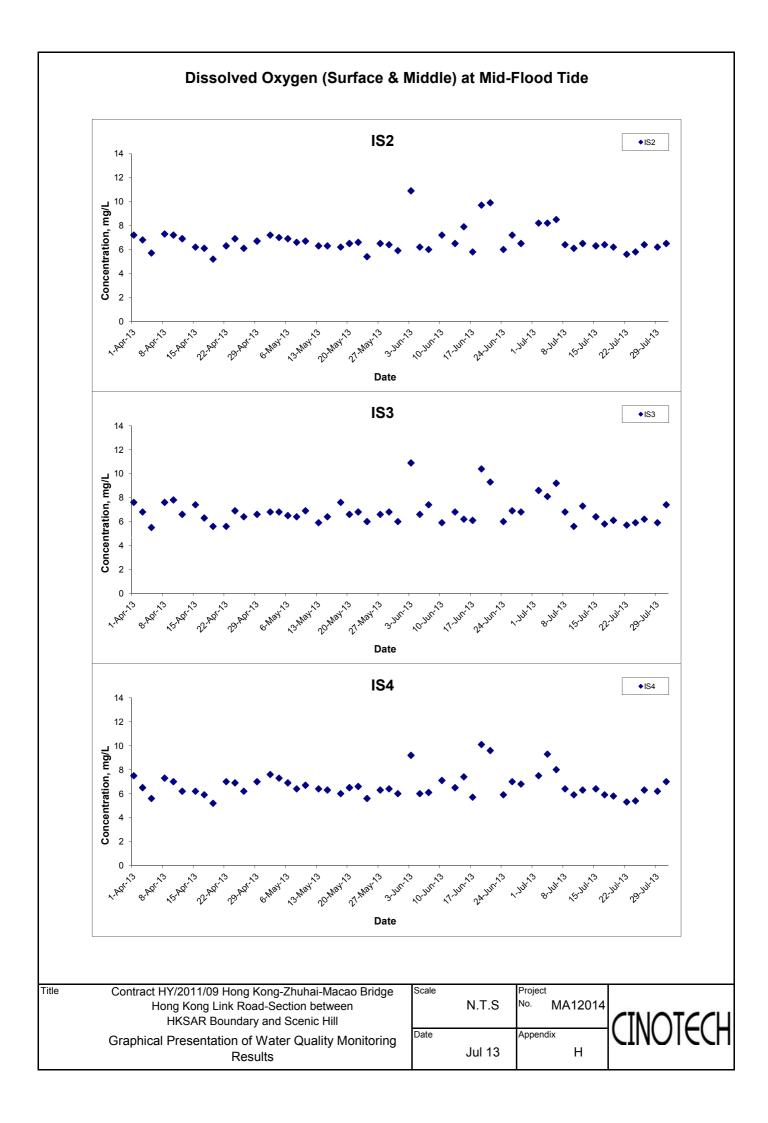
Date Weather		Sea	Sampling	Dent	h (m)	Tempera	ature (°C)		Н		ity ppt	DO Satu	ration (%)		lved Oxygen	(mg/L)		Turbidity(NTI	J)		ended Solids	(mg/L)
24.0	Condition	Condition**	Time	Борс	()	Value	Average	Value	Average	Value	Average	Value	Average	Value	Average	DA*	Value	Average	DA*	Value	Average	DA*
				Surface	1	27.9 27.9	27.9	8.1 8.1	8.1	24.3 24.3	24.3	81.9 82.0	82.0	5.7 5.7	5.7	5.5	3.2 3.0	3.1		7.0 2.6	4.8	
19-Jul-13	Cloudy	Calm	16:00	Middle	7.5	27.6 27.6	27.6	8.1 8.1	8.1	24.5 24.5	24.5	76.1 76.4	76.3	5.3 5.3	5.3	5.5	3.8 3.8	3.8	4.3	2.5 4.2	3.4	6.3
				Bottom	14	27.4 27.3	27.4	8.1 8.1	8.1	25.4 25.1	25.3	72.7 72.0	72.4	5.0 5.0	5.0	5.0	5.6 6.5	6.1		12.5 9.0	10.8	
				Surface	1	28.2 28.2	28.2	8.1 8.2	8.2	23.9 25.5	24.7	78.6 83.0	80.8	5.4 5.6	5.5		7.8 7.6	7.7		13.0 10.2	11.6	
22-Jul-13	Rainy	Moderate	18:47	Middle	5	28.2 28.2	28.2	8.1 8.2	8.2	23.5 25.5	24.5	78.3 82.7	80.5	5.4 5.6	5.5	5.5	8.5 8.3	8.4	9.4	10.8 12.3	11.6	12.0
				Bottom	9	27.4 27.4	27.4	8.2 8.2	8.2	27.9 28.6	28.3	73.1 72.2	72.7	5.0 4.9	5.0	5.0	12.5 11.4	12.0		11.8 13.8	12.8	
				Surface	1	27.8 27.8	27.8	8.1 8.1	8.1	24.8 24.8	24.8	88.5 89.2	88.9	6.1 6.1	6.1	6.0	6.0 5.6	5.8		3.0 4.1	3.6	
24-Jul-13	Rainy	Moderate	07:17	Middle	7.5	28.0 27.8	27.9	8.1 8.1	8.1	27.1 25.8	26.5	87.9 88.2	88.1	5.9 5.9	5.9	0.0	11.0 11.5	11.3	11.1	3.7 3.9	3.8	3.7
				Bottom	14	28.0 28.0	28.0	8.2 8.2	8.2	27.4 27.4	27.4	87.3 87.1	87.2	5.9 5.9	5.9	5.9	16.3 16.0	16.2		3.9 3.7	3.8	
				Surface	1	27.4 27.4	27.4	8.1 8.1	8.1	24.6 24.6	24.6	90.2 90.1	90.2	6.3 6.3	6.3	6.3	8.1 8.5	8.3		4.6 4.5	4.6	6.7 6.0
26-Jul-13	Rainy	Rough	08:59	Middle	3.5	27.5 27.5	27.5	8.1 8.1	8.1	26.2 26.2	26.2	89.7 90.0	89.9	6.2 6.2	6.2	0.5	9.0 8.4	8.7	13.6	6.1 7.3	6.7	
				Bottom	6	27.6 27.6	27.6	8.1 8.1	8.1	26.7 26.7	26.7	87.6 87.1	87.4	6.0 6.0	6.0	6.0	22.7 25.0	23.9		5.6 7.7	6.7	
				Surface	1	28.8 29.0	28.9	8.0 8.0	8.0	15.9 15.4	15.7	82.8 83.6	83.2	5.9 5.9	5.9	5.8	3.5 3.4	3.5		2.5 2.3	2.4	
29-Jul-13	Sunny	Calm	11:17	Middle	3.5	28.3 28.3	28.3	8.0 8.0	8.0	18.3 18.1	18.2	80.9 81.0	81.0	5.7 5.7	5.7	0.0	3.6 3.5	3.6	4.0	3.1 2.5	2.8	2.6
				Bottom	6	28.1 28.2	28.2	8.1 8.1	8.1	19.2 19.0	19.1	82.4 83.8	83.1	5.8 5.9	5.9	5.9	4.7 4.9	4.8		2.3 2.8	2.6	
				Surface	urface 1	30.0 30.0	30.0	8.4 8.4	8.4	14.7 14.7	14.7	98.8 99.0	98.9	6.8 6.8	6.8	6.7	2.6 2.5	2.6		2.4 4.2	3.3	3.5
31-Jul-13	Sunny	Calm	14:07	Middle	6	29.7 29.7	29.7	8.3 8.3	8.3	15.3 15.3	15.3	95.5 95.1	95.3	6.5 6.5	6.5	0.7	2.3 2.3	2.3	2.3	2.6 3.4	3.0	
				Bottom	11	29.3 29.3	29.3	8.3 8.3	8.3	16.5 16.5	16.5	89.2 89.8	89.5	6.1 6.1	6.1	6.1	2.0 2.0	2.0		5.0 3.4	4.2	

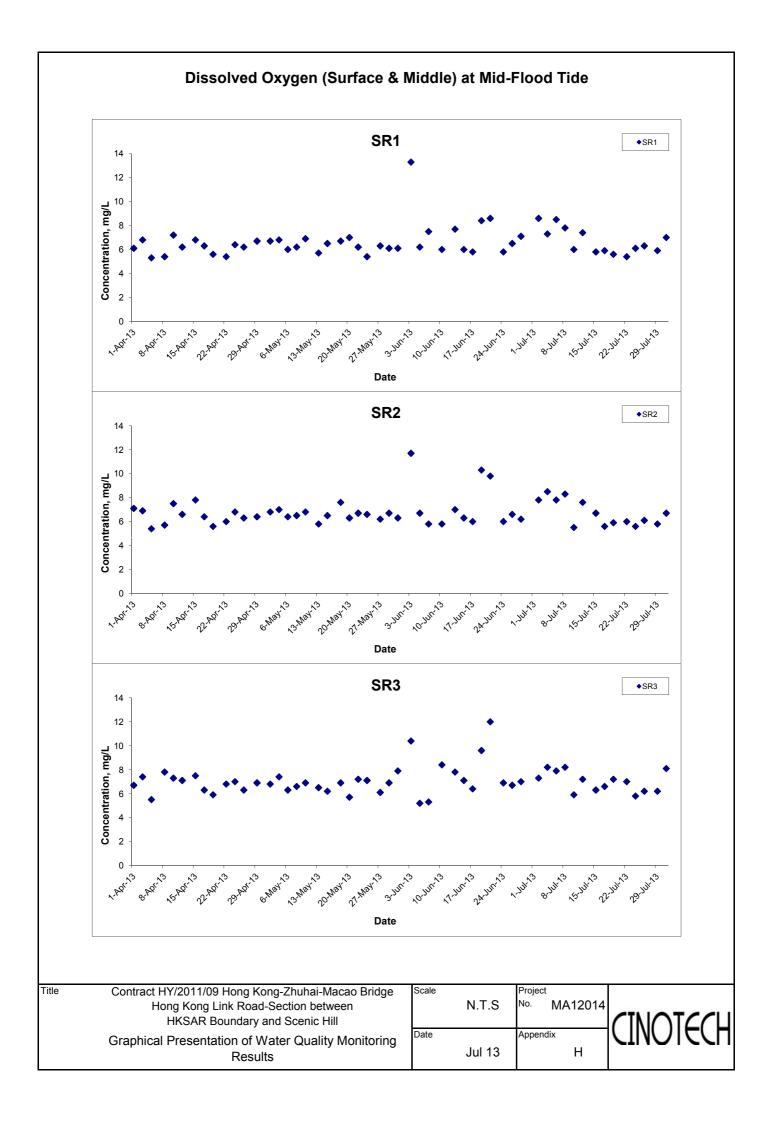


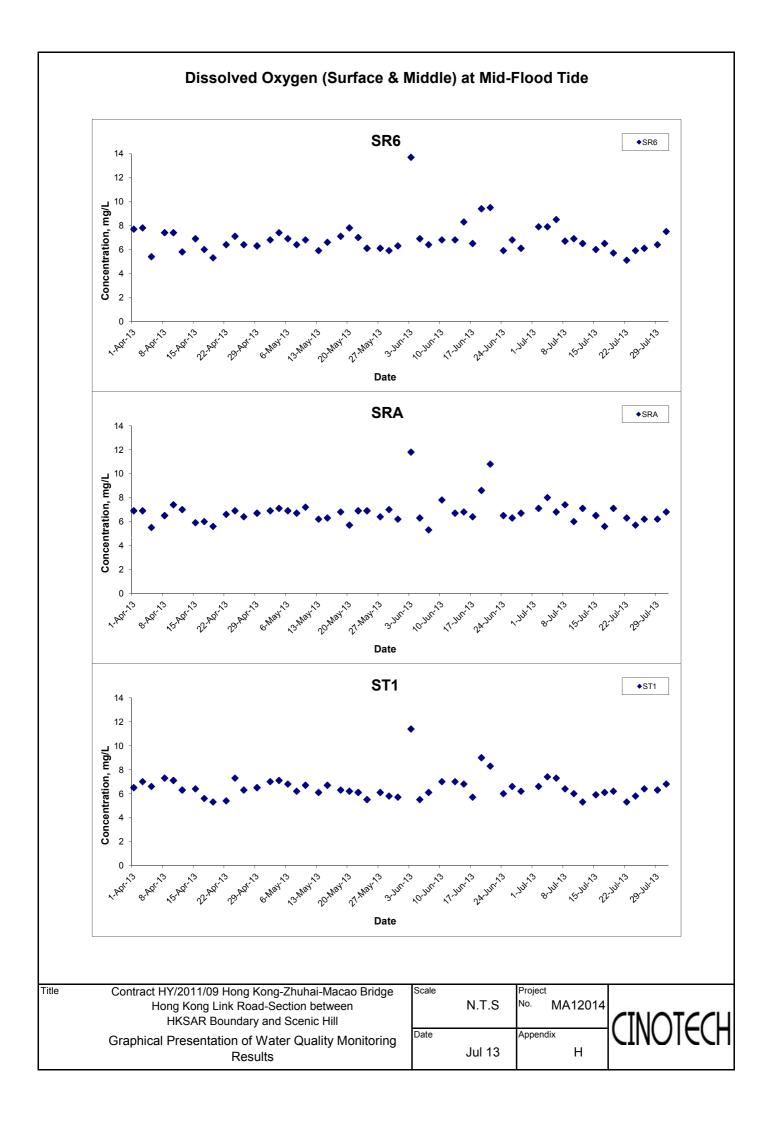


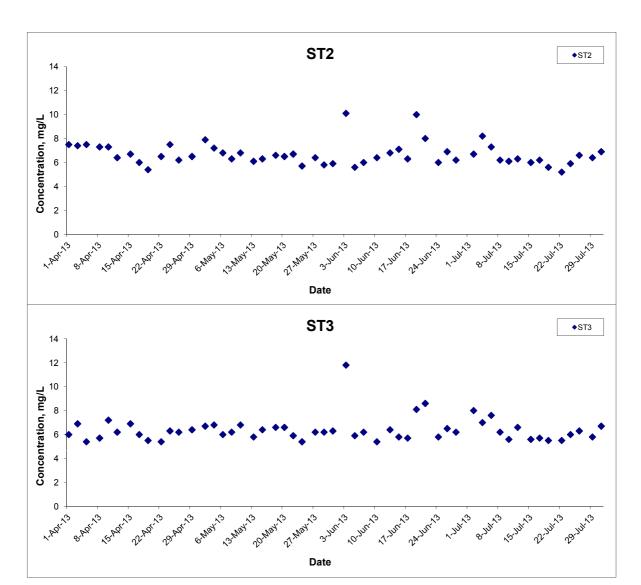
Dissolved Oxygen (Surface & Middle) at Mid-Ebb Tide



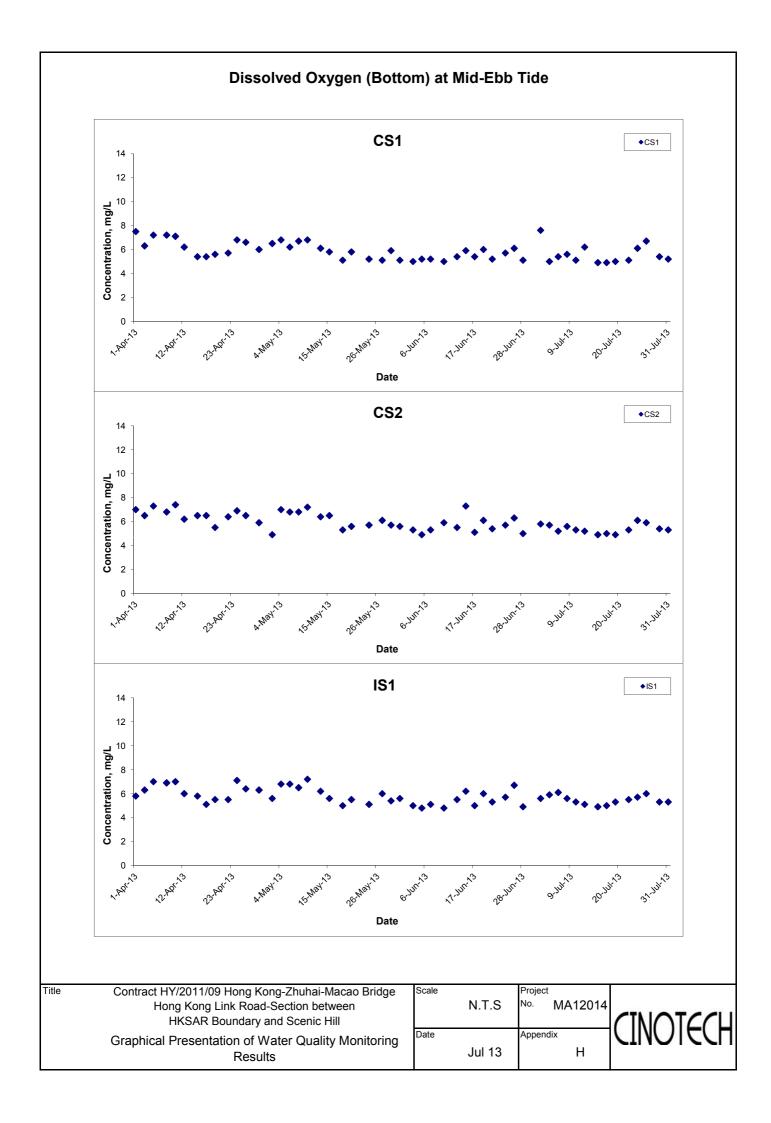

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

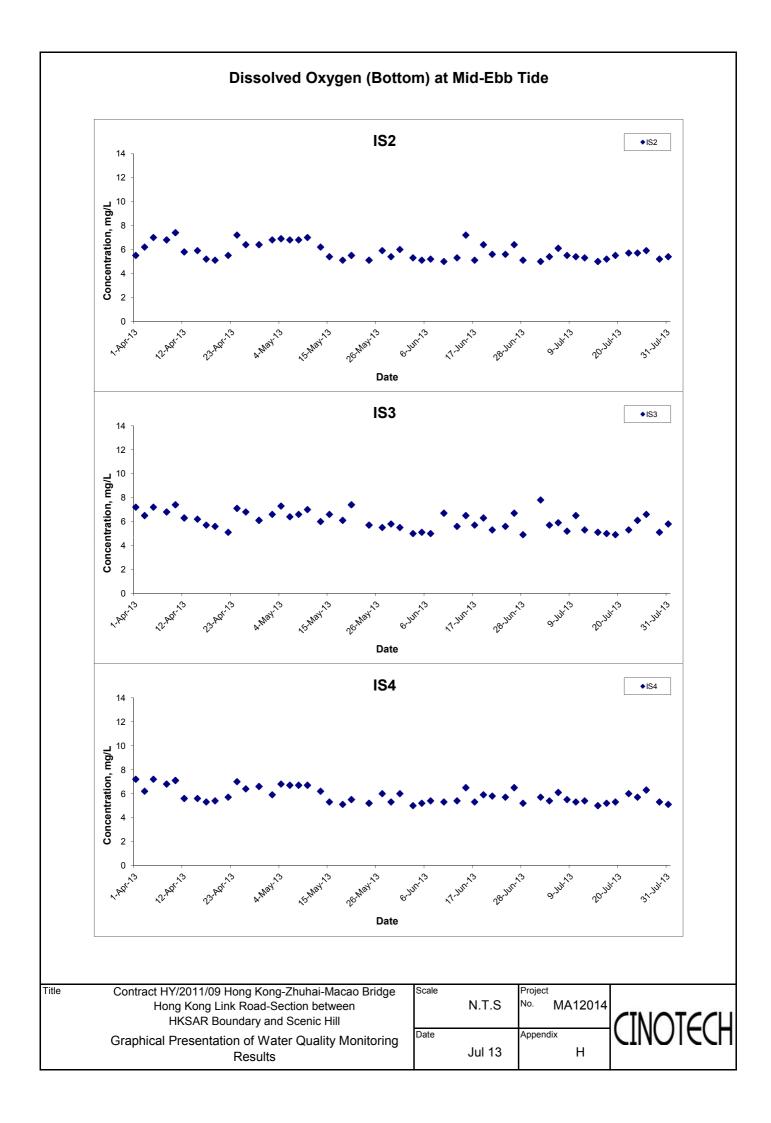

Title

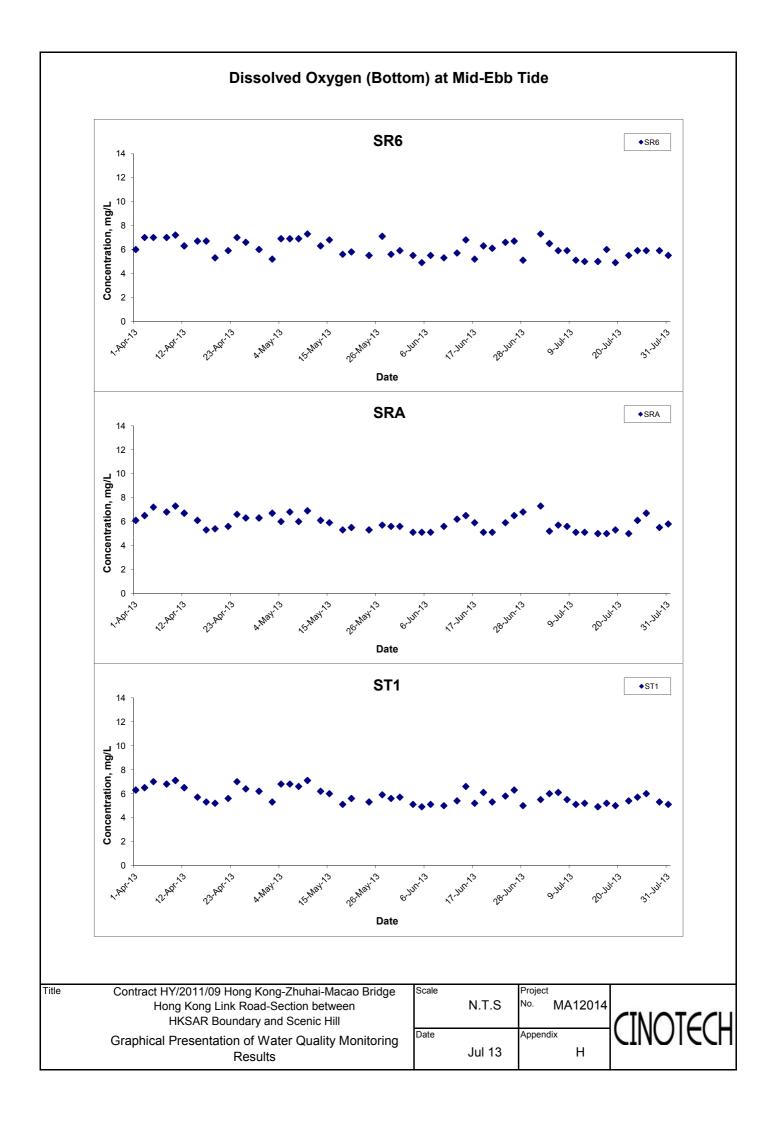


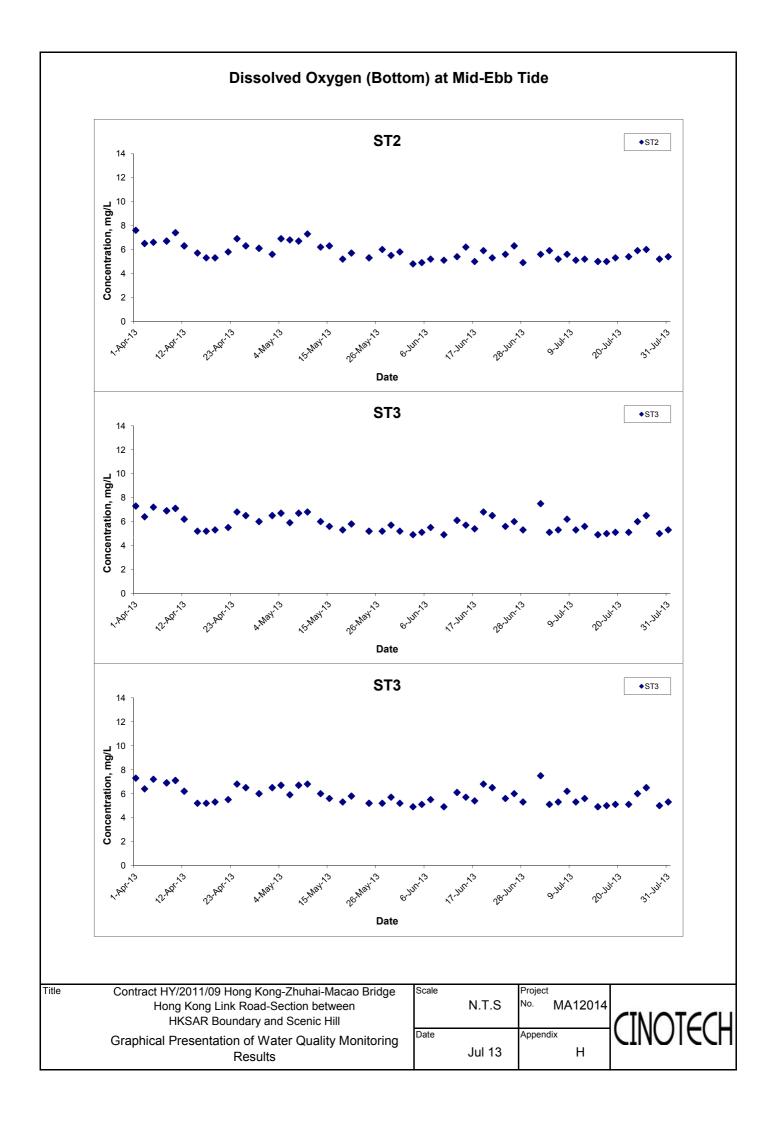


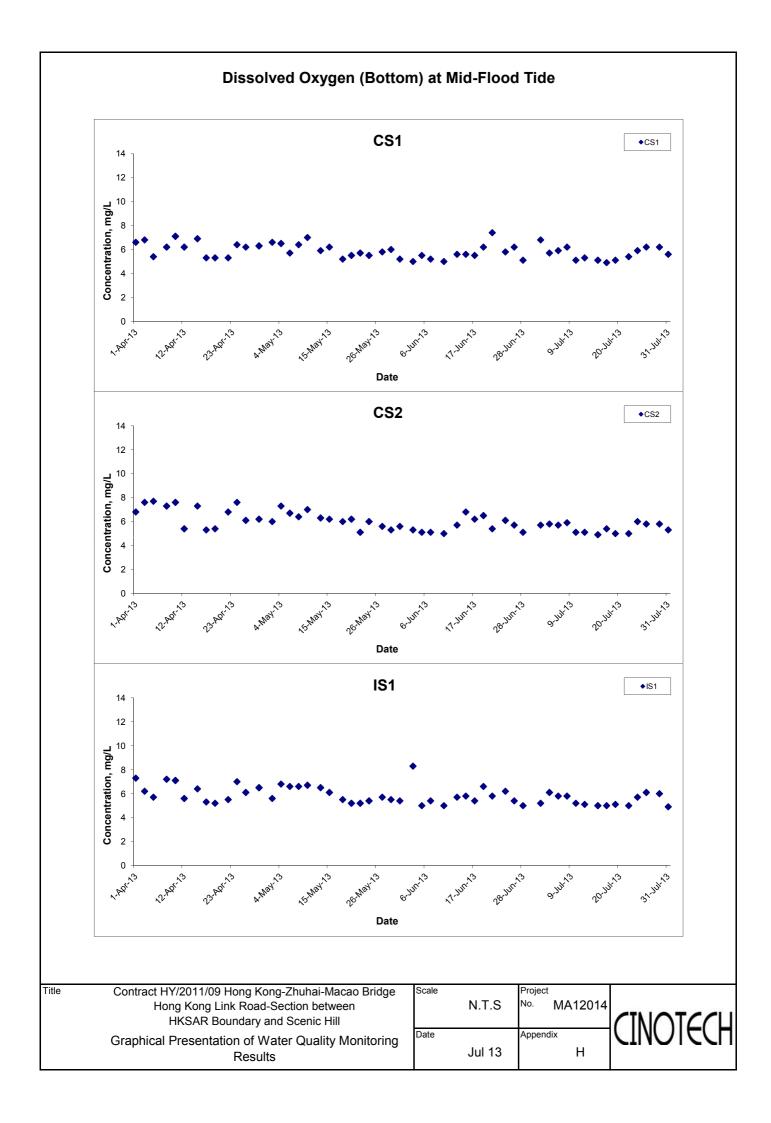
Dissolved Oxygen (Surface & Middle) at Mid-Flood Tide

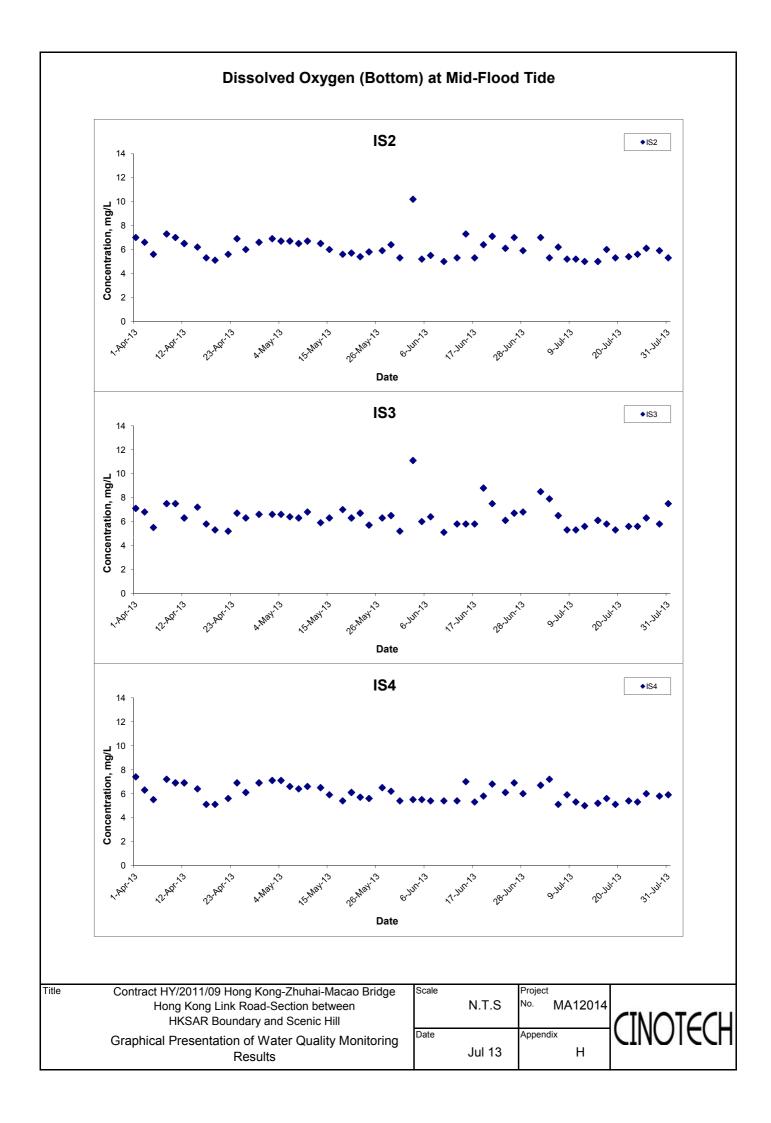

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

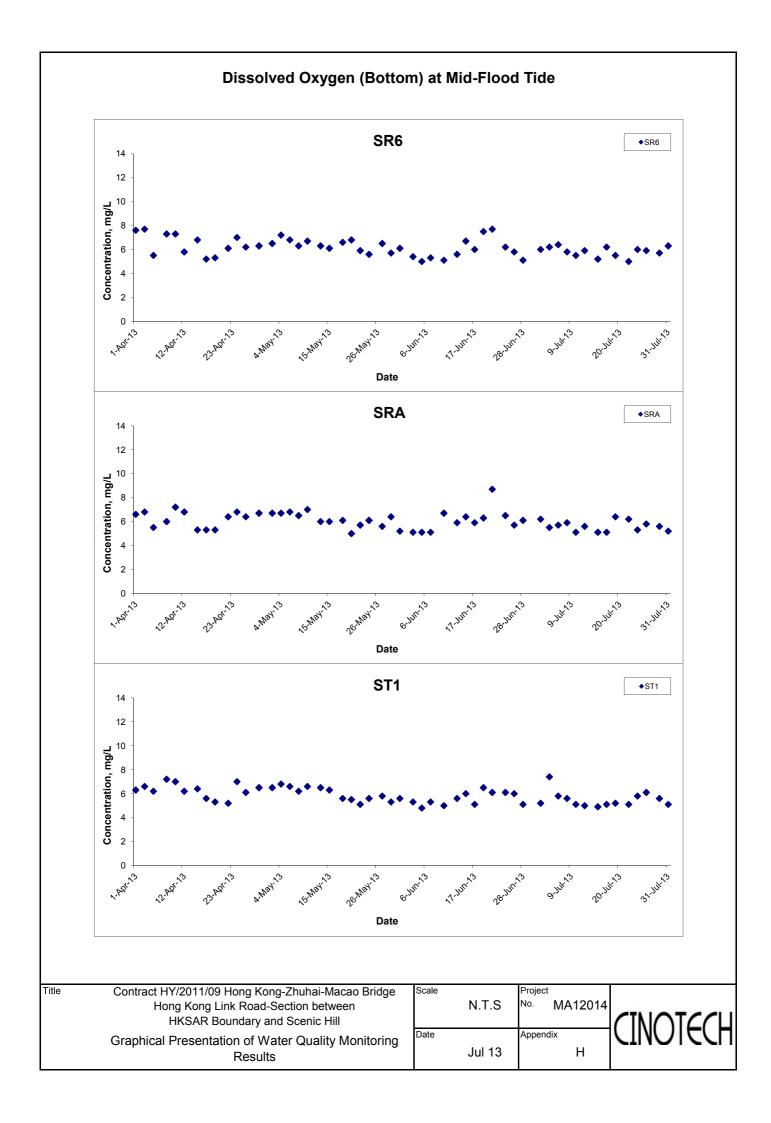

Title

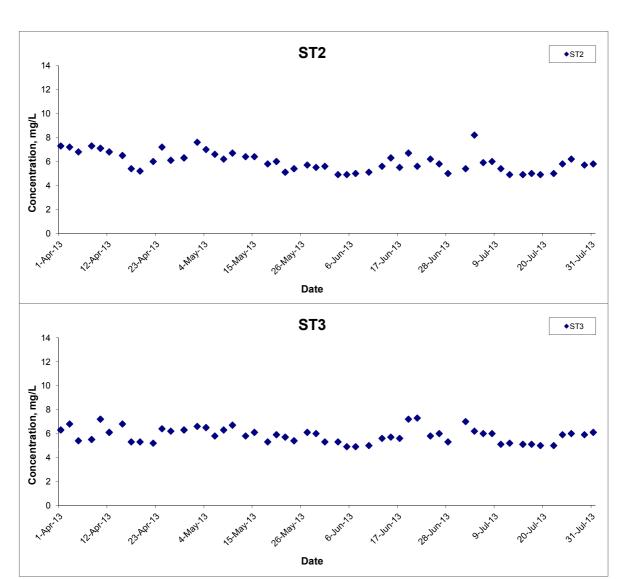

N.T.S Project
No. MA12014


Date Appendix
Jul 13 H

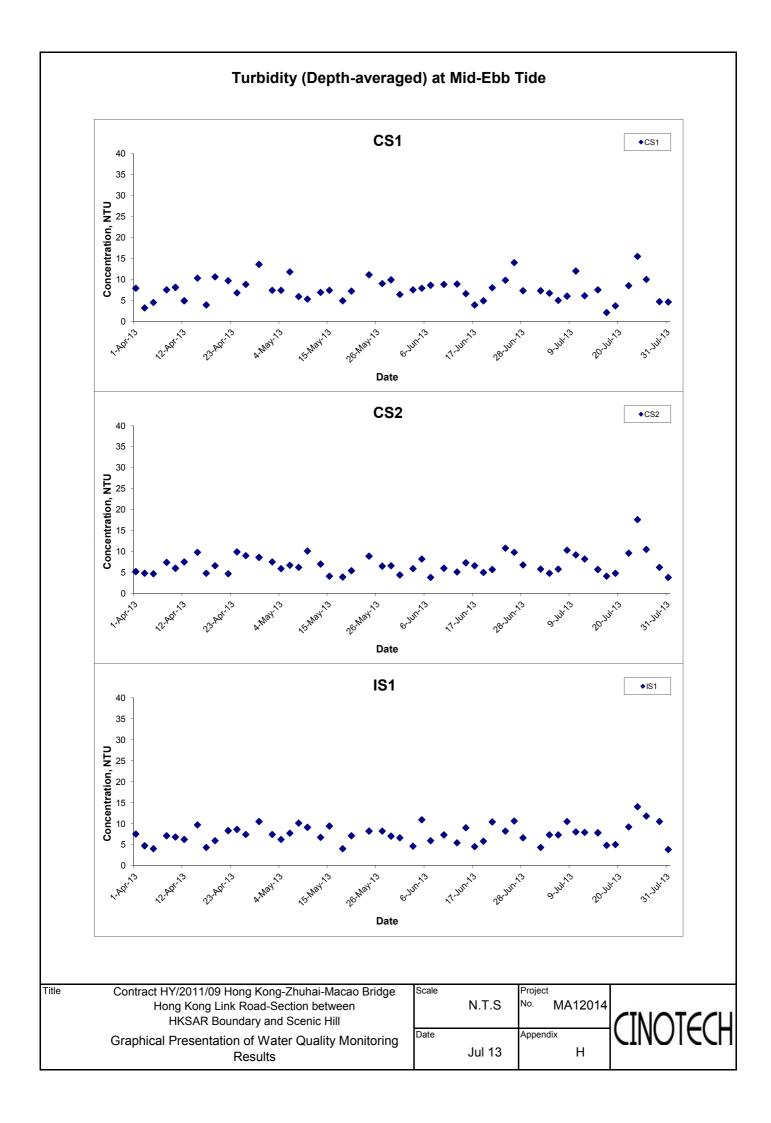


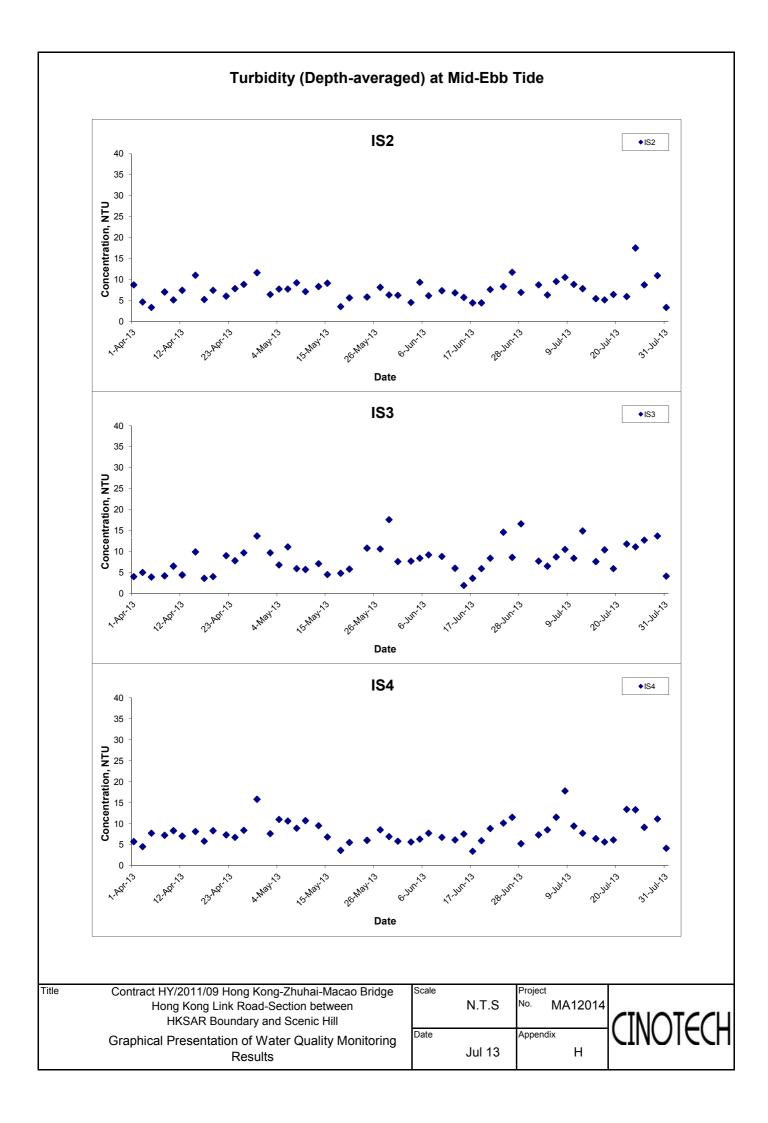


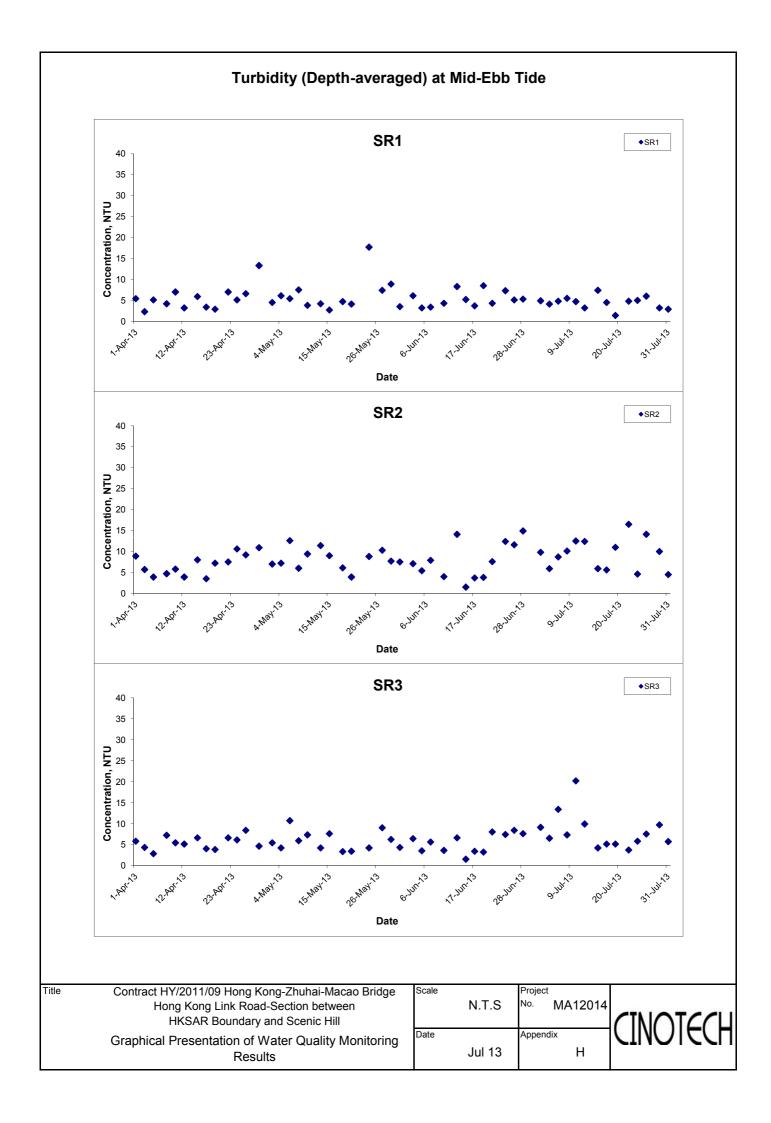


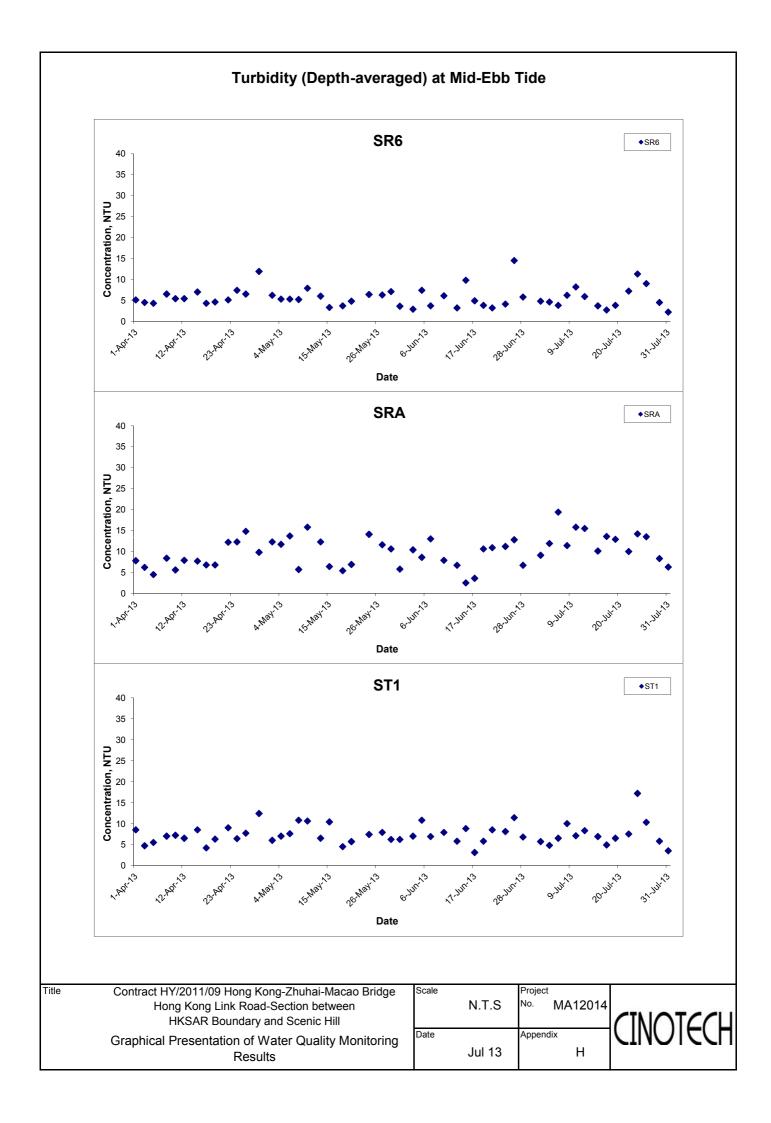


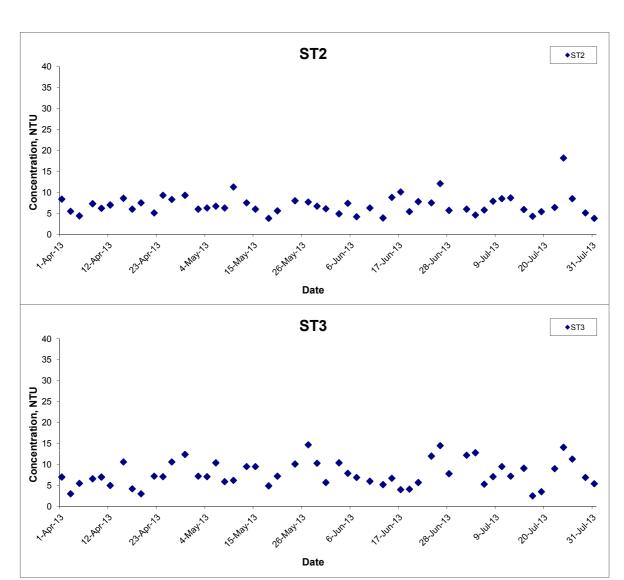
Dissolved Oxygen (Bottom) at Mid-Flood Tide



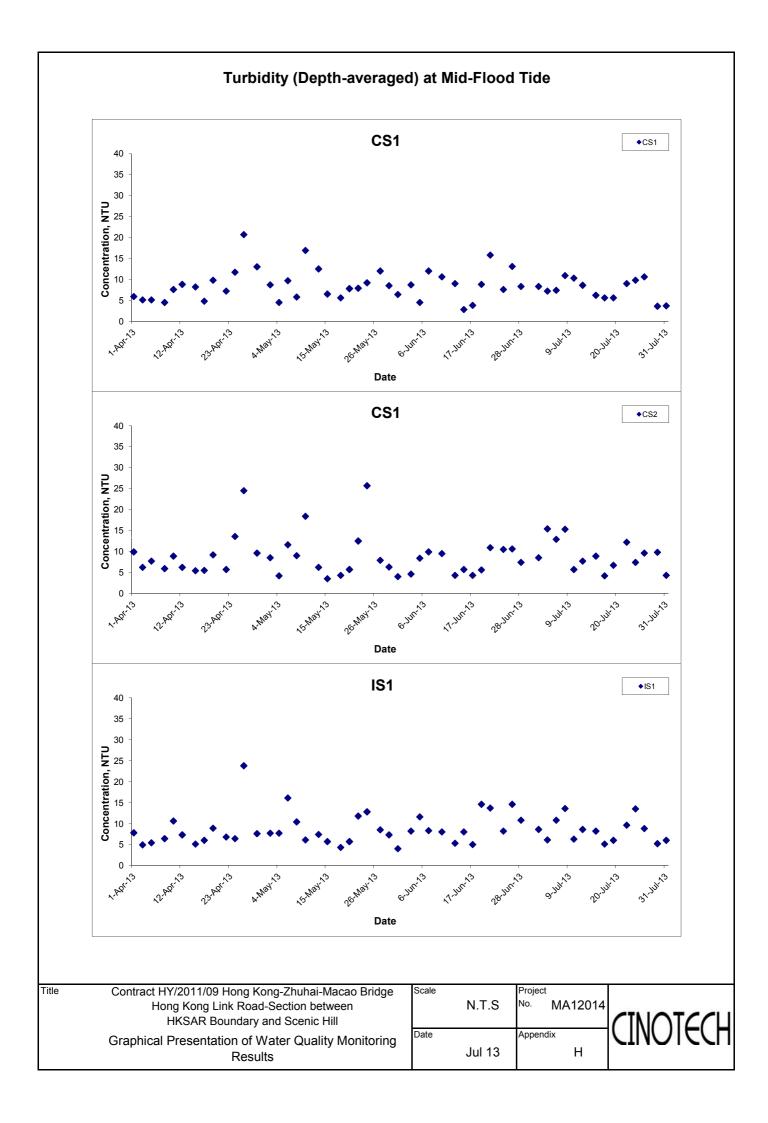

Title Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

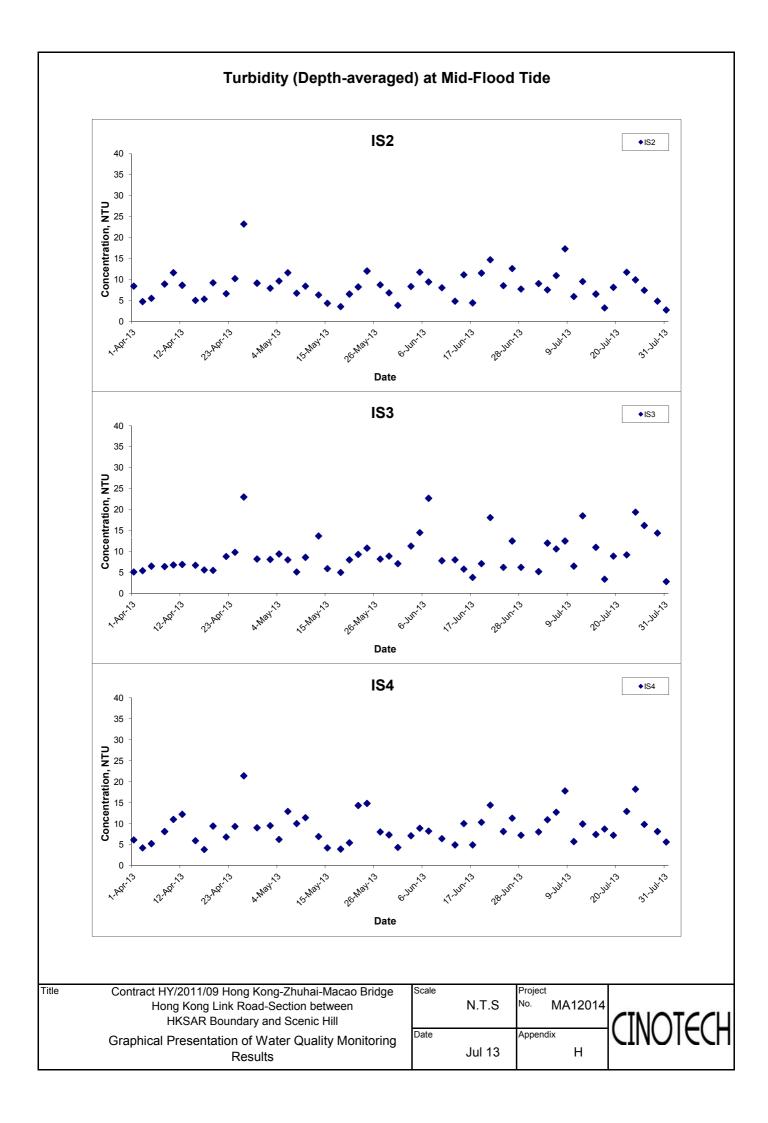

 N.T.S
 Project No.
 MA12014

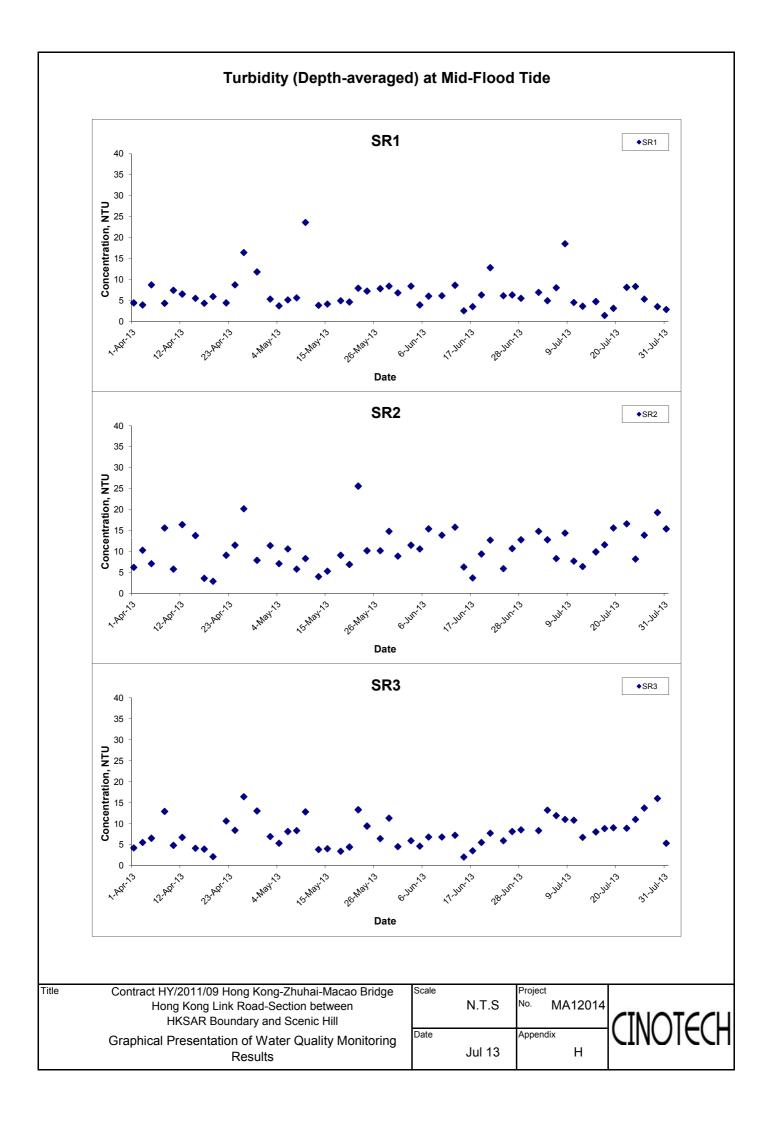

 Date
 Appendix
 H

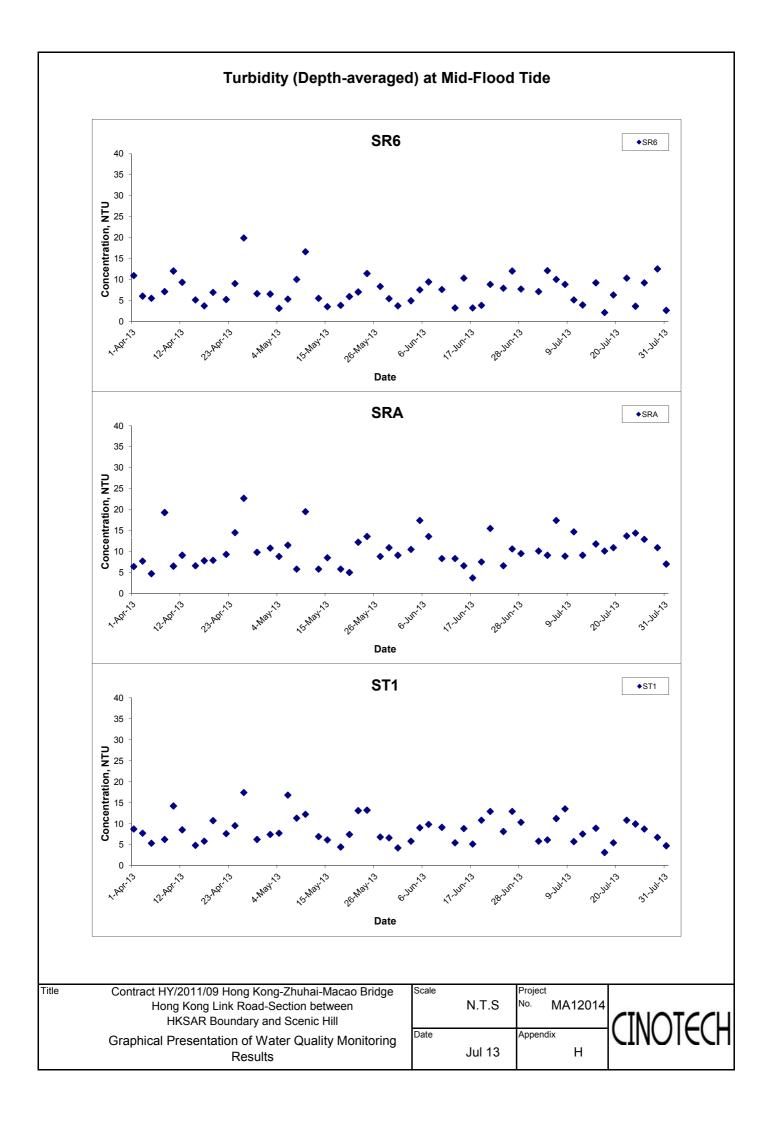


Turbidity (Depth-averaged) at Mid-Ebb Tide

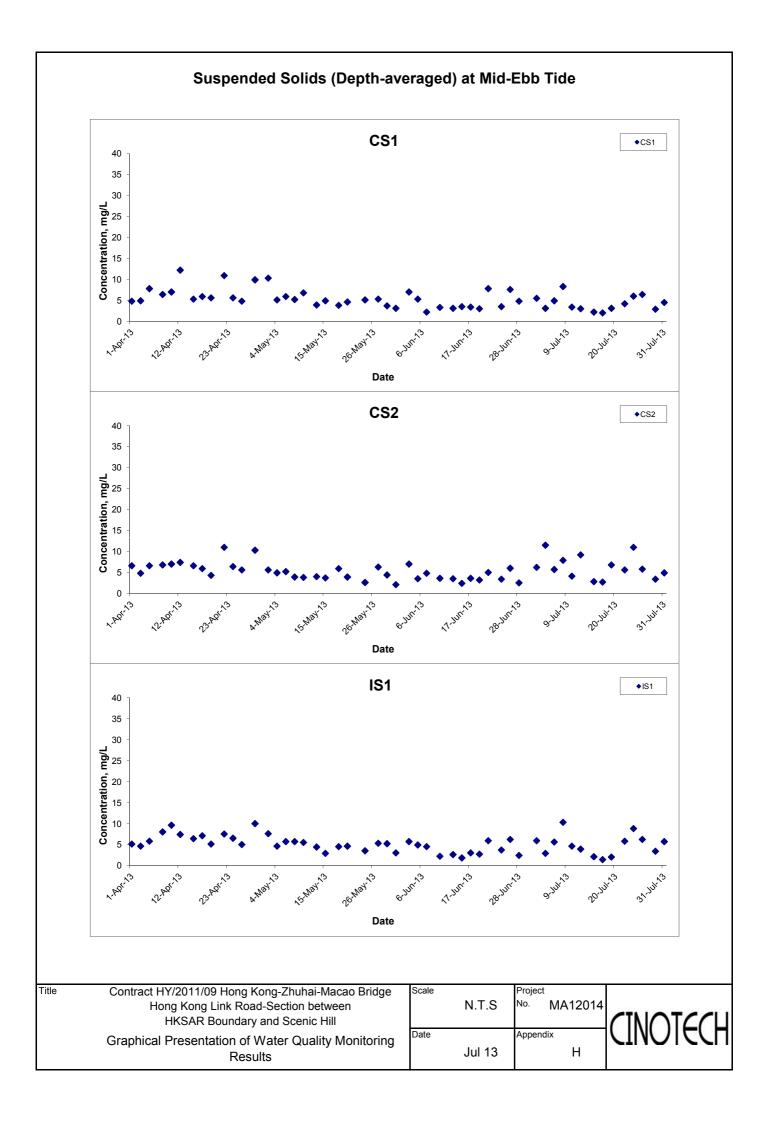

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill Graphical Presentation of Water Quality Monitoring Results

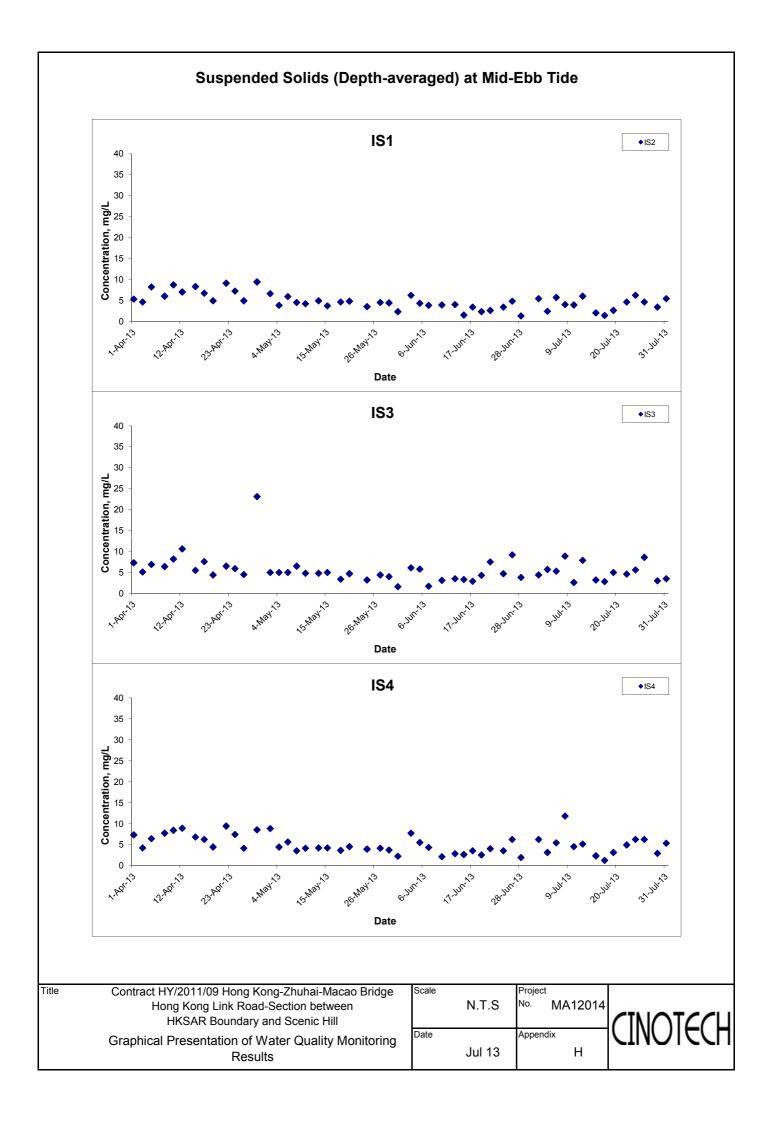

Title

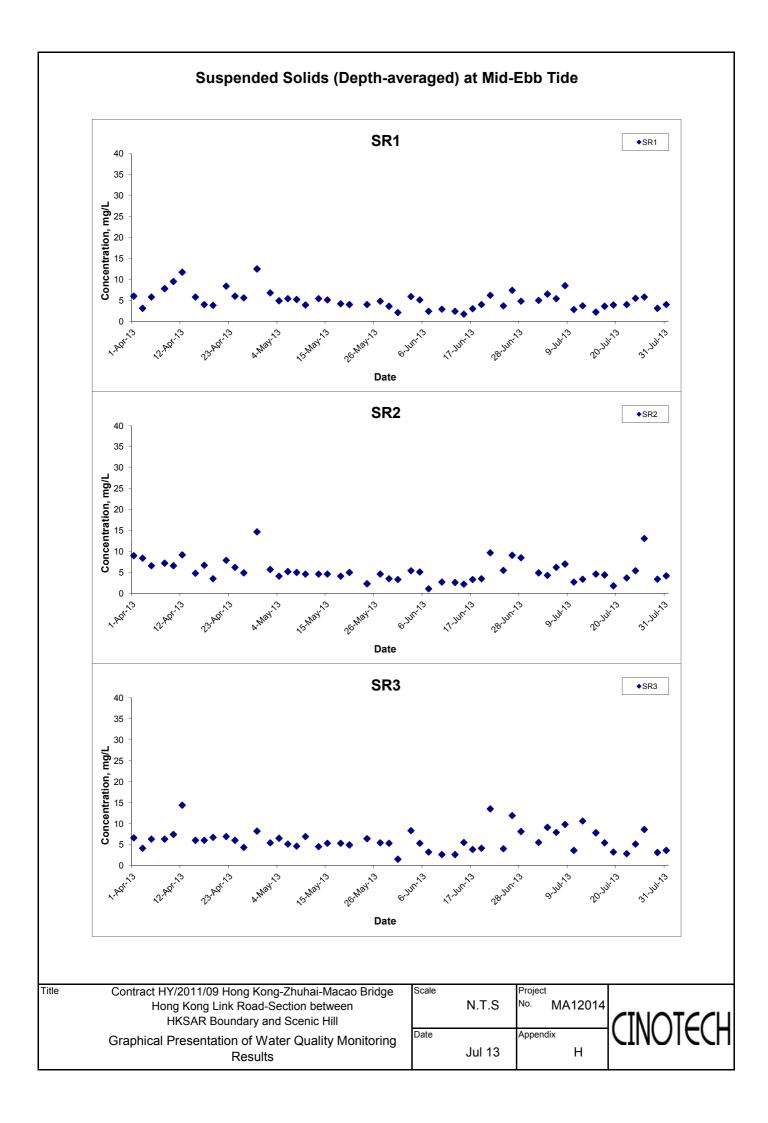

 N.T.S
 Project No.
 MA12014

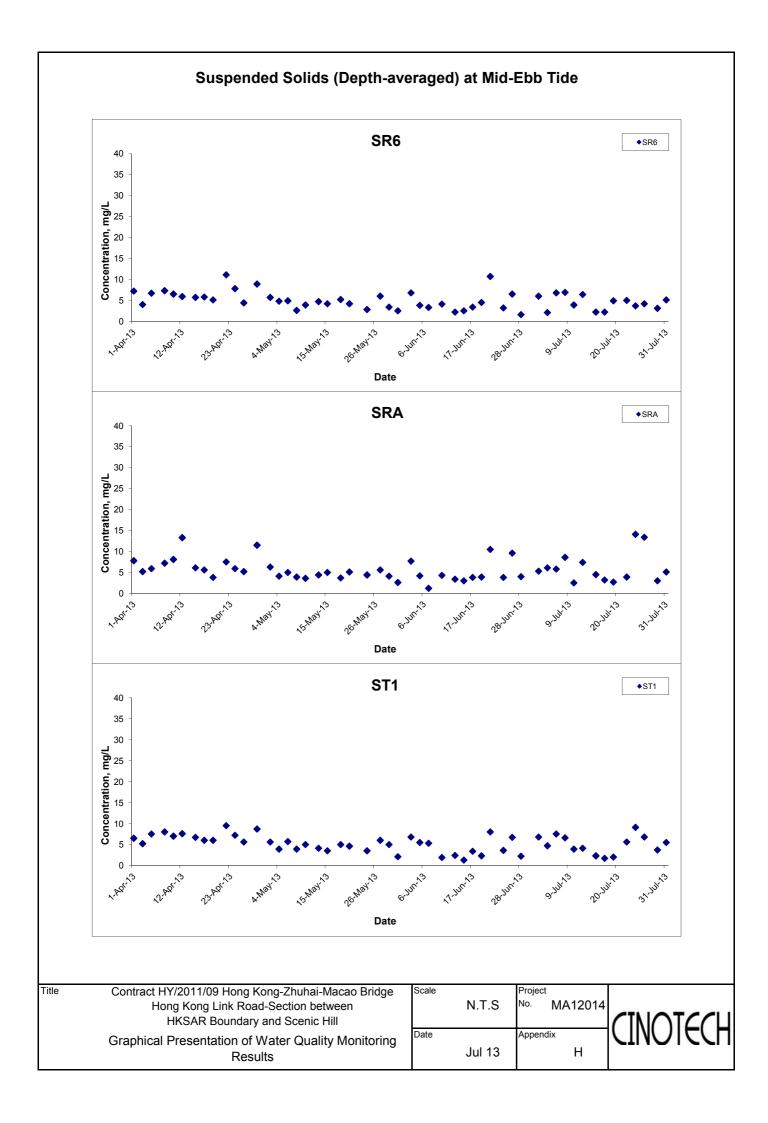

 Date
 Appendix
 H

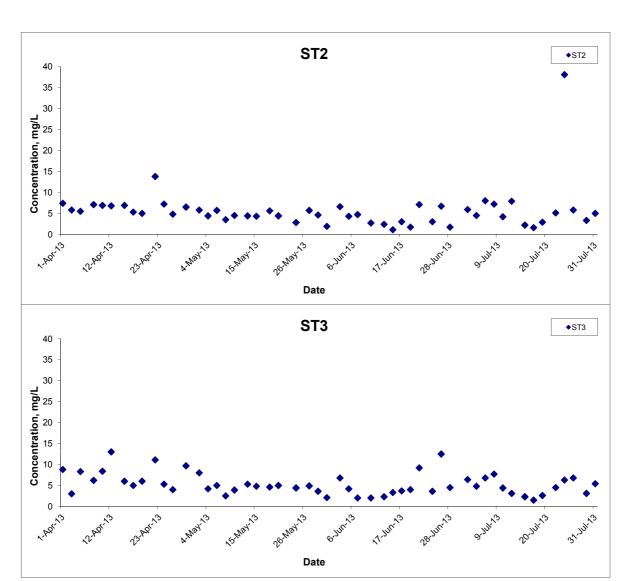



Turbidity (Depth-averaged) at Mid-Flood Tide

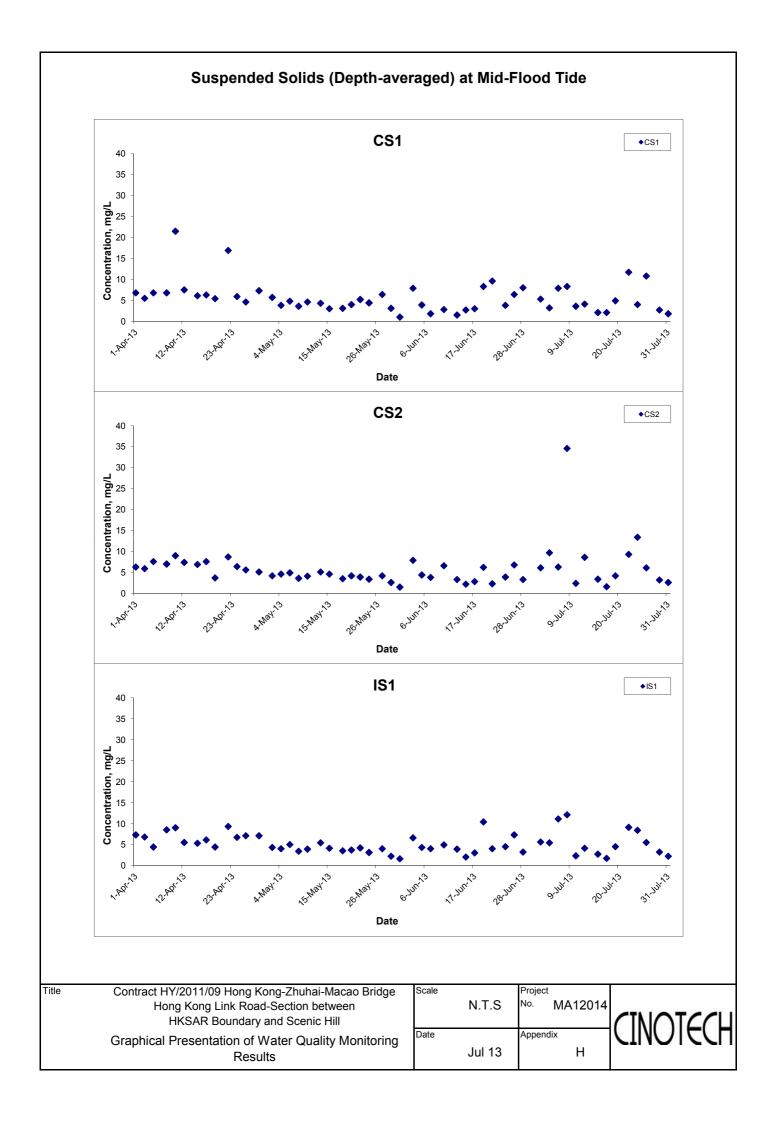


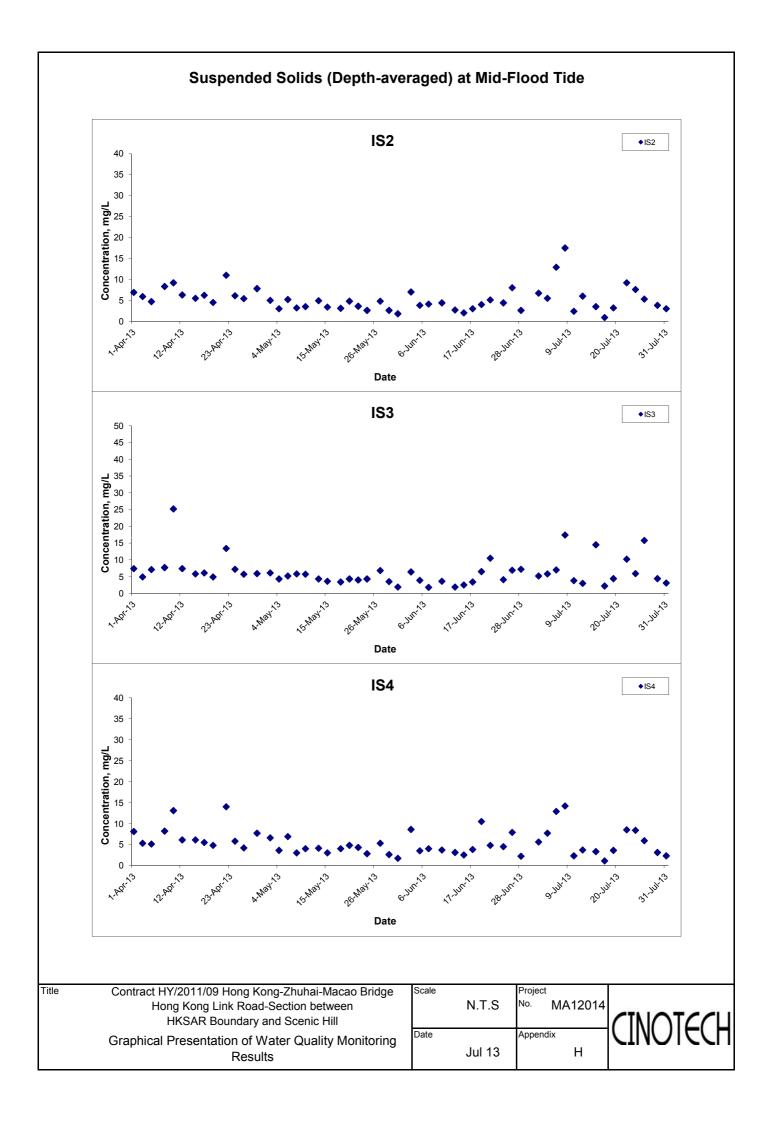

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

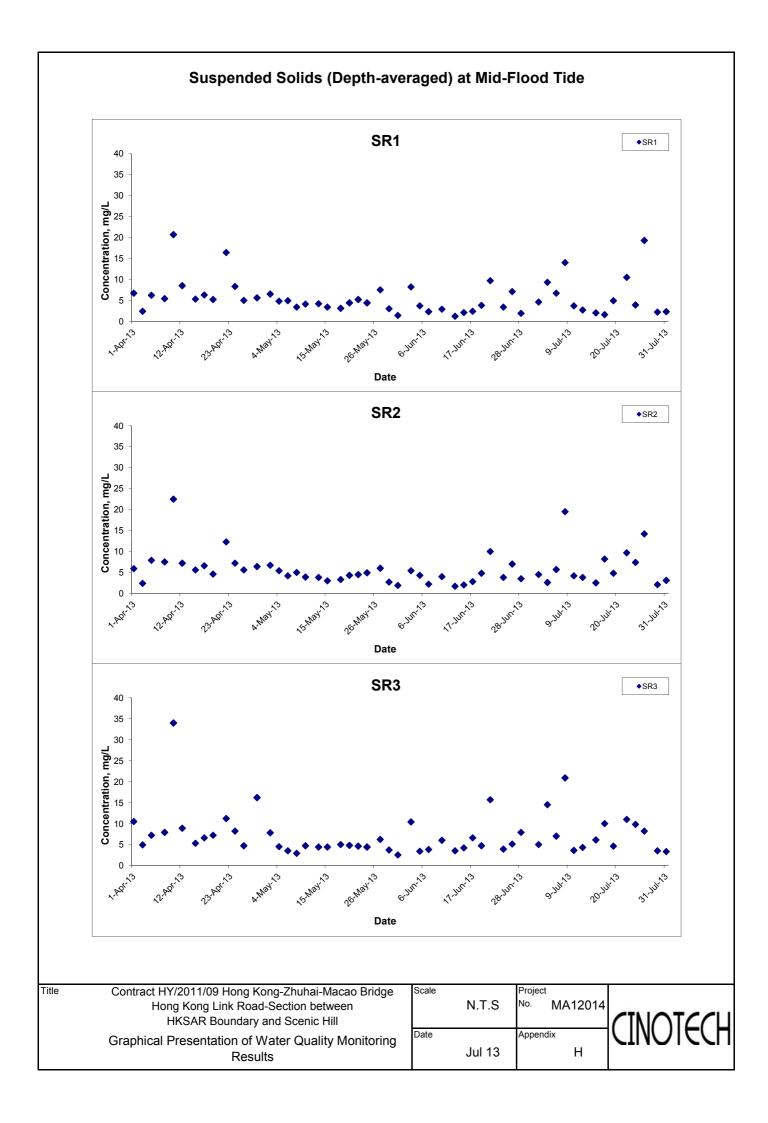

Title

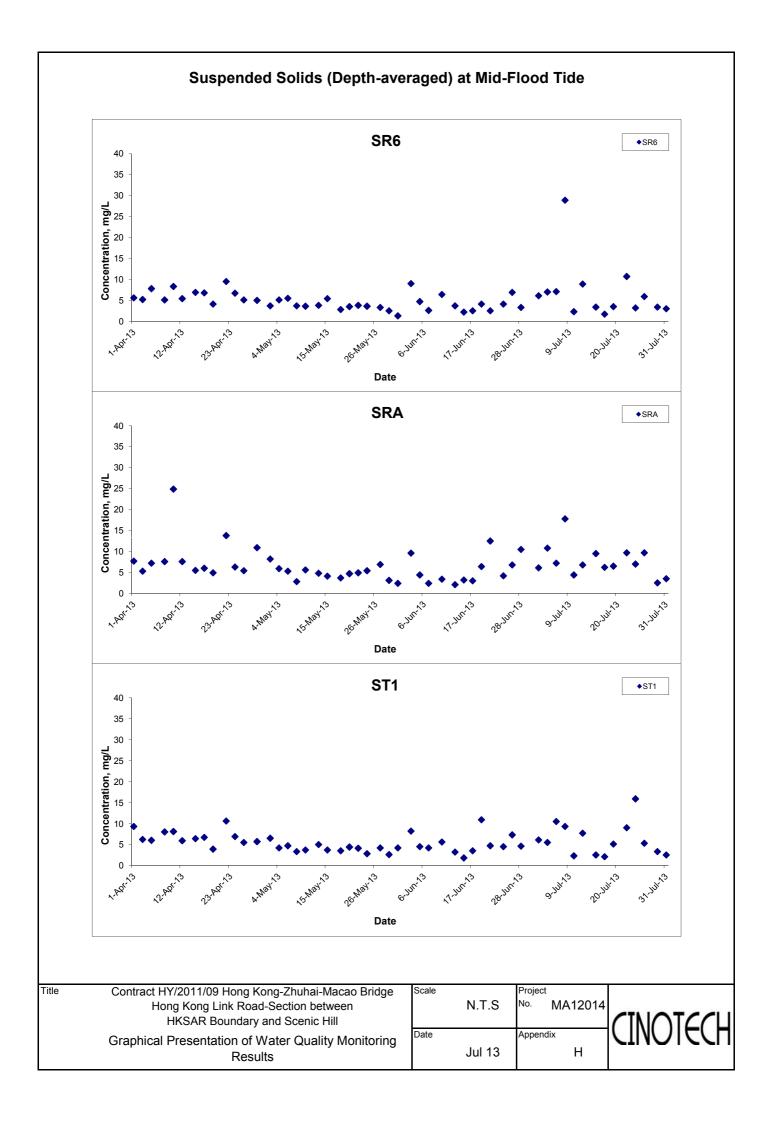


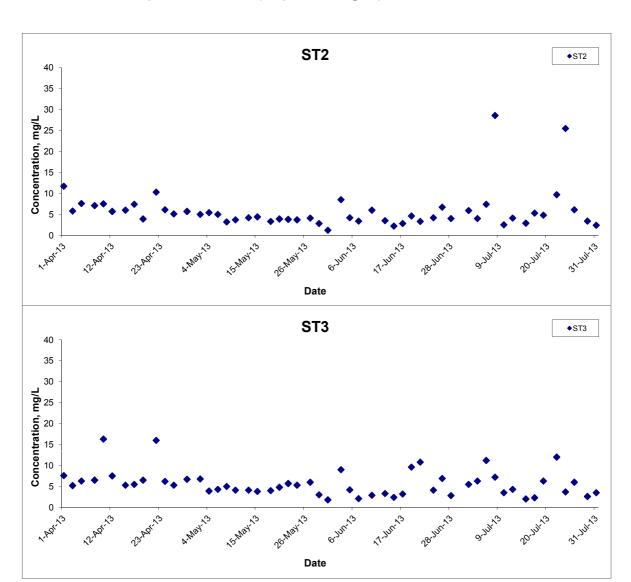
Suspended Solids (Depth-averaged) at Mid-Ebb Tide


Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results


Title


 N.T.S
 Project No.
 MA12014


 Date
 Appendix
 H



Suspended Solids (Depth-averaged) at Mid-Flood Tide

Contract HY/2011/09 Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road-Section between
HKSAR Boundary and Scenic Hill
Graphical Presentation of Water Quality Monitoring
Results

Title

APPENDIX I-1 DOLPHIN MONITORING REPORT (LINE TRANSECT)

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Dolphin Monthly Monitoring

Sixth Monthly Progress Report (July 2013)

Submitted by

Samuel K.Y. Hung, Ph.D., Hong Kong Cetacean Research Project

22 July 2013

1. Introduction

- 1.1. The Hong Kong Link Road (HKLR) serves to connect the Hong Kong-Zhuhai-Macao Bridge (HZMB) Main Bridge at the Hong Kong Special Administrative Region (HKSAR) Boundary and the HZMB Hong Kong Boundary Crossing Facilities (HKBCF) located at the northeastern waters of the Hong Kong International Airport.
- 1.2. According to the updated Environmental Monitoring and Audit (EM&A) Manual (for HKLR), monthly line-transect vessel surveys for Chinese White Dolphin should be conducted to cover the West Lantau survey area as in AFCD annual marine mammal monitoring programme.
- 1.3. In November 2012, Hong Kong Cetacean Research Project (HKCRP) has been commissioned by Dragages China Harbour VSL JV to conduct this 34-month dolphin monitoring study in order to collect data on Chinese White Dolphins during the construction phase (i.e. impact period) of the HKLR09 project in West Lantau (WL) survey area, and to analyze the collected survey data to monitor distribution, encounter rate, abundance, activities and occurrence of dolphin calves. Photo-identification will also be collected from individual Chinese White Dolphins to examine their individual range patterns and core area use.
- 1.4. From the monitoring results, any changes in dolphin occurrence within the study area will be examined for possible causes, and appropriate actions and additional mitigation measures will be recommended as necessary.

1.5. This report is the sixth monthly progress report under the HKLR09 construction phase dolphin monitoring programme, summarizing the results of the surveys findings during the month of July 2013.

2. Monitoring Methodology

- 2.1. Vessel-based Line-transect Survey
- 2.1.1. According to the requirement of the updated EM&A manual, dolphin monitoring programme should cover all transect lines in WL survey area (see Figure 1) twice per month throughout the entire construction period. The co-ordinates of all transect lines are shown in Table 1.

Table 1. Co-ordinates of transect lines in WL survey area

	Line No.	Easting	Northing		Line No.	Easting	Northing
1	Start Point	803750	818500	7	Start Point	800200	810450
1	End Point	803750	815500	7	End Point	801400	810450
2	Start Point	803750	815500	8	Start Point	801300	809450
2	End Point	802940	815500	8	End Point	799750	809450
3	Start Point	802550	814500	9	Start Point	799400	808450
3	End Point	803700	814500	9	End Point	801430	808450
4	Start Point	803120	813600	10	Start Point	801500	807450
4	End Point	801640	813600	10	End Point	799600	807450
5	Start Point	801100	812450	11	Start Point	800300	806500
5	End Point	802900	812450	11	End Point	801750	806500
6	Start Point	802400	811500	12	Start Point	801760	805450
6	End Point	800660	811500	12	End Point	800700	805450

2.1.2. The survey team used standard line-transect methods (Buckland et al. 2001) to conduct the systematic vessel surveys, and followed the same technique of data collection that has been adopted over the last 16 years of marine

- mammal monitoring surveys in Hong Kong developed by HKCRP (see Hung 2012). For each monitoring vessel survey, a 15-m inboard vessel (*Standard* 31516) with an open upper deck (about 4.5 m above water surface) was used to make observations from the flying bridge area.
- 2.1.3. Two experienced observers (a data recorder and a primary observer) made up the on-effort survey team, and the survey vessel transited different transect lines at a constant speed of 13-15 km per hour. The data recorder searched with unaided eyes and filled out the datasheets, while the primary observer searched for dolphins and porpoises continuously through 7 x 50 *Steiner* marine binoculars. Both observers searched the sea ahead of the vessel, between 270° and 90° (in relation to the bow, which is defined as 0°). One to two additional experienced observers were available on the boat to work in shift (i.e. rotate every 30 minutes) in order to minimize fatigue of the survey team members. All observers were experienced in small cetacean survey techniques and identifying local cetacean species.
- 2.1.4. During on-effort survey periods, the survey team recorded effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance traveled in each series (a continuous period of search effort) with the assistance of a handheld GPS (Garmin eTrex Legend).
- 2.1.5. Data including time, position and vessel speed were also automatically and continuously logged by handheld GPS throughout the entire survey for subsequent review.
- 2.1.6. When dolphins were sighted, the survey team would end the survey effort, and immediately record the initial sighting distance and angle of the dolphin group from the survey vessel, as well as the sighting time and position. Then the research vessel was diverted from its course to approach the animals for species identification, group size estimation, assessment of group composition, and behavioural observations. The perpendicular distance (PSD) of the dolphin group to the transect line was later calculated from the initial sighting distance and angle.
- 2.1.7. Survey effort being conducted along the parallel transect lines that were perpendicular to the coastlines (as indicated in Figure 1) was labeled as

"primary" survey effort, while the survey effort being conducted along the connecting lines between parallel lines was labeled as "secondary" survey effort. According to HKCRP long-term dolphin monitoring data, encounter rates of Chinese white dolphins deduced from effort and sighting data collected along primary and secondary lines were similar in survey areas around Lantau Island. Therefore, primary and secondary survey effort were both presented as on-effort survey effort in this report.

2.1.8. Encounter rates of Chinese white dolphins (number of on-effort sightings per 100 km of survey effort) were calculated in WL survey area in relation to the amount of survey effort conducted during each month of monitoring survey. Only data collected under Beaufort 3 or below condition would be used for encounter rate analysis. Dolphin encounter rates were calculated using primary survey effort alone, as well as the combined survey effort from both primary and secondary lines.

2.2. Photo-identification Work

- 2.2.1. When a group of Chinese White Dolphins were sighted during the line-transect survey, the survey team would end effort and approach the group slowly from the side and behind to take photographs of them. Every attempt was made to photograph every dolphin in the group, and even photograph both sides of the dolphins, since the colouration and markings on both sides may not be symmetrical.
- 2.2.2. Two professional digital cameras (*Canon* EOS 7D and 60D models), each equipped with long telephoto lenses (100-400 mm zoom), were available on board for researchers to take sharp, close-up photographs of dolphins as they surfaced. The images were shot at the highest available resolution and stored on Compact Flash memory cards for downloading onto a computer.
- 2.2.3. All digital images taken in the field were first examined, and those containing potentially identifiable individuals were sorted out. These photographs would then be examined in greater detail, and were carefully compared to the existing Chinese White Dolphin photo-identification catalogue maintained by HKCRP since 1995.
- 2.2.4. Chinese White Dolphins can be identified by their natural markings, such as nicks, cuts, scars and deformities on their dorsal fin and body, and their

- unique spotting patterns were also used as secondary identifying features (Jefferson 2000).
- 2.2.5. All photographs of each individual were then compiled and arranged in chronological order, with data including the date and location first identified (initial sighting), re-sightings, associated dolphins, distinctive features, and age classes entered into a computer database.

3. Monitoring Results

- 3.1. Vessel-based Line-transect Survey
- 3.1.1. During the month of July 2013, two complete sets of systematic line-transect vessel surveys were conducted on the 5th and 10th, to cover all transect lines in WL survey area twice. The survey routes of each survey day were presented in Figures 2-3.
- 3.1.2. From these surveys, a total of 60.3 km of survey effort was collected, with 100.0% of the total survey effort being conducted under favourable weather conditions (i.e. Beaufort Sea State 3 or below with good visibility) (Appendix I). Moreover, the total survey effort conducted on primary lines (the vertical lines perpendicular to the coastlines) was 40.2 km, while the effort on secondary lines (the lines connecting the primary lines) was 20.1 km.
- 3.1.3. During the monitoring surveys in July 2013, a total of 23 groups of 89 Chinese White Dolphins were sighted (Appendix II). All except three sightings were made during on-effort search. Among the 20 on-effort sightings, 15 of them were made on primary lines, while the other five were made on secondary lines. None of the dolphin groups was associated with any operating fishing vessel.
- 3.1.4. Distribution of all dolphin sightings made during July's surveys was shown in Figure 4. These sightings were evenly distributed throughout the WL survey area, which was very different from previous months of monitoring when most sightings were made at the middle and southern portions of the survey area. Notably, two dolphin sightings were made near the HKLR09 alignment (Figure 4).
- 3.1.5. During July's surveys, encounter rates of Chinese white dolphins deduced from the survey effort and on-effort sighting data made under favourable

conditions (Beaufort 3 or below) are shown in Tables 2 & 3.

Table 2. Dolphin encounter rates (sightings per 100 km of survey effort) per set during July's surveys

		Encounter rate (STG)	nter rate (STG) Encounter rate (ANI)	
		(no. of on-effort dolphin sightings (no. of dolphins from all on-effort		
		per 100 km of survey effort)	sightings per 100 km of survey effort	
		Primary Lines Only	Primary Lines Only	
\A/I	Set 1: July 5 th	38.7	159.5	
WL	Set 2: July 10 th	35.8	153.5	

Table 3. Overall dolphin encounter rates (sightings per 100 km of survey effort) in July's surveys on primary lines only as well as both primary lines and secondary lines

	Encount	er rate (STG)	Encounter rate (ANI)		
	(no. of on-effo	ort dolphin sightings	(no. of dolphins from all on-effort		
	per 100 km	of survey effort)	sightings per 100	km of survey effort)	
	Primary	Both Primary	Primary	Both Primary	
	Lines Only	and Secondary	Lines Only	and Secondary	
		Lines		Lines	
West Lantau	37.3	33.1	156.6	134.2	

3.1.6. The average group size of Chinese White Dolphins was 3.9 individuals per group during July's surveys, which was higher than the averages in previous months of monitoring. Most groups comprised of a few dolphins only, but two large groups of 16 and 8 animals were sighted respectively near the HKLR09 alignment.

3.2. Photo-identification Work

- 3.2.1. A total of 28 re-sightings of known individual Chinese White Dolphins were made during the July's surveys (Appendices III and IV). Among these 28 re-sightings, 26 individuals were identified.
- 3.2.2. Notably, two individuals (WL25 and WL124) were re-sighted twice during the two sets of monitoring surveys in July 2013.

3.3. Conclusion

- 3.3.1. During this month of dolphin monitoring, marine construction activities have continued under this contract. However, no adverse impact on Chinese white dolphins was noticeable from general observations.
- 3.3.2. Due to the monthly variation in dolphin occurrence within the study area, it would be more appropriate to draw conclusion on whether any impacts on dolphins have been detected related to the construction activities of this project in the quarterly EM&A report, where comparison on distribution, group size and encounter rates of dolphins between the quarterly impact monitoring period and baseline monitoring period will be made.

4. References

- Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, London.
- Hung, S. K. 2012. Monitoring of marine mammals in Hong Kong waters data collection: final report (2011-12). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, 120 pp.
- Hung, S. K. 2013. Monitoring of marine mammals in Hong Kong waters data collection: inception report (2013-14). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government.
- Jefferson, T. A. 2000. Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. Wildlife Monographs 144:1-65.

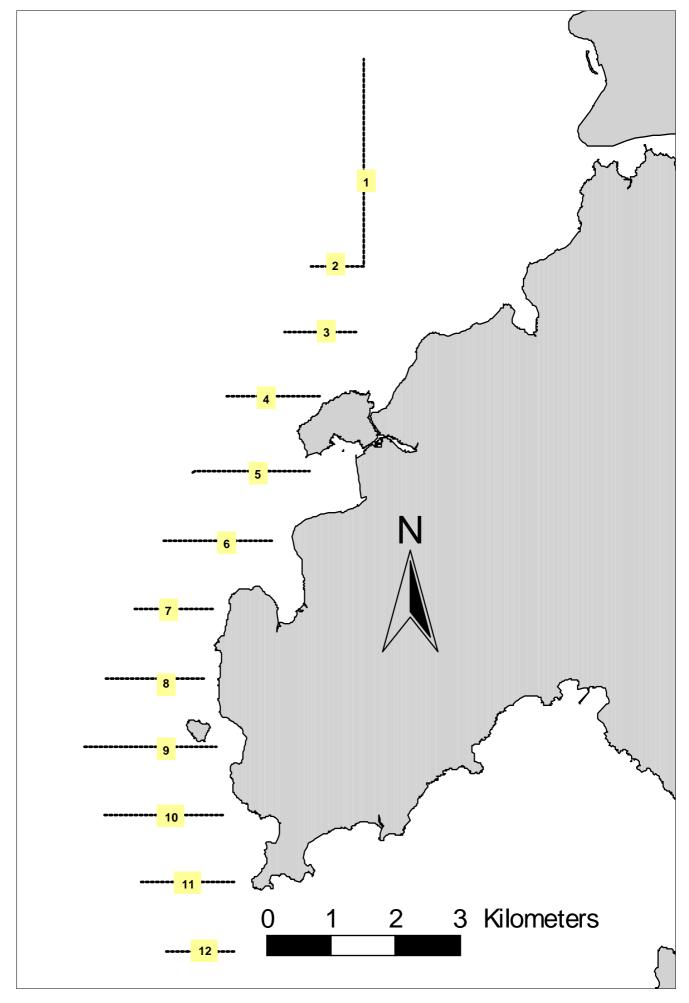


Figure 1. Transect Line Layout in West Lantau Survey Areas

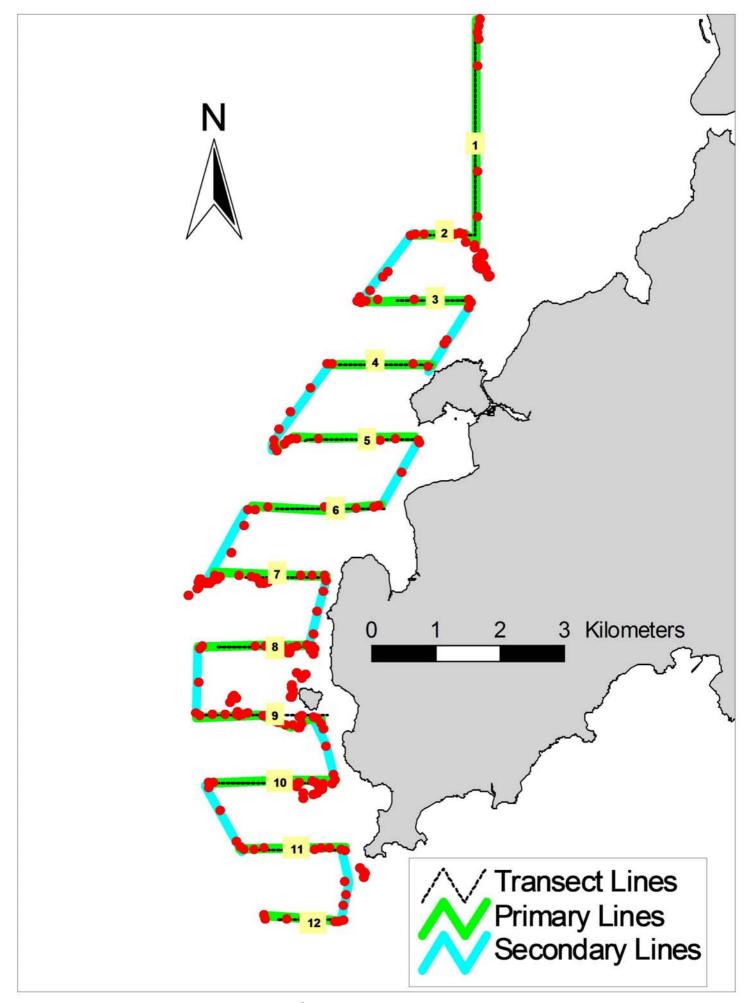


Figure 2. Survey Route on July 5th, 2013 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

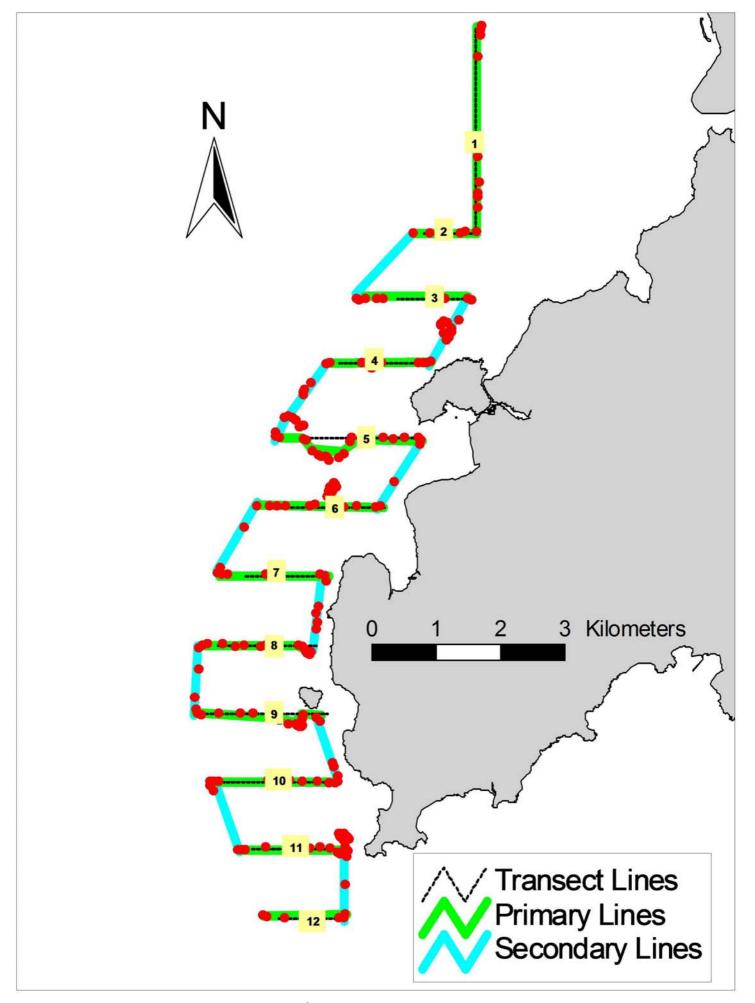


Figure 3. Survey Route on July 10th, 2013 (note: red dots represent the tracked positions of survey boat logged continuously by GPS throughout the course of the survey)

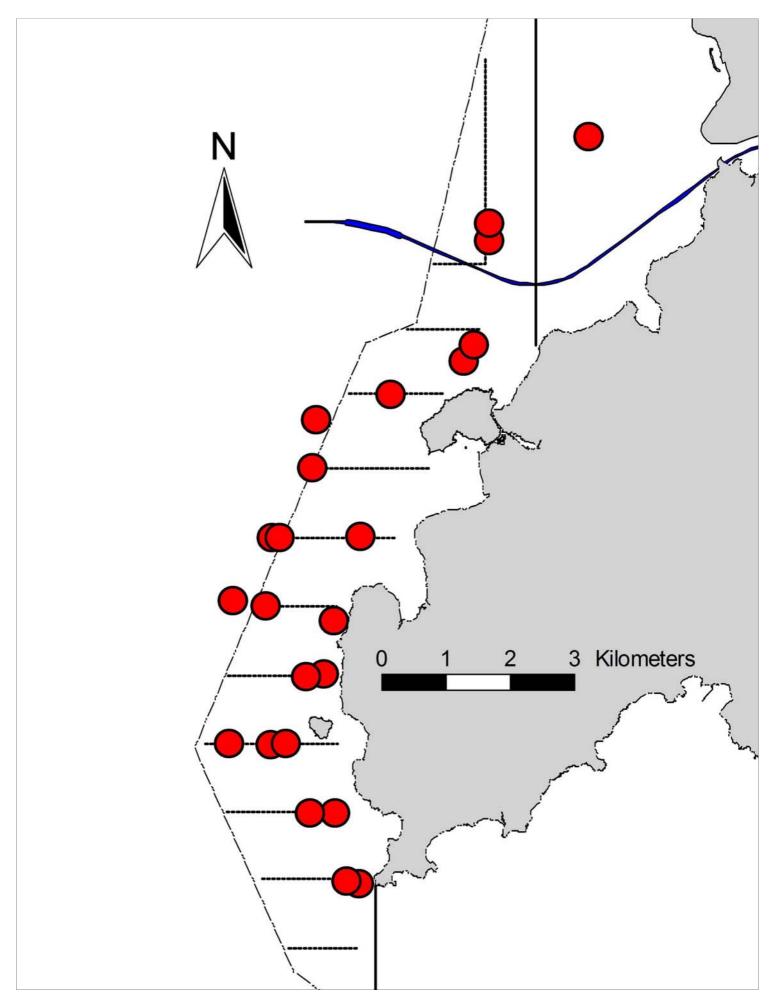


Figure 4. Distribution of Chinese White Dolphin Sighting during July 2013 HKLR09 Monitoring Surveys

Appendix I. HKLR09 Survey Effort Database (July 2013)

(Abbreviations: BEAU = Beaufort Sea State; P = Primary Line Effort; S = Secondary Line Effort)

DATE	AREA	BEAU	EFFORT	SEASON	VESSEL	TYPE	P/S
5-Jul-13	W LANTAU	2	7.3	SUMMER	STANDARD31516	HKLR	Р
5-Jul-13	W LANTAU	3	13.4	SUMMER	STANDARD31516	HKLR	Р
5-Jul-13	W LANTAU	2	2.9	SUMMER	STANDARD31516	HKLR	S
5-Jul-13	W LANTAU	3	7.8	SUMMER	STANDARD31516	HKLR	S
10-Jul-13	W LANTAU	1	3.4	SUMMER	STANDARD31516	HKLR	Р
10-Jul-13	W LANTAU	2	11.3	SUMMER	STANDARD31516	HKLR	Р
10-Jul-13	W LANTAU	3	4.9	SUMMER	STANDARD31516	HKLR	Р
10-Jul-13	W LANTAU	1	1.0	SUMMER	STANDARD31516	HKLR	S
10-Jul-13	W LANTAU	2	8.5	SUMMER	STANDARD31516	HKLR	S

Appendix II. HKLR09 Chinese White Dolphin Sighting Database (July 2013)

(Abberviations: STG# = Sighting Number; HRD SZ = Dolphin Herd Size; BEAU = Beaufort Sea State; PSD = Perpendicular Distance Determined; BOAT ASSOC. = Fishing Boat Association P/S: Sighting Made on Primary/Secondary Lines

DATE	STG#	TIME	HRD SZ	AREA	BEAU	PSD	EFFORT	TYPE	NORTHING	EASTING	SEASON	BOAT ASSOC.	P/S
05-Jul-13	1	1047	16	W LANTAU	2	149	ON	HKLR	815804	803786	SUMMER	NONE	Р
05-Jul-13	2	1131	2	W LANTAU	3	ND	OFF	HKLR	814033	803391	SUMMER	NONE	N/A
05-Jul-13	3	1216	1	W LANTAU	3	49	ON	HKLR	811448	800437	SUMMER	NONE	Р
05-Jul-13	4	1222	6	W LANTAU	3	187	ON	HKLR	810541	799826	SUMMER	NONE	S
05-Jul-13	5	1238	1	W LANTAU	3	20	ON	HKLR	810452	800321	SUMMER	NONE	Р
05-Jul-13	6	1249	3	W LANTAU	3	263	ON	HKLR	809464	801226	SUMMER	NONE	S
05-Jul-13	7	1304	1	W LANTAU	3	43	ON	HKLR	809420	800947	SUMMER	NONE	Р
05-Jul-13	8	1318	5	W LANTAU	3	13	ON	HKLR	808437	799759	SUMMER	NONE	Р
05-Jul-13	9	1328	6	W LANTAU	2	246	ON	HKLR	808425	800409	SUMMER	NONE	Р
05-Jul-13	10	1347	2	W LANTAU	2	182	ON	HKLR	807426	801397	SUMMER	NONE	Р
05-Jul-13	11	1357	2	W LANTAU	2	ND	OFF	HKLR	807438	801005	SUMMER	NONE	N/A
05-Jul-13	12	1417	1	W LANTAU	3	105	ON	HKLR	806395	801786	SUMMER	NONE	Р
10-Jul-13	1	1008	4	W LANTAU	1	ND	OFF	HKLR	817317	805325	SUMMER	NONE	N/A
10-Jul-13	2	1037	8	W LANTAU	3	1085	ON	HKLR	816047	803787	SUMMER	NONE	Р
10-Jul-13	3	1130	4	W LANTAU	2	29	ON	HKLR	814265	803556	SUMMER	NONE	S
10-Jul-13	4	1143	3	W LANTAU	3	839	ON	HKLR	813548	802256	SUMMER	NONE	Р
10-Jul-13	5	1152	2	W LANTAU	2	284	ON	HKLR	813174	801121	SUMMER	NONE	S
10-Jul-13		1201	3	W LANTAU	2	236	ON	HKLR	812465	801058	SUMMER	NONE	Р
10-Jul-13		1224	3	W LANTAU	2	163	ON	HKLR	811467	801787	SUMMER	NONE	Р
10-Jul-13	8	1235	1	W LANTAU	2	1079	ON	HKLR	811459	800550	SUMMER	NONE	Р
10-Jul-13	9	1251	3	W LANTAU	2	47	ON	HKLR	810239	801393	SUMMER	NONE	S
10-Jul-13		1318	4	W LANTAU	3	491	ON	HKLR	808446	800646	SUMMER	NONE	Р
10-Jul-13	11	1359	8	W LANTAU	2	53	ON	HKLR	806429	801590	SUMMER	NONE	Р

Appendix III. Individual dolphins identified during HKLR09 monitoring surveys in July 2013

ID#	DATE	STG#	AREA
CH12	10/07/13	10	WL
CH38	10/07/13	11	WL
CH108	10/07/13	6	WL
NL80	10/07/13	2	WL
NL103	10/07/13	2	WL
NL293	10/07/13	11	WL
SL40	10/07/13	11	WL
SL47	05/07/13	1	WL
SL49	05/07/13	1	WL
WL04	05/07/13	8	WL
WL25	05/07/13	9	WL
	10/07/13	11	WL
WL46	05/07/13	1	WL
WL60	05/07/13	1	WL
WL61	10/07/13	11	WL
WL86	10/07/13	10	WL
WL100	10/07/13	6	WL
WL118	05/07/13	9	WL
WL123	10/07/13	11	WL
WL124	05/07/13	6	WL
	10/07/13	2	WL
WL131	10/07/13	10	WL
WL145	05/07/13	4	WL
WL152	10/07/13	10	WL
WL159	05/07/13	1	WL
WL178	05/07/13	10	WL
WL179	05/07/13	4	WL
WL213	05/07/13	1	WL

SL49_20130705_1

SL47_20130705_1

WL46_20130705_1

Appendix IV. Photographs of Identified Individual Dolphins in July 2013 (HKLR09)

Appendix IV. (cont'd)

Appendix IV. (cont'd)

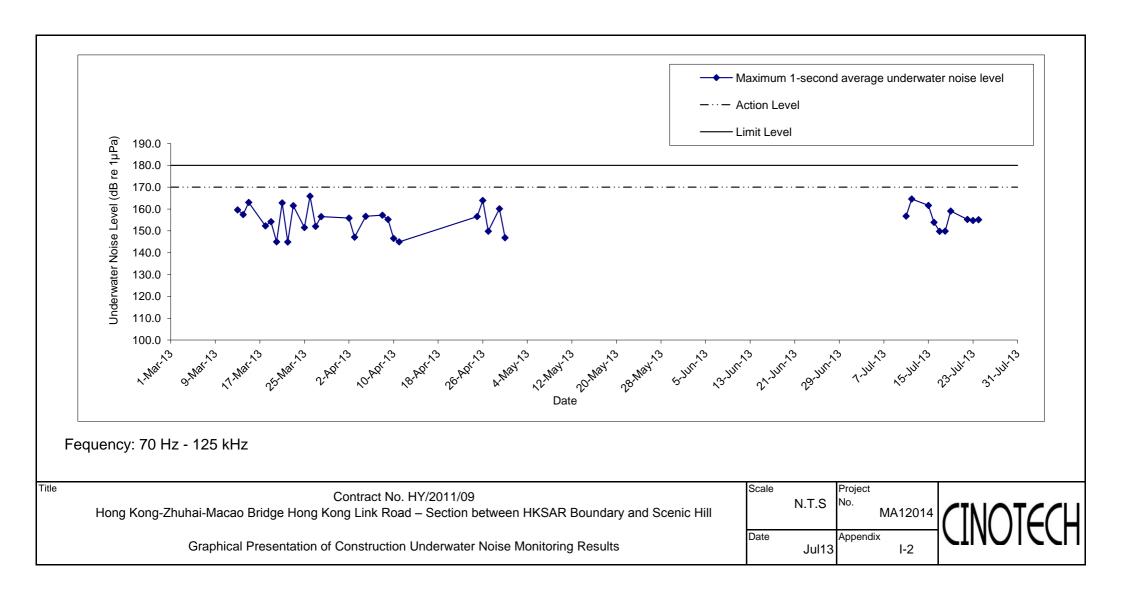
Appendix IV. (cont'd)

APPENDIX I-2 UNDERWATER NOISE MONIITORING RESULTS

Underwater Noise Monitoring in July 2013

Date	Station	Underwater Noise (dB re 1µPa)					
Date	Station	Max	Average	Min			
11-Jul-13	R3	156.8	139.8	117.7			
12-Jul-13	R3	164.6	139.7	115.4			
15-Jul-13	R3	161.6	135.3	119.7			
16-Jul-13	R3	153.9	133.6	120.5			
17-Jul-13	R3	149.8	134.4	120.1			
18-Jul-13	R3	149.9	138.4	122.5			
19-Jul-13	R3	159.1	138.8	120.3			
22-Jul-13	R3	155.2	140.0	122.2			
23-Jul-13	R3	154.8	141.9	122.4			
24-Jul-13	R3	155.1	141.2	120.8			

Fequency: 70 Hz - 125 kHz


Underwater Noise Monitoring in July 2013

Date		Hourly Average Underwater Noise (dB re 1µPa)								Daily Average	
Date	Station	9	10	11	12	13	14	15	16	17	(dB re 1µPa)
11-Jul-13	R3	-	139.5	129.0	138.3	141.4	141.4	141.4	142.9	144.8	139.8
12-Jul-13	R3	142.1	142.7	138.0	131.0	137.7	140.9	142.7	141.4	140.9	139.7
15-Jul-13	R3	131.4	132.7	137.8	138.7	132.0	126.0	137.4	141.7	140.3	135.3
16-Jul-13	R3	140.0	133.7	131.8	139.7	134.6	132.3	126.6	128.3	135.4	133.6
17-Jul-13	R3	145.1	143.2	137.8	129.5	136.0	134.9	129.0	126.9	127.1	134.4
18-Jul-13	R3	144.3	143.2	143.1	142.6	136.9	136.1	135.2	133.2	131.5	138.4
19-Jul-13	R3	141.2	143.5	143.3	141.6	139.9	132.0	131.8	137.7	138.2	138.8
22-Jul-13	R3	135.6	140.0	141.4	141.8	144.3	144.7	143.8	138.9	129.7	140.0
23-Jul-13	R3	140.3	137.2	140.7	142.0	143.1	144.9	146.6	144.3	138.0	141.9
24-Jul-13	R3	142.4	136.9	135.6	140.2	141.4	143.8	144.3	144.3	141.8	141.2

Fequency: 70 Hz - 125 kHz

Station	Pier No.
R3	0

^{*} Daily average is calculated from all hourly average for that day.
* Underwater noise monitoring would be temporarily paused due to bad weather or to give way for barge movement.

APPENDIX I-3 DOLPHIN ACOUSTIC BEHAVIOUR MONITORING

Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Dolphin Monthly Monitoring on Dolphin Acoustic Behaviour Monitoring

Monthly Progress Report (July 2013)

Submitted by

Samuel K. Y. Hung, Ph.D., Hong Kong Cetacean Research Project.

August 5th, 2013

1. INTRODUCTION

The Hong Kong Link Road (HKLR) comprises a 9.4 km long viaduct section from the HKSAR boundary to Scenic Hill on the Airport Island; a 1-km tunnel section to the reclamation formed along the east coast of the Airport Island, and a 1.6-km long at-grade road section on the reclamation connecting to the Hong Kong Boundary Crossing Facilities (HKBCF). Dragages – China Harbour – VSL JV (hereinafter called the "Contractor") was awarded as the main contractor of "Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill".

According to the HKLR EM&A Manual, a number of environmental monitoring and audit works related to Chinese White Dolphins (a.k.a. Indo-Pacific humpback dolphins, *Sousa chinensis*) shall be conducted during baseline, construction and post-construction phases, including dolphin acoustic behaviour monitoring in relation to bored piling activities. Such monitoring is being undertaken by qualified dolphin specialist(s), who have sufficient (at least 5-10 years) relevant post-graduate experience and publication in the respective aspects. Approval of the specialists responsible for the dolphin acoustic behaviour monitoring was sought from AFCD and EPD, and Drs. Bernd Würsig, Marc Lammers, and Lisa Munger were selected and approved.

This progress report of dolphin acoustic behaviour monitoring details the methodology and monthly progress of July 2013 during the construction phase.

2. METHODS AND MATERIALS

2.1. Monitoring Location

The dedicated acoustic surveys with calibrated hydrophone deployment were conducted in the western side of Lantau Island during the construction phase. The research vessel followed a predefined route for systematic search effort in West Lantau waters to cover the HKLR alignment in Northwest and West Lantau waters (in particular the area near the first three bored piling sites), where dolphins will be potentially disturbed by the bored piling works.

The EARs were deployed at two locations: 1) near the bridge alignment (N22°17.222, E113°53.016), about 500 m from the first three bored piling sites (Site B2), and 2) at a less disturbed site away from the bridge alignment as control site, off Fan Lau (N22°11.827, 113°50.648; Site B1). EAR B2 was in water depth 4 m, and EAR B1 in 7 m.

2.2. Monitoring Methodology

2.2.1. Acoustic survey using calibrated hydrophone

During dedicated acoustic surveys, the survey team of two (an experienced sound operator and another HKCRP research assistant) conducted systematic search for dolphins within the study area on a predefined route. The survey protocol to search for dolphins was similar to the line-transect survey methodology adopted in the vessel survey under the HKLR09 EM&A programme. For each survey, a 15-m inboard vessel with an open upper deck (The vessel 32816) was used to make observations from the flying bridge area, at a visual height of 4-5 m above water surface. Two observers searched with unaided eyes and 7 x 50 marine binoculars ahead of the vessel (between 270° and 90° in relation to the bow, which is defined as 0°). The survey team recorded effort data including time, position (latitude and longitude), weather conditions (Beaufort sea state and visibility), and distance travelled in each series (a continuous period of search effort) with the assistance of a handheld GPS.

When dolphins were sighted, the survey team ended the search effort, and the research vessel was diverted from its course to slowly approach the animals for group size estimation, assessment of group composition, and behavioural observations in the initial 5-10 minutes. The calibrated hydrophone was then deployed 3 to 7 metres below the sea surface by 2-metre long spar buoy from the stern of the research vessel, with vessel engine noise off and the vessel drifting. Broadband dolphin recordings

were made with a Cetacean Research Technology spot-calibrated hydrophone (model: CR1; sensitivity: -197.7 dB, re. 1 V/ μ Pa; usable frequency response listed as 4 Hz-68 kHz +3/-12 dB connected to a 1 M Ω input impedance; linear frequency range: 0.2-48 kHz ± 3 dB). The spar buoy acted to prevent excessive hydrophone movement from wave and boat motion. The recordings were streamed into a digital memory field recorder (model: Fostex FR-2; frequency response: 20 Hz-80kHz ±3 dB) with a pre-amplified signal conditioner (model: PC200-ICP; precision gain: x0.1-x100; frequency range: >100 kHz; system response: 1 Hz-100 kHz ± 3 dB) to prevent overloading and minimize cable noise. The recordings were then stored on a 4 GB Compact Flash Card, and downloaded for further analysis. The above acoustic data collection setup has been used in the long-term monitoring study on Chinese White Dolphins in Hong Kong since April 2010 (Sims et al. 2011, 2012; also see Hung 2012).

During hydrophone deployment, the date, start and end times, hydrophone and water depths, Beaufort sea state, survey area, locations, ICP gain, event, and notes were taken for each recording in five-minute intervals. Within each corresponding five-minute interval, observers also noted variables including the dolphin group size, group composition and their general behaviour during the 5-minute period (i.e. feeding, socializing, travelling, resting, milling and any aerial activity). The number of vessels that passed within 500 m of the dolphin group were recorded during the same 5-minute interval, with special notes on close approaches by vessels within 100 m of dolphins, including the time of closest approach and any behavioural reaction noted. Distances of vessels were gathered by hand-held laser rangefinder (Bushnell Yardage Pro 800; maximum range of detection for most objects: 720 metres; ranging accuracy \pm 2 metres under most circumstances). Also, notes were made on the approximate distance (i.e. 0-250m, 250-500m, >500 m) of the dolphin group to the hydrophone during the 5-minute interval. Notably, positions of dolphin group were recorded continuously during the entire focal follow session to examine their movement in details, especially when they occurred in the vicinity of the HKLR alignment (in particular the area near the first three bored piling sites).

2.3.2. Passive acoustic monitoring using EARs

Two sets of EARs were deployed at two sites in West Lantau, one near the bored piling site and another at the control site off Fan Lau, as mentioned above. The EARs were deployed and recovered by a professional dive team from Oceanway Corporation Limited. During each deployment, the EAR serial number, as well as the time and date of deployment were recorded. Moreover, the GPS position, water depth

and type of substrate at the deployment location were also recorded.

The EARs were programmed to record on a 20% duty cycle (1 minute "on" for every 5 minutes). Recording was from approximately 20 Hz at the low end to 32 kHz at the high end, which effectively covers a major part of the acoustic channel of the Chinese White Dolphins (Sims et al. 2011). Data from the EARs were downloaded onto a computer hard disk at the conclusion of the construction phase of the project.

3. SUMMARY OF DOLPHIN ACOUSTIC BEHAVIOUR MONITORING IN JULY 2013

In July 2013, a total of 12 days of acoustic monitoring surveys were conducted on the 9th, 11th, 12th, 15th, 16th, 17th, 18th, 22th, 23th, 24th, 25th and 26th, when bored piling activities were concurrently conducted. During those dates, 783.8 km of survey effort were conducted to search for dolphins in the western and northwestern waters of Lantau. A total of 46 groups, numbering 170 dolphins, were sighted during these surveys. In addition, 52 sound samples with 4.2 hours of recordings were taken from some of these dolphin groups. Moreover, the EARs were deployed since early July 2013 at Fan Lau (site B1) and near the bridge alignment (Site B2), which will be recovered at the end of the construction phase monitoring.

4. REFERENCES

- Hung, S.K. 2012. Monitoring of Marine Mammals in Hong Kong waters data collection: final report (2011-12). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department, 171 pp.
- Sims, P. Q., Vaughn, R., Hung, S. K. and Würsig, B. 2011. Sounds of Indo-Pacific humpback dolphins (*Sousa chinensis*) in West Hong Kong: A preliminary description. Journal of Acoustical Society of America, EL48-EL53 (doi: 10.1121/1.3663281).
- Sims, P., Hung, S. K. and Würsig, B. 2012. High-speed vessel sounds in West Hong Kong waters and their contributions relative to Indo-Pacific humpback dolphins (*Sousa chinensis*). Journal of Marine Biology Volume 2012: Article ID 169103, 11 pages (doi: 10.1155/2012/169103).

APPENDIX I-4 LAND-BASED DOLPHIN BEAHVOUR AND MOVEMENT MONITORING REPORT Contract No. HY/2011/09

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill Dolphin Monthly Monitoring on Land-based Dolphin Behaviour and Movement Monitoring

Monthly Progress Report (July 2013)

Submitted by

Samuel K. Y. Hung, Ph.D., Hong Kong Cetacean Research Project.

August 5th, 2013

1. INTRODUCTION

The Hong Kong Link Road (HKLR) comprises a 9.4 km long viaduct section from the HKSAR boundary to Scenic Hill on the Airport Island; a 1-km tunnel section to the reclamation formed along the east coast of the Airport Island, and a 1.6-km long at-grade road section on the reclamation connecting to the Hong Kong Boundary Crossing Facilities (HKBCF). Dragages – China Harbour – VSL JV (hereinafter called the "Contractor") was awarded as the main contractor of "Contract No. HY/2011/09 – Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill".

According to the HKLR EM&A Manual, a number of environmental monitoring and audit works related to Chinese White Dolphins (a.k.a. Indo-Pacific humpback dolphins, *Sousa chinensis*) are to be conducted during baseline, construction and post-construction phases, including land-based dolphin behaviour and movement monitoring. Such monitoring is being undertaken by qualified dolphin specialists, who have sufficient (at least 5-10 years) relevant post-graduate experience and publication in the respective aspects. The specialists approved for the land-based work are Drs. Bernd Würsig and David Lundquist.

This progress report of land-based dolphin behaviour and movement monitoring details the methodology and monthly progress of July 2013, at a location hereafter termed Sham Wat Station.

2. METHODS AND MATERIALS

2.1. Monitoring Station

Based on requirements under the EM&A Manual as described in the proposal for this work, the Sham Wat Station is located along the northwest coast of Lantau Island (GPS position: 22°16.10' N. and 113°52.32' E, Figure 1). The station was selected based on its height above sea level (minimum requirement of over 20 metres; Würsig et al. 1991), close proximity to shore, and relatively unobstructed views of the HKLR alignment to the west of the airport extending toward the HKSAR Boundary (Figure 2). The height of the Sham Wat Station established by the HKCRP team is 55.70 m high at mean low water, 66 m from shore, and only a few hundred metres to the closest point of the HKLR alignment, which is ideal for the purpose of the present behavioural and movement monitoring in relation to the HKLR bored piling works.

2.2. Monitoring Frequency

Thirty days of monitoring were planned for each of the baseline and initial construction phases. When adverse weather conditions (e.g. heavy rain or otherwise poor visibility <3 km, Beaufort Sea State >3) were forecast, monitoring surveys were postponed, and frequency of monitoring is detailed in Section 3.

2.3. Monitoring Methodology

The methodology of the present monitoring programme generally follows the one established under the Piwetz et al. (2012) study that is part of the AFCD long-term marine mammal monitoring programme (Hung 2012). On each survey day from Sham Wat Station, observers searched continuously for Chinese white dolphins using unaided eyes and 7x50 handheld binoculars. A theodolite tracking session was initiated when an individual dolphin or group of dolphins was located, and focal follow methods were used to track the dolphins (Lundquist 2012, Lundquist et al. 2012a and 2012b, Piwetz et al. 2012).

Within a group, a focal individual was selected for the purposes of tracking behaviour and movement of the group, based on its distinctive feature such as colouration or severe injury mark. The focal individual or group were then tracked continuously via the theodolite, with positions recorded whenever a known or unknown dolphin surfaced. If an individual could not be positively distinguished from other members, the group would be tracked by recording positions based on a central point within the group when the dolphins surfaced.

Tracking continued until animals were lost from view, moved beyond the range of reliable visibility (generally >3 km but up to >5 km under excellent conditions), or when environmental conditions obstructed visibility (e.g. intense haze). Behavioural state data were also recorded every 5 minutes for the focal individual or group. This interval is long enough to allow for determination of the behavioural state, and short enough to capture behavioural responses to the bored piling activities. Moreover, when multiple groups or individuals were present in the study area, attempts were made to record the behaviours of all groups/individuals every 10 minutes, with spotters assisting in determining behaviour of the dolphins.

Positions of dolphins, boats and construction activities were measured using a Sokkisha DT5 digital theodolite with ± 5-sec precision and 30-power magnification connected to a laptop computer running the program *Pythagoras* Version 1.2 (Gailey and Ortega-Ortiz 2002). This program calculates a real-time conversion of horizontal and vertical angles collected by the theodolite into geographic positions of latitude and longitude each time a fix is initiated. *Pythagoras* also displays positions, movements, and distances in real-time. When possible, the position of the focal dolphin was recorded at every surfacing with use of *Pythagoras*. The position, type, and activity of all vessels within 5 km of the focal dolphin were also recorded. An effort was made to obtain at least several positions for each vessel, and additional positions were acquired when vessels changed course or speed.

While the primary source of human disturbance to dolphins of interest in this study is bored piling works for the Hong Kong Link Road Project, the presence of vessels may also have an effect on the behaviour and movement patterns of dolphins. During the construction phase, the simultaneous tracking of dolphins and boats over time provides information on the speed and orientation of dolphins, as well as their movements in relation to vessel activities. These data are used to compare with the baseline data. Other construction activities in relation to the bored piling works were recorded during the construction phase monitoring, and for overall consistency and reliability the same theodolite tracking and behavioural procedures were followed as during the baseline phase, with the same primary observers/theodolite operators.

3. SUMMARY OF TEODOLITE TRACKING EFFORT IN JULY 2013

In July 2013, a total of 13 sessions with 74.1 hours of theodolite tracking were conducted from Shum Wat shore-based station on the 8th, 9th, 10th, 11th, 12th, 13th, 15th,

17th, 18th, 19th, 23rd, 24th and 29th, when bored piling activities were concurrently conducted. More than 93% of effort was conducted in favourable weather conditions during those days. Dolphins were successfully tracked from shore on 12 of the 13 days of efforts, and a total of 57 dolphin groups were tracked. A total of 1,536 fixes of their positions were collected, and another 2,174 fixes were also made from locations of various vessels (e.g. fishing boats, high-speed ferries), to examine the level of vessel traffic in the study area. At the end of the construction phase monitoring period, the data will be used for the analyses on movement pattern, speed, reorientation rate, linearity, inter-breath interval, and north-south movement of Chinese White Dolphins.

4. REFERENCES

- Gailey, G. A. and Ortega-Ortiz J. 2002. A note on a computer-based system for theodolite tracking of cetaceans. Journal of Cetacean Research and Management 4: 213-218.
- Hung S. K. 2012. Monitoring of Marine Mammals in Hong Kong waters data collection: final report (2011-12). An unpublished report submitted to the Agriculture, Fisheries and Conservation Department, 171 pp.
- Lundquist, D. 2012. Behaviour and movement patterns of dusky dolphins (*Lagenorhynchus obscurus*) off Kaikoura, New Zealand: Effects of tourism. Ph.D. Thesis, University of Otago. http://hdl.handle.net/10523/2125
- Lundquist, D., Sironi, M., Würsig, B., Rowntree, V., Martino, J. andLundquist, L. 2012a. Response of southern right whales to simulated swim-with-whale tourism at Península Valdés, Argentina. Marine Mammal Science. DOI: 10.1111/j.1748-7692.2012.00583.x
- Lundquist, D., Gemmell, N. and Würsig, B. 2012b. Behavioural responses of dusky dolphin groups to tour vessels off Kaikoura, New Zealand. PLoS ONE. DOI: 10.1371/journal.pone.0041969
- Lundquist, D.J. and Markowitz, T. M. 2009. Effects of tourism on behaviour and movement patterns of dusky dolphin groups monitored from shore stations. Pp 9-22 *in* T.M. Markowitz, S. DuFresne, and B. Würsig (eds.) Tourism effects on dusky dolphins at Kaikoura, New Zealand. Report submitted to New Zealand Department of Conservation, Wellington.
- Piwetz, S., Hung, S. K., Wang J. Y., Lundquist, D. and Würsig, B. 2012. Influence of vessel traffic on movements of Indo-Pacific humpback dolphins (*Sousa chinensis*) off Lantau Island, Hong Kong. Aquatic Mammals 38: 325-331.

APPENDIX J WIND DATA

Date	Time	Wind Speed m/s	Direction
1-Jul-2013	00:00	1.9	WNW
1-Jul-2013	01:00	1.9	W
1-Jul-2013	02:00	1.9	WSW
1-Jul-2013	03:00	2.2	WSW
1-Jul-2013	04:00	1.6	WNW
1-Jul-2013	05:00	1.5	NW
1-Jul-2013	06:00	1.9	WNW
1-Jul-2013	07:00	1.6	WSW
1-Jul-2013	08:00	1.3	WSW
1-Jul-2013	09:00	1.7	WSW
1-Jul-2013	10:00	1.6	WSW
1-Jul-2013	11:00	1.9	WSW
1-Jul-2013	12:00	1.8	W
1-Jul-2013	13:00	2	WSW
1-Jul-2013	14:00	1.9	W
1-Jul-2013	15:00	1.8	WSW
1-Jul-2013	16:00	1.7	W
1-Jul-2013	17:00	1.8	W
1-Jul-2013	18:00	2.1	SW
1-Jul-2013	19:00	1.7	WSW
1-Jul-2013	20:00	2	NNE
1-Jul-2013	21:00	1.9	WSW
1-Jul-2013	22:00	1.8	WSW
1-Jul-2013	23:00	2.2	WSW
2-Jul-2013	00:00	2.1	SW
2-Jul-2013	01:00	2	SSW
2-Jul-2013	02:00	2.2	SW
2-Jul-2013	03:00	1.9	SW
2-Jul-2013 2-Jul-2013	04:00	1.3	SW
2-Jul-2013 2-Jul-2013	05:00	1.3	SW
2-Jul-2013	06:00	1.5	SW
2-Jul-2013 2-Jul-2013	07:00	1 1	SW
2-Jul-2013 2-Jul-2013	08:00	1.3	SSW
2-Jul-2013 2-Jul-2013		1.8	WSW
2-Jul-2013 2-Jul-2013	09:00 10:00	2.4	W
			WNW
2-Jul-2013	11:00	2.8	
2-Jul-2013	12:00		W
2-Jul-2013	13:00	2.3	W
2-Jul-2013	14:00	2.1	WNW WNW
2-Jul-2013	15:00	2	
2-Jul-2013	16:00 17:00	1.9	W W
2-Jul-2013			
2-Jul-2013	18:00	2	NNE
2-Jul-2013	19:00	1.5	NE ENE
2-Jul-2013	20:00	1.9	ENE
2-Jul-2013	21:00	2	ESE
2-Jul-2013	22:00	1.6	WSW
2-Jul-2013	23:00	2.8	WSW
3-Jul-2013	00:00	1.8	SSW
3-Jul-2013	01:00	1.7	SW
3-Jul-2013	02:00	1.7	SW
3-Jul-2013	03:00	1.5	WSW
3-Jul-2013	04:00	1.3	W
3-Jul-2013	05:00	1.1	WNW

Date	Time	Wind Speed m/s	Direction
3-Jul-2013	06:00	1	W
3-Jul-2013	07:00	1	WNW
3-Jul-2013	08:00	1.1	NW
3-Jul-2013	09:00	1.7	WNW
3-Jul-2013	10:00	2.1	WNW
3-Jul-2013	11:00	1.9	WNW
3-Jul-2013	12:00	1.7	W
3-Jul-2013	13:00	1.7	W
3-Jul-2013	14:00	1.4	WNW
3-Jul-2013	15:00	1.4	WNW
3-Jul-2013	16:00	1.5	W
3-Jul-2013	17:00	1.9	W
3-Jul-2013	18:00	1.7	SSW
3-Jul-2013	19:00	1.3	WSW
3-Jul-2013	20:00	1.3	SW
3-Jul-2013	21:00	1.5	WSW
3-Jul-2013	22:00	1.4	WNW
3-Jul-2013	23:00	1.6	W
4-Jul-2013	00:00	1.6	WSW
4-Jul-2013	01:00	1.7	WSW
4-Jul-2013	02:00	1.9	WNW
4-Jul-2013	03:00	1.8	NW
4-Jul-2013	04:00	1	WNW
4-Jul-2013	05:00	1.1	WSW
4-Jul-2013	06:00	1.2	WSW
4-Jul-2013	07:00	1	WSW
4-Jul-2013	08:00	1.4	WSW
4-Jul-2013	09:00	1.6	WSW
4-Jul-2013	10:00	2.3	W
4-Jul-2013	11:00	2.1	WSW
4-Jul-2013	12:00	1.8	W
4-Jul-2013	13:00	1.8	WSW
4-Jul-2013	14:00	1.4	W
4-Jul-2013	15:00	1.8	W
4-Jul-2013	16:00	1.5	SW
4-Jul-2013	17:00	1.2	WSW
4-Jul-2013	18:00	1.8	NNE
4-Jul-2013	19:00	1.2	WSW
4-Jul-2013	20:00	1.2	WSW
4-Jul-2013	21:00	1.8	WSW
4-Jul-2013	22:00	2.2	SSW
4-Jul-2013	23:00	1.6	SSW
5-Jul-2013	00:00	1.8	S
5-Jul-2013	01:00	1.9	SW
5-Jul-2013	02:00	2	WNW
5-Jul-2013	03:00	2.2	WNW
5-Jul-2013	04:00	2	WNW
5-Jul-2013	05:00	1.9	SSW
5-Jul-2013	06:00	1.9	WSW
5-Jul-2013	07:00	2.1	WSW
5-Jul-2013 5-Jul-2013	08:00	1.5	SW
5-Jul-2013 5-Jul-2013	09:00	1.7	SW
5-Jul-2013 5-Jul-2013	10:00	1.7	WSW
5-Jul-2013 5-Jul-2013	11:00	1.5	WSW
5-Jui-2013	11.00	ს.ნ	VVOVV

Date	Time	Wind Speed m/s	Direction
5-Jul-2013	12:00	2.1	WSW
5-Jul-2013	13:00	1.9	WSW
5-Jul-2013	14:00	2.3	SW
5-Jul-2013	15:00	1.9	WSW
5-Jul-2013	16:00	1.7	WSW
5-Jul-2013	17:00	1.5	WSW
5-Jul-2013	18:00	2	WSW
5-Jul-2013	19:00	1.3	WSW
5-Jul-2013	20:00	1.9	SW
5-Jul-2013	21:00	1.9	WSW
5-Jul-2013	22:00	1.7	SW
5-Jul-2013	23:00	1.8	W
6-Jul-2013	00:00	1.7	WNW
6-Jul-2013	01:00	1.6	W
6-Jul-2013	02:00	1.8	WNW
6-Jul-2013	03:00	1.8	WNW
6-Jul-2013	04:00	1.8	WNW
6-Jul-2013	05:00	1.2	W
6-Jul-2013	06:00	1.5	WNW
6-Jul-2013	07:00	1.1	WNW
6-Jul-2013	08:00	1.4	NW
6-Jul-2013	09:00	1.8	W
6-Jul-2013	10:00	2.1	SSW
6-Jul-2013	11:00	2.7	N
6-Jul-2013	12:00	2	NNE
6-Jul-2013	13:00	2.5	WNW
6-Jul-2013	14:00	2.1	W
6-Jul-2013	15:00	1.8	WNW
6-Jul-2013	16:00	1.8	WNW
6-Jul-2013	17:00	1.6	WNW
6-Jul-2013	18:00	1.4	WNW
6-Jul-2013	19:00	1.8	WNW
6-Jul-2013	20:00	1.8	WNW
6-Jul-2013	21:00	2	WNW
6-Jul-2013	22:00	1.9	WNW
6-Jul-2013	23:00	1.6	WNW
7-Jul-2013	00:00	2	WNW
7-Jul-2013	01:00	1.5	W
7-Jul-2013	02:00	1.3	W
7-Jul-2013	03:00	1.5	SW
7-Jul-2013	04:00	1.4	WSW
7-Jul-2013	05:00	1.3	SW
7-Jul-2013	06:00	1.2	SW
7-Jul-2013	07:00	1.1	WNW
7-Jul-2013	08:00	1.3	WNW
7-Jul-2013	09:00	1.4	WNW
7-Jul-2013 7-Jul-2013	10:00	1.3	SW
7-Jul-2013	11:00	1.4	WSW
7-Jul-2013	12:00	1.9	SW
7-Jul-2013 7-Jul-2013	13:00	1.9	W
		-	W
7_ lul_2013	1/11/11/1		
7-Jul-2013 7-Jul-2013	14:00 15:00	1.5	
7-Jul-2013 7-Jul-2013 7-Jul-2013	14:00 15:00 16:00	1.5	WNW WNW

Date	Time	Wind Speed m/s	Direction
7-Jul-2013	18:00	2	W
7-Jul-2013	19:00	2.1	WSW
7-Jul-2013	20:00	1.9	WNW
7-Jul-2013	21:00	1.8	SW
7-Jul-2013	22:00	1.7	WNW
7-Jul-2013	23:00	2.2	WNW
8-Jul-2013	00:00	1.4	SW
8-Jul-2013	01:00	1.4	SW
8-Jul-2013	02:00	1.1	SSW
8-Jul-2013	03:00	1.2	WNW
8-Jul-2013	04:00	1.5	WSW
8-Jul-2013	05:00	1.5	WSW
8-Jul-2013	06:00	1.9	WNW
8-Jul-2013	07:00	1.8	W
8-Jul-2013	08:00	1.4	W
8-Jul-2013	09:00	1.8	W
8-Jul-2013	10:00	1.8	W
8-Jul-2013	11:00	1.5	W
8-Jul-2013	12:00	1.7	WSW
8-Jul-2013	13:00	2.1	WSW
8-Jul-2013	14:00	2.6	W
8-Jul-2013	15:00	2.7	SW
8-Jul-2013	16:00	2.8	NE NE
8-Jul-2013	17:00	2.2	NE NE
8-Jul-2013	18:00	2	N N
8-Jul-2013	19:00	1.9	NNE
8-Jul-2013	20:00	2	NNE
8-Jul-2013	21:00	2.4	NNE
8-Jul-2013	22:00	2.1	N
8-Jul-2013	23:00	1.8	W
9-Jul-2013	00:00	2	W
9-Jul-2013	01:00	1.8	W
9-Jul-2013	02:00	1.9	W
9-Jul-2013	03:00	1.9	W
9-Jul-2013	04:00	1.7	W
9-Jul-2013	05:00	1.6	WSW
9-Jul-2013	06:00	1.4	W
9-Jul-2013	07:00	1.4	WNW
9-Jul-2013	08:00	1.3	W
9-Jul-2013	09:00	1.9	SW
9-Jul-2013	10:00	1.9	W
9-Jul-2013 9-Jul-2013	11:00	1.9	W
9-Jul-2013 9-Jul-2013	12:00	2.3	W
9-Jul-2013 9-Jul-2013	13:00	2.4	W
9-Jul-2013	14:00	2.1	SW
9-Jul-2013	15:00	2.2	SW
9-Jul-2013 9-Jul-2013	16:00	2.2	SW
9-Jul-2013 9-Jul-2013	17:00	2.7	SW
9-Jul-2013 9-Jul-2013	18:00	1.9	W
9-Jul-2013 9-Jul-2013	19:00	1.9	SW
			W
9-Jul-2013	20:00	1.6	
9-Jul-2013	21:00	1.6	WSW
9-Jul-2013	22:00	1.3	SW
9-Jul-2013	23:00	1	SSW

Date	Time	Wind Speed m/s	Direction
10-Jul-2013	00:00	1.4	SW
10-Jul-2013	01:00	1.2	W
10-Jul-2013	02:00	1.2	W
10-Jul-2013	03:00	0.9	WSW
10-Jul-2013	04:00	0.7	W
10-Jul-2013	05:00	0.7	WSW
10-Jul-2013	06:00	0.6	WNW
10-Jul-2013	07:00	0.7	WNW
10-Jul-2013	08:00	0.8	W
10-Jul-2013	09:00	1	N
10-Jul-2013	10:00	1.4	N
10-Jul-2013	11:00	1.9	E
10-Jul-2013	12:00	2	SSW
10-Jul-2013	13:00	2.3	SW
10-Jul-2013	14:00	2.2	W
10-Jul-2013	15:00	1.7	W
10-Jul-2013	16:00	2	SW
10-Jul-2013	17:00	2.7	W
10-Jul-2013	18:00	2.5	W
10-Jul-2013	19:00	1.8	W
10-Jul-2013	20:00	1.6	WSW
10-Jul-2013	21:00	1.4	W
10-Jul-2013	22:00	1.4	W
10-Jul-2013	23:00	1	W
11-Jul-2013	00:00	0.9	W
11-Jul-2013	01:00	0.5	W
11-Jul-2013	02:00	0.6	W
11-Jul-2013	03:00	0.5	N
11-Jul-2013	04:00	0.6	N
11-Jul-2013	05:00	0.5	N
11-Jul-2013	06:00	0.5	NNE
11-Jul-2013	07:00	0.5	NNE
11-Jul-2013	08:00	0.6	NNE
11-Jul-2013	09:00	0.8	NNE
11-Jul-2013	10:00	1	NNE
11-Jul-2013	11:00	1	NE
11-Jul-2013	12:00	1	ENE
11-Jul-2013	13:00	1.1	NE
11-Jul-2013	14:00	1	W
11-Jul-2013	15:00	1 1	NNE
11-Jul-2013	16:00	0.9	ENE
11-Jul-2013	17:00	1.3	ENE
11-Jul-2013	18:00	1.7	ENE
11-Jul-2013	19:00	1.6	E
11-Jul-2013	20:00	1.6	N
11-Jul-2013	21:00	1.3	N
11-Jul-2013	22:00	1.2	N
11-Jul-2013	23:00	1	N N
12-Jul-2013	00:00	1 1	N
12-Jul-2013	01:00	0.7	NNE
12-Jul-2013	02:00	0.7	NNE
12-Jul-2013	03:00	0.6	NNE
12-Jul-2013	04:00	0.0	NNE
12-Jul-2013	05:00	0.7	NNE
14-041-4010	05.00	0.1	ININL

Date	Time	Wind Speed m/s	Direction
12-Jul-2013	06:00	0.6	NNE
12-Jul-2013	07:00	0.6	NNE
12-Jul-2013	08:00	0.6	N
12-Jul-2013	09:00	0.7	NNE
12-Jul-2013	10:00	0.7	NNE
12-Jul-2013	11:00	1.1	N
12-Jul-2013	12:00	1.3	NNE
12-Jul-2013	13:00	1.6	N
12-Jul-2013	14:00	1.3	NNE
12-Jul-2013	15:00	1.9	NNE
12-Jul-2013	16:00	1.7	NE
12-Jul-2013	17:00	1.8	NE
12-Jul-2013	18:00	1.5	N
12-Jul-2013	19:00	1.3	NE
12-Jul-2013	20:00	1	NE
12-Jul-2013	21:00	1.5	NNE
12-Jul-2013	22:00	1.1	NNE
12-Jul-2013	23:00	0.7	N
13-Jul-2013	00:00	0.6	N
13-Jul-2013	01:00	0.8	NE
13-Jul-2013	02:00	0.7	N N
13-Jul-2013	03:00	0.7	NE
13-Jul-2013	04:00	0.9	NNE
13-Jul-2013	05:00	1.2	NE NE
13-Jul-2013	06:00	1.1	N
13-Jul-2013	07:00	1.5	NNE
13-Jul-2013	08:00	1.3	ENE
13-Jul-2013	09:00	1.7	N
13-Jul-2013	10:00	2.1	N
13-Jul-2013	11:00	1.8	NNE
13-Jul-2013	12:00	2	N
13-Jul-2013	13:00	1.6	SW
13-Jul-2013	14:00	1.3	SSW
13-Jul-2013	15:00	2.2	S
13-Jul-2013	16:00	2	SSW
13-Jul-2013	17:00	1.7	SSW
13-Jul-2013	18:00	2.2	S
13-Jul-2013	19:00	1.8	SSW
13-Jul-2013	20:00	1.3	S
13-Jul-2013	21:00	1	SSW
13-Jul-2013	22:00	1.1	SSW
13-Jul-2013	23:00	1.1	WNW
14-Jul-2013	00:00	1.1	WNW
14-Jul-2013	01:00	1	W
14-Jul-2013	02:00	0.9	W
14-Jul-2013	03:00	1.2	W
14-Jul-2013	04:00	1.3	W
14-Jul-2013	05:00	1.1	WNW
14-Jul-2013	06:00	1.2	WNW
14-Jul-2013	07:00	1.4	WNW
14-Jul-2013	08:00	1.4	W
14-Jul-2013	09:00	1.7	WNW
14-Jul-2013	10:00	1.4	NW
14-Jul-2013	11:00	1.4	ENE
53. 2010			

Date	Time	Wind Speed m/s	Direction
14-Jul-2013	12:00	1.5	E
14-Jul-2013	13:00	2	NNE
14-Jul-2013	14:00	1.2	NE
14-Jul-2013	15:00	1.6	NE
14-Jul-2013	16:00	1.5	NE
14-Jul-2013	17:00	1.6	SSW
14-Jul-2013	18:00	1.5	WSW
14-Jul-2013	19:00	0.8	WNW
14-Jul-2013	20:00	0.9	W
14-Jul-2013	21:00	0.8	W
14-Jul-2013	22:00	1	E
14-Jul-2013	23:00	1.3	E
15-Jul-2013	00:00	1.3	ENE
15-Jul-2013	01:00	1.1	ESE
15-Jul-2013	02:00	0.9	ESE
15-Jul-2013	03:00	0.7	E
15-Jul-2013	04:00	0.7	NNE
15-Jul-2013	05:00	0.9	NNE
15-Jul-2013	06:00	0.9	N
15-Jul-2013	07:00	1.1	NNE
15-Jul-2013	08:00	1.2	N
15-Jul-2013	09:00	1.4	NNE
15-Jul-2013	10:00	1.7	N
15-Jul-2013	11:00	2.3	NE NE
15-Jul-2013	12:00	2	ENE
15-Jul-2013	13:00	1.4	ESE
15-Jul-2013	14:00	1.2	SE
15-Jul-2013	15:00	1.4	SE
15-Jul-2013	16:00	1.5	SE
15-Jul-2013	17:00	1.8	E
15-Jul-2013	18:00	1.8	E E
15-Jul-2013	19:00	1.3	NW
15-Jul-2013	20:00	1.4	WSW
15-Jul-2013	21:00	1.2	WSW
15-Jul-2013	22:00	1.1	WSW
15-Jul-2013	23:00	1.1	SW
16-Jul-2013	00:00	0.8	SSE
16-Jul-2013	01:00	0.6	WSW
16-Jul-2013	02:00	0.5	WSW
16-Jul-2013	03:00	0.5	SE
16-Jul-2013	04:00	0.6	SE
16-Jul-2013	05:00	0.6	ESE
16-Jul-2013	06:00	1	ESE
16-Jul-2013	07:00	1.4	E
16-Jul-2013	08:00	1.1	E E
16-Jul-2013	09:00	1.1	E E
16-Jul-2013	10:00	1.4	ENE
16-Jul-2013	11:00	1.6	E
16-Jul-2013	12:00	1.8	E E
16-Jul-2013	13:00	1.8	<u></u> _Е
16-Jul-2013	14:00	1.7	<u></u> Е
16-Jul-2013	15:00	1.7	<u></u> Е
16-Jul-2013	16:00	1.6	<u></u> Е
16-Jul-2013	17:00	1.8	<u> </u>
10-301-2013	17.00	1.0	L

Date	Time	Wind Speed m/s	Direction
16-Jul-2013	18:00	1.6	Е
16-Jul-2013	19:00	1.5	S
16-Jul-2013	20:00	1.1	N
16-Jul-2013	21:00	1.4	ESE
16-Jul-2013	22:00	1.2	ESE
16-Jul-2013	23:00	0.9	ESE
17-Jul-2013	00:00	1.1	SE
17-Jul-2013	01:00	0.7	SE
17-Jul-2013	02:00	0.5	E
17-Jul-2013	03:00	0.6	E
17-Jul-2013	04:00	0.4	ESE
17-Jul-2013	05:00	0.5	SE
17-Jul-2013	06:00	0.5	E
17-Jul-2013	07:00	0.6	NE
17-Jul-2013	08:00	0.9	ENE
17-Jul-2013	09:00	1.3	E
17-Jul-2013	10:00	1.5	ENE
17-Jul-2013	11:00	1.7	E
17-Jul-2013	12:00	1.8	 E
17-Jul-2013	13:00	2.1	E
17-Jul-2013	14:00	2.4	NNE
17-Jul-2013	15:00	2.7	NNE
17-Jul-2013	16:00	2.8	NNE
17-Jul-2013	17:00	2.9	SW
17-Jul-2013	18:00	2.6	NE NE
17-Jul-2013	19:00	2.9	SE
17-Jul-2013	20:00	3	NNE
17-Jul-2013	21:00	2.4	NE
17-Jul-2013	22:00	2.3	SSE
17-Jul-2013	23:00	2.2	SE
18-Jul-2013	00:00	1.6	SE
18-Jul-2013	01:00	2.1	SE
18-Jul-2013	02:00	2	SE
18-Jul-2013	03:00	2.1	ENE
18-Jul-2013	04:00	2.3	ENE
18-Jul-2013	05:00	1.9	ENE
18-Jul-2013	06:00	1.7	ENE
18-Jul-2013	07:00	1.4	ENE
18-Jul-2013	08:00	1.2	ENE
18-Jul-2013	09:00	0.9	ESE
18-Jul-2013	10:00	0.9	W
18-Jul-2013	11:00	0.8	WSW
18-Jul-2013	12:00	1.1	SW
18-Jul-2013	13:00	1.5	W
18-Jul-2013	14:00	2.1	W
18-Jul-2013	15:00	2.2	SSW
18-Jul-2013	16:00	2.2	SW
18-Jul-2013	17:00	2.2	ESE
18-Jul-2013	18:00	2.3	W
18-Jul-2013	19:00	2.5	ENE
18-Jul-2013	20:00	2.7	NE
18-Jul-2013	21:00	2.3	NE
18-Jul-2013	22:00	1.9	SW
18-Jul-2013	23:00	1.5	ENE
10 001 2010	20.00	1.0	L: 1L

Date	Time	Wind Speed m/s	Direction
19-Jul-2013	00:00	1.6	ENE
19-Jul-2013	01:00	1.7	ESE
19-Jul-2013	02:00	1.4	NE
19-Jul-2013	03:00	1.5	ENE
19-Jul-2013	04:00	1.4	NNE
19-Jul-2013	05:00	1.5	ENE
19-Jul-2013	06:00	1.4	NE
19-Jul-2013	07:00	1.4	NE
19-Jul-2013	08:00	1.5	NE
19-Jul-2013	09:00	1.6	NE
19-Jul-2013	10:00	1.4	NE
19-Jul-2013	11:00	1.6	W
19-Jul-2013	12:00	2.1	W
19-Jul-2013	13:00	2.3	ENE
19-Jul-2013	14:00	3	SSW
19-Jul-2013	15:00	2.8	W
19-Jul-2013	16:00	2.4	W
19-Jul-2013	17:00	2.5	ESE
19-Jul-2013	18:00	2.6	WSW
19-Jul-2013	19:00	2.3	SW
19-Jul-2013	20:00	2.2	W
19-Jul-2013	21:00	2.3	SW
19-Jul-2013	22:00	1.9	SSW
19-Jul-2013	23:00	1.7	WNW
20-Jul-2013	00:00	1.7	WSW
20-Jul-2013	01:00	1.8	WSW
20-Jul-2013	02:00	1.7	W
20-Jul-2013	03:00	1.6	W
20-Jul-2013	04:00	1.8	ENE
20-Jul-2013	05:00	1.9	SSW
20-Jul-2013	06:00	2	W
20-Jul-2013	07:00	1.9	WSW
20-Jul-2013	08:00	2	W
20-Jul-2013	09:00	2.3	ESE
20-Jul-2013	10:00	2.2	NNW
20-Jul-2013	11:00	2	ENE
20-Jul-2013	12:00	2.3	W
20-Jul-2013	13:00	2.5	SW
20-Jul-2013	14:00	2.7	NE NE
20-Jul-2013	15:00	2.9	WSW
20-Jul-2013	16:00	3	ENE
20-Jul-2013	17:00	2.8	NNE
20-Jul-2013	18:00	2.7	N
20-Jul-2013	19:00	2.7	SW
20-Jul-2013	20:00	2.5	S
20-Jul-2013	21:00	2.2	W
20-Jul-2013	22:00	2.1	SE
20-Jul-2013	23:00	2	NE
21-Jul-2013	00:00	1.9	ESE
21-Jul-2013	01:00	1.9	SSE
21-Jul-2013	02:00	1.9	NNE
21-Jul-2013	03:00	1.8	NE
21-Jul-2013	04:00	1.8	ENE
21-Jul-2013	05:00	2	ENE
21 001 2010	00.00		L: 1L

Date	Time	Wind Speed m/s	Direction
21-Jul-2013	06:00	1.9	NE
21-Jul-2013	07:00	1.4	NE
21-Jul-2013	08:00	1.6	NE
21-Jul-2013	09:00	1.6	NE
21-Jul-2013	10:00	1.5	NE
21-Jul-2013	11:00	1.5	SSE
21-Jul-2013	12:00	1.7	N
21-Jul-2013	13:00	2.2	ENE
21-Jul-2013	14:00	2.3	ENE
21-Jul-2013	15:00	2.3	E
21-Jul-2013	16:00	2.5	NE
21-Jul-2013	17:00	2.5	NE
21-Jul-2013	18:00	2.5	NNE
21-Jul-2013	19:00	2.1	NE
21-Jul-2013	20:00	2	NE
21-Jul-2013	21:00	2	NE
21-Jul-2013	22:00	1.7	NNE
21-Jul-2013	23:00	1.6	NNE
22-Jul-2013	00:00	1.5	NE NE
22-Jul-2013 22-Jul-2013	01:00	1.3	NE
22-Jul-2013	02:00	1.4	NE NE
22-Jul-2013	03:00	1.3	NE NE
22-Jul-2013	04:00	1.6	NE
22-Jul-2013	05:00	1.4	NNE
22-Jul-2013 22-Jul-2013	06:00	1.4	NNE
22-Jul-2013 22-Jul-2013	07:00	1.3	ENE
22-Jul-2013 22-Jul-2013	08:00	1.4	ENE
22-Jul-2013	09:00	1.5	NNE
22-Jul-2013 22-Jul-2013	10:00	1.4	NNE
22-Jul-2013 22-Jul-2013	11:00	1.2	N N
22-Jul-2013 22-Jul-2013	12:00	1.2	NE
22-Jul-2013	13:00	1.5	ESE
22-Jul-2013	14:00	1.7	NE
22-Jul-2013 22-Jul-2013	15:00	1.6	ENE
22-Jul-2013 22-Jul-2013	16:00	1.7	SE
22-Jul-2013	17:00	1.9	SSE
22-Jul-2013	18:00	1.8	NE
22-Jul-2013 22-Jul-2013	19:00	1.8	NNE
22-Jul-2013 22-Jul-2013	20:00	1.8	SSW
22-Jul-2013 22-Jul-2013	21:00	1.8	SW
22-Jul-2013 22-Jul-2013	22:00	2	SSE
22-Jul-2013 22-Jul-2013	23:00	1.9	SSW
22-Jul-2013 23-Jul-2013	00:00	1.9	ENE
23-Jul-2013 23-Jul-2013	01:00	2.1	SSW
23-Jul-2013 23-Jul-2013	02:00	2.1	SSW
23-Jul-2013 23-Jul-2013	03:00	2.2	WSW
23-Jul-2013 23-Jul-2013	04:00	1.3	WSW
23-Jul-2013 23-Jul-2013	05:00	1.3	WNW
23-Jul-2013 23-Jul-2013		1.4	SW
	06:00 07:00		W
23-Jul-2013		1.2	
23-Jul-2013	08:00	1.1	SW
23-Jul-2013	09:00	1.3	W
23-Jul-2013	10:00	1.4	NNE W
23-Jul-2013	11:00	1.4	W

Date	Time	Wind Speed m/s	Direction
23-Jul-2013	12:00	1.6	W
23-Jul-2013	13:00	1.3	SSW
23-Jul-2013	14:00	1.3	W
23-Jul-2013	15:00	1.5	NNE
23-Jul-2013	16:00	2.1	NNE
23-Jul-2013	17:00	1.5	NNE
23-Jul-2013	18:00	1.5	NE
23-Jul-2013	19:00	1.2	NE
23-Jul-2013 23-Jul-2013	20:00	1.3	NE
23-Jul-2013 23-Jul-2013	21:00	1.4	ENE
	22:00		NE
23-Jul-2013		1.6	
23-Jul-2013	23:00	1.8	ENE
24-Jul-2013	00:00	1.9	NNE
24-Jul-2013	01:00	1.9	N NATE
24-Jul-2013	02:00	2.1	NNE
24-Jul-2013	03:00	1.9	N
24-Jul-2013	04:00	1.8	ENE
24-Jul-2013	05:00	2	E
24-Jul-2013	06:00	1.7	ENE
24-Jul-2013	07:00	1.3	ENE
24-Jul-2013	08:00	1.5	NNE
24-Jul-2013	09:00	1.6	ENE
24-Jul-2013	10:00	1.9	NE
24-Jul-2013	11:00	1.7	ENE
24-Jul-2013	12:00	1.7	ENE
24-Jul-2013	13:00	1.7	NE
24-Jul-2013	14:00	1.8	ENE
24-Jul-2013	15:00	1.7	NNE
24-Jul-2013	16:00	1.8	NE
24-Jul-2013	17:00	1.8	ENE
24-Jul-2013	18:00	1.3	SSW
24-Jul-2013	19:00	1.8	ENE
24-Jul-2013	20:00	1.5	ENE
24-Jul-2013	21:00	1.7	ENE
24-Jul-2013	22:00	1.7	NNE
24-Jul-2013	23:00	1.5	NNE
25-Jul-2013	00:00	1.6	NE
25-Jul-2013	01:00	1.3	NNE
25-Jul-2013	02:00	1.5	NNE
25-Jul-2013	03:00	1.1	ENE
25-Jul-2013	04:00	1.2	SE
25-Jul-2013	05:00	1.1	WSW
25-Jul-2013	06:00	1.6	SW
25-Jul-2013	07:00	1.3	WNW
25-Jul-2013	08:00	1.3	ESE
25-Jul-2013	09:00	1.4	WNW
25-Jul-2013 25-Jul-2013	10:00	1.4	WNW
25-Jul-2013 25-Jul-2013	11:00	1.9	W
25-Jul-2013 25-Jul-2013	12:00	2.3	WNW
		2.3	WNW
25-Jul-2013	13:00		
25-Jul-2013	14:00	2.1	W
25-Jul-2013	15:00	1.9	WSW
25-Jul-2013	16:00	1.9	E
25-Jul-2013	17:00	2.2	ESE

Date	Time	Wind Speed m/s	Direction
25-Jul-2013	18:00	2.1	ENE
25-Jul-2013	19:00	1.5	SE
25-Jul-2013	20:00	1.4	SE
25-Jul-2013	21:00	1.3	SSE
25-Jul-2013	22:00	1.4	SSE
25-Jul-2013	23:00	1.5	ESE
26-Jul-2013	00:00	1.3	SSE
26-Jul-2013	01:00	1.2	ESE
26-Jul-2013	02:00	1	E
26-Jul-2013	03:00	1 1	WSW
26-Jul-2013	04:00	1.2	N
26-Jul-2013	05:00	0.8	N
26-Jul-2013	06:00	1	ENE
26-Jul-2013	07:00	1.4	SSE
26-Jul-2013	08:00	1.5	SSE
26-Jul-2013	09:00	1.8	SSE
26-Jul-2013 26-Jul-2013	10:00	2	SSE
26-Jul-2013 26-Jul-2013	11:00	2.2	ESE
26-Jul-2013 26-Jul-2013	12:00	2.2	NE
26-Jul-2013 26-Jul-2013	13:00	2.3	SSE
26-Jul-2013	14:00	2.2	ESE
26-Jul-2013 26-Jul-2013		2.4	ESE
26-Jul-2013	15:00 16:00	2.5	ESE
	17:00	2.5	NE
26-Jul-2013 26-Jul-2013	18:00	1.9	ENE
			SE
26-Jul-2013	19:00	1.8	SW
26-Jul-2013 26-Jul-2013	20:00 21:00	1.7	W
26-Jul-2013 26-Jul-2013	22:00	1.7	WNW
26-Jul-2013	23:00	1.7	ENE
27-Jul-2013	00:00		ESE
27-Jul-2013 27-Jul-2013	01:00	1.9 1.5	N ESE
27-Jul-2013 27-Jul-2013	02:00	1.4	N
27-Jul-2013 27-Jul-2013	03:00	1.2	<u>N</u>
27-Jul-2013 27-Jul-2013	04:00	1.2	SSE
27-Jul-2013 27-Jul-2013	05:00	0.8	ESE
27-Jul-2013 27-Jul-2013	06:00	0.8	ESE
27-Jul-2013 27-Jul-2013	07:00	0.7	ENE
27-Jul-2013 27-Jul-2013		0.7	ESE
27-Jul-2013 27-Jul-2013	08:00 09:00	1.3	ESE
			ESE ESE
27-Jul-2013 27-Jul-2013	10:00	1.7	NNE
	11:00	1.8	
27-Jul-2013	12:00 13:00	1.8	NNE
27-Jul-2013		1.8	SSE SSE
27-Jul-2013 27-Jul-2013	14:00 15:00	2.1	NE
27-Jul-2013 27-Jul-2013	16:00	2.1	NW NW
27-Jul-2013 27-Jul-2013	17:00	1.9	NW
27-Jul-2013 27-Jul-2013	18:00	1.6	SW
27-Jul-2013 27-Jul-2013	19:00	1.0	SVV
27-Jul-2013 27-Jul-2013	20:00	1.2	WSW
27-Jul-2013 27-Jul-2013	21:00	1.4	
27-Jul-2013 27-Jul-2013	22:00	1.4	WNW
		1.1	
27-Jul-2013	23:00	1.∠	NE

Date	Time	Wind Speed m/s	Direction
28-Jul-2013	00:00	1.1	SE
28-Jul-2013	01:00	1.2	ESE
28-Jul-2013	02:00	1.1	ENE
28-Jul-2013	03:00	1.1	NE
28-Jul-2013	04:00	1.3	SE
28-Jul-2013	05:00	1.4	ENE
28-Jul-2013	06:00	1.2	W
28-Jul-2013	07:00	1.4	SW
28-Jul-2013	08:00	1.8	SSW
28-Jul-2013	09:00	1.9	ESE
28-Jul-2013	10:00	2.5	SE
28-Jul-2013	11:00	2.3	SW
28-Jul-2013	12:00	2	SW
28-Jul-2013	13:00	2.1	ESE
28-Jul-2013	14:00	2.2	ESE
28-Jul-2013	15:00	1.9	ESE
28-Jul-2013	16:00	1.8	SE
28-Jul-2013	17:00	1.9	SE
28-Jul-2013	18:00	1.6	SE
28-Jul-2013	19:00	1.4	SE
28-Jul-2013	20:00	1.4	SSE
28-Jul-2013	21:00	1.5	ESE
28-Jul-2013	22:00	1.4	ESE
28-Jul-2013	23:00	1.4	SSE
29-Jul-2013	00:00	1.5	WSW
29-Jul-2013	01:00	1.6	SW
29-Jul-2013	02:00	1.7	NE
29-Jul-2013	03:00	1.6	SE
29-Jul-2013	04:00	1.7	SSE
29-Jul-2013	05:00	1.9	ENE
29-Jul-2013	06:00	1.8	SSE
29-Jul-2013	07:00	1.7	SE
29-Jul-2013	08:00	1.9	ESE
29-Jul-2013	09:00	2.1	ESE
29-Jul-2013	10:00	2.2	NE
29-Jul-2013	11:00	2.4	ENE
29-Jul-2013	12:00	2.5	ENE
29-Jul-2013	13:00	2.3	NE
29-Jul-2013	14:00	2.3	NE
29-Jul-2013	15:00	2.2	NNE
29-Jul-2013	16:00	2.1	NE
29-Jul-2013	17:00	1.8	ENE
29-Jul-2013	18:00	1.8	NE
29-Jul-2013	19:00	1.7	ENE
29-Jul-2013	20:00	1.6	SSE
29-Jul-2013	21:00	1.6	ESE
29-Jul-2013	22:00	1.6	ENE
29-Jul-2013	23:00	1.5	NNE
30-Jul-2013	00:00	1.5	ENE
30-Jul-2013	01:00	1.6	SE
30-Jul-2013	02:00	1.5	SSE
30-Jul-2013	03:00	1.1	WNW
30-Jul-2013	04:00	1.3	W
30-Jul-2013	05:00	1.3	WSW
00 001-2010	00.00	1.0	V V G V V

Date	Time	Wind Speed m/s	Direction
30-Jul-2013	06:00	1.2	WSW
30-Jul-2013	07:00	1.3	WNW
30-Jul-2013	08:00	1.4	SE
30-Jul-2013	09:00	1.8	SSE
30-Jul-2013	10:00	1.9	ESE
30-Jul-2013	11:00	1.9	WNW
30-Jul-2013	12:00	2.1	ENE
30-Jul-2013	13:00	2.1	W
30-Jul-2013	14:00	2.1	WNW
30-Jul-2013	15:00	1.8	N
30-Jul-2013	16:00	1.7	W
30-Jul-2013	17:00	1.6	W
30-Jul-2013	18:00	1.4	W
30-Jul-2013	19:00	1.3	WNW
30-Jul-2013	20:00	1.3	SE
30-Jul-2013	21:00	1.1	NNE
30-Jul-2013	22:00	1.1	ESE
30-Jul-2013	23:00	1.1	WNW
31-Jul-2013	00:00	1.4	WSW
31-Jul-2013	01:00	1.2	N
31-Jul-2013	02:00	1.1	N
31-Jul-2013	03:00	1.1	W
31-Jul-2013	04:00	1.1	ENE
31-Jul-2013	05:00	1.2	WNW
31-Jul-2013	06:00	1.2	NNW
31-Jul-2013	07:00	1	NNW
31-Jul-2013	08:00	1	SSE
31-Jul-2013	09:00	1.3	NNE
31-Jul-2013	10:00	1.4	NE
31-Jul-2013	11:00	1.4	ESE
31-Jul-2013	12:00	1.4	ESE
31-Jul-2013	13:00	1.5	SSW
31-Jul-2013	14:00	1.5	WNW
31-Jul-2013	15:00	1.5	ESE
31-Jul-2013	16:00	1.5	NE
31-Jul-2013	17:00	1.5	ESE
31-Jul-2013	18:00	1.7	NNE
31-Jul-2013	19:00	1.6	NE
31-Jul-2013	20:00	1.6	ESE
31-Jul-2013	21:00	1.7	ESE
31-Jul-2013	22:00	1.8	ENE
31-Jul-2013	23:00	1.7	ENE

APPENDIX K EVENT ACTION PLANS

Event / Action Plan for Air Quality

	ACTION				
EVENT	ET	IEC	so	CONTRACTOR	
ACTION LEVE	L				
1. Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform IEC and SO; Repeat measurement to confirm finding; Increase monitoring frequency to daily. 	 Check monitoring data submitted by ET; Check Contractor's working method. 	Notify Contractor.	Rectify any unacceptable practice; Amend working methods if appropriate.	
2.Exceedance for two or more consecutive samples	 Identify source; Inform IEC and SO; Advise the SO on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings; Increase monitoring frequency to daily; Discuss with IEC and Contractor on remedial actions required; If exceedance continues, arrange meeting with IEC and SO; If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the ET on the effectiveness of the proposed remedial measures; Supervise Implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor;	 Submit proposals for remedial to SO within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate. 	

LIMIT LEVEL				
1.Exceedance for one sample	 Identify source, investigate the causes of exceedance and propose remedial measures; Inform SO, Contractor and EPD; Repeat measurement to confirm finding; Increase monitoring frequency to daily; Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results. 	 Check monitoring data submitted by ET; Check Contractor's working method; Discuss with ET and Contractor on possible remedial measures; Advise the SO on the effectiveness of the proposed remedial measures; Supervise implementation of remedial measures. 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Ensure remedial measures properly implemented.	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Amend proposal if appropriate.
2.Exceedance for two or more consecutive samples	 Notify IEC, SO, Contractor and EPD; Identify source; Repeat measurement to confirm findings; Increase monitoring frequency to daily; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Arrange meeting with IEC and SO to discuss the remedial actions to 	1. Discuss amongst SO, ET, and Contractor on the potential remedial actions; 2. Review Contractor's remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; 3. Supervise the implementation of remedial	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. In consultation with the IEC, agree with the Contractor on the remedial measures to be implemented; 4. Ensure remedial measures properly implemented;	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; Stop the relevant portion of works as determined by the SO until the exceedance is

be taken;	measures.	5. If exceedance	abated.
Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; If exceedance stops, cease additional monitoring.		continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is abated.	

Abbreviations: ET – Environmental Team, IEC – Independent Environmental Checker, SO – Supervising Office

Event / Action Plan for Construction Noise

EVENT	ACTION				
	ET	IEC	so	CONTRACTOR	
Action Level	 Identify source, investigate the causes of exceedance and propose remedial measures; Notify IEC and Contractor; Report the results of investigation to the IEC, SO and Contractor; Discuss with the Contractor and formulate remedial measures; Increase monitoring frequency to check mitigation effectiveness. 	1. Review the analysed results submitted by the ET; 2. Review the proposed remedial measures by the Contractor and advise the SO accordingly; 3. Supervise the implementation of remedial measures.	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise problem; 4. Ensure remedial measures are properly implemented	1. Submit noise mitigation proposals to IEC; 2. Implement noise mitigation proposals.	
Limit Level	 Identify source; Inform IEC, SO, EPD and Contractor; Repeat measurements to confirm findings; Increase monitoring frequency; Carry out analysis of Contractor's working procedures to determine possible mitigation to be implemented; Inform IEC, SO and EPD 	 Discuss amongst SO, ET, and Contractor on the potential remedial actions; Review Contractors remedial actions whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of 	1. Confirm receipt of notification of failure in writing; 2. Notify Contractor; 3. Require Contractor to propose remedial measures for the analysed noise	 Take immediate action to avoid further exceedance; Submit proposals for remedial actions to IEC within 3 working days of notification; Implement the agreed proposals; Resubmit proposals if problem still not under control; 	

EVENT	ACTION					
	ET	IEC	so	CONTRACTOR		
	the causes and actions taken for the exceedances; 7. Assess effectiveness of Contractor's remedial actions and keep IEC, EPD and SO informed of the results; 8. If exceedance stops, cease additional monitoring.	remedial measures.	problem; 4. Ensure remedial measures properly implemented; 5. If exceedance continues, consider what portion of the work is responsible and instruct the Contractor to stop that portion of work until the exceedance is	5. Stop the relevant portion of works as determined by the SO until the exceedance is abated.		

Event and Action Plan for Water Quality

Event	ET Leader	IEC	SO	Contractor
Action level being exceeded by one sampling day	Repeat <i>in situ</i> measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor and SO; Check monitoring data, all plant, equipment and Contractor's working methods.	Check monitoring data submitted by ET and Contractor's working methods.	Confirm receipt of notification of non-compliance in writing; Notify Contractor.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Amend working methods if appropriate.
Action level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Ensure mitigation measures are implemented; Increase the monitoring frequency to daily until no exceedance of Action level;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC on the proposed mitigation measures; Ensure mitigation measures are properly implemented; Assess the effectiveness of the implemented mitigation measures.	Inform the Supervising Officer and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of additional mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures.
Limit level being exceeded by one sampling day	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SO and Contractor;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the proposed mitigation measures submitted by Contractor and advise the SO accordingly.	Confirm receipt of notification of failure in writing; Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to review the working methods.	Inform the SO and confirm notification of the non-compliance in writing; Rectify unacceptable practice; Check all plant and equipment and consider changes of working methods; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO.

Event	ET Leader	IEC	so	Contractor
Limit level being exceeded by two or more consecutive sampling days	Repeat measurement on next day of exceedance to confirm findings; Identify source(s) of impact; Inform IEC, contractor, SO and EPD; Check monitoring data, all plant, equipment and Contractor's working methods; Discuss mitigation measures with IEC, SO and Contractor; Ensure mitigation measures are implemented;	Check monitoring data submitted by ET and Contractor's working method; Discuss with ET and Contractor on possible remedial actions; Review the Contractor's mitigation measures whenever necessary to assure their effectiveness and advise the SO accordingly; Supervise the implementation of mitigation measures.	Discuss with IEC, ET and Contractor on the proposed mitigation measures; Request Contractor to critically review the working methods; Make agreement on the mitigation measures to be implemented; Ensure mitigation measures are properly implemented; Consider and instruct, if necessary, the Contractor to slow down or to stop all or part of the construction activities until no exceedance of Limit level.	Take immediate action to avoid further exceedance; Submit proposal of mitigation measures to SO within 3 working days of notification and discuss with ET, IEC and SO; Implement the agreed mitigation measures; Resubmit proposals of mitigation measures if problem still not under control; As directed by the Supervising Officer, to slow down or to stop all or part of the construction activities until no exceedance of Limit level.

Event / Action Plan for Underwater Construction Noise

Event	Action									
		ET Leader		IEC		ER		Contractor		
Action level	1.	Inform the IEC,	1.	Check	1.	Inform	1.	Review the piling		
triggered		ER and		monitoring data		Contractor.		sequence or method;		
		Contractor;		submitted by			2.	Implement the		
	2.	Advise		ET.				mitigation measure to		
		Contractor of						lower the underwater		
		dolphin						noise level to below		
		protection zone						action limit within 30		
		coverage.						minutes;		
	3.	Continue to					3.	Implement protection		
		monitor						zone.		
		underwater					4.	Closely liaise with the		
		noise level.						ET on the progress.		
Limit level	1.	Instruct the	1.	Check	1.	Review the	1.	Stop construction work		
triggered		Contractor to		monitoring data		proposal by	2.	Inform the ER		
		stop construction		submitted by		Contractor;	3.	Review the piling		
		work;		ET.	2.	Make		sequence or method in		
	2.	Inform the IEC	2.	Discuss		agreement		order to reduce the		
		and ER;		amongst ER,		on the		underwater noise levels		
	3.	Discuss with		ET and		measures to		to no higher than 170		
		IEC, ER and		Contractor on		be		dB.		
		Contractor on		the potential		implemente	4.	Submit noise reduction		
		noise reduction		remedial		d.		proposal to the ER for		
		proposal;		actions.				endorsement.		
	4.	Assess					5.	Implement the agreed		
		effectiveness of						measures.		
		Contractor's					6.	Re-submit proposals if		
		proposal and						problem still not under		
		keep IEC and						control;		
		ER informed.					7.	Stop the relevant		
								portion of works as		
								determined by the ER		
								until the exceedance is		
								abated		

APPENDIX L SUMMARY OF EXCEEDANCE

Contract No. HY/2011/09 Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road – Section between HKSAR Boundary and Scenic Hill

Exceedance Report

- (A) Exceedance Report for Air Quality (1 hour TSP) (NIL in the reporting period)
- (B) Exceedance Report for Air Quality (24 hours TSP) (NIL in the reporting period)
- (C) Exceedance Report for Construction Noise (NIL in the reporting period)

(D) Exceedance Report for Water Quality

Environmental Monitoring	Parameter	No. of Ex	ceedance	No. of Exceedance related to the Construction Activities of this Contract	
		Action Level	Limit Level	Action Level	Limit Level
Water Quality	Dissolved Oxygen (DO) (Surface & Middle)	0	0	0	0
	Dissolved Oxygen (DO) (Bottom)	0	0	0	0
	Turbidity	0	0	0	0
	Suspended Solids (SS)	3	1	0	0

(E) Exceedance Report for Underwater Construction Noise (NIL in the reporting period)

APPENDIX M SITE AUDIT SUMMARY

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

Hispection intolliation	
Checklist Reference Number	130702
Date	2 July 2013 (Tuesday)
Time	9:30 – 11:15

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
130702-R01	To review the sedimentation process of the surface runoff at Portion C.	В3
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	:
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130628), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	· Ivy Tam	14	2 July 2013
Checked by	Dr. Priscilla Choy	Wife	2 July 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

.Environmental Observations Identified during the Environmental Site Inspection (2 July 2013)

Ref No: 130702-R01

Impact:

Water Quality (B3)

Details:

To review the sedimentation process of the surface runoff at Portion C.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 130628-R01

Impact:

Air Quality (D19)

Details:

To check the air compressor at Pier 73 to avoid emitting dark smoke.

Follow Up:-

No dark smoke was observed from the air compressor.

Ref No: 130628-R02

Impact:

Water Quality (B22)

Details:

To seal the gap at the platform at Pier 74 to avoid leakage of muddy water to the sea.

Follow Up:

No leakage of muddy water to the sea was observed.

Ref No: 130628-R03

Impact:

Noise (E7)

Details:

To implement acoustic decoupling measures for the air compressor at Pier 74.

Follow Up:

Acoustic decoupling measures were observed to be implemented for the air compressor which was in operation.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

inspection information	
Checklist Reference Number	130709
Date	9 July 2013 (Tuesday)
Time	9:30-11:20

		Related Item No.
Ref. No.	Non-Compliance	Rem No.
-	None identified	
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
130709-R01	To clear the water at wheel washing bay at Portion C.	B10iv.
130709-R02	To clear the sand and silt settled at the drain at Portion C.	B4
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
	No environmental deficiency was identified during site inspection.	
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130702), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	Yud	9 July 2013
Checked by	Dr. Priscilla Choy	NI	9 July 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

<u>Environmental Observations Identified during the Environmental Site Inspection</u> (9 July 2013)

Ref No: 130709-R01

Impact:

Water Quality (B10iv.)

Details:

To clear the water at wheel washing bay at Portion C.

Ref No: 130709-R02

Impact:

Water Quality (B4)

Details:

To clear the sand and silt settled at the drain at Portion C.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 130702-R01

Impact:

Water Quality (B3)

Details:

To review the sedimentation process of the surface runoff at Portion C.

Follow Up:-

Sedimentation facility was observed on site for settling runoff prior to disposal.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary

Inspection Information

Checklist Reference Number	130716
Date	16 July 2013 (Tuesday)
Time	9:30 – 11:30

		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
130716-R03	To clear the sediment at the deck of flap-top work barge at P50.	B20
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
130716-R02	To check the air compressor at P50 to avoid emitting grey smoke.	D19
	D. Noise	
130716-R01	To close the door of air compressor which is in operation at P50.	E9
	E. Waste / Chemical Management	-
	No environmental deficiency was identified during site inspection.	
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130709), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	Tunk	16 July 2013
Checked by	Dr. Priscilla Choy	WF	16 July 2013

1

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

<u>.Environmental Observations Identified during the Environmental Site Inspection</u> (16 July 2013)

Ref No: 130716-R01

Impact:

Noise (E9)

Details:

To close the door of air compressor which is in operation at P50.

Ref No: 130716-R02

Impact:

Air Quality (D19)

Details:

To check the air compressor at P50 to avoid emitting grey smoke.

Ref No: 130716-R03

Impact:

Water Quality (B20)

Details:

To clear the sediment at the deck of flap-top work barge at P50.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 130709-R01

Impact:

Water Quality (B10iv.)

Details:

To clear the water at wheel washing bay at Portion C.

Follow Up:-

The water inside the wheel washing bay was clear.

Ref No: 130709-R02

Impact:

Water Quality (B4)

Details:

To clear the sand and silt settled at the drain at Portion C

Follow Up:-

The sand and silt settled at the drain at Portion C were cleared.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

Checklist Reference Number	130723
	23 July 2013 (Tuesday)
Time	9:30 – 11:45

72 4 37		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
Ref. No.	Remarks/Observations	Related Item No.
244217101	A. Water Quality	100111100
	No environmental deficiency was identified during site inspection.	
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	· · · · · · · · · · · · · · · · · · ·
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
130723-R01	To seal the hole of the drip tray near the office containers at Portion C.	F9
130723-R02	To remove the construction materials which were placed at near the tree at Portion C.	F4ii.
130723-R03	Clear the deposit silt and sediment at the site exit and drainage channel at Portion C.	F6
130723-R04	Clear the oil stain at near the Pontoon at WA4.	F8
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	Follow-up on previous site audit session (Ref. No. 130716), all environmental deficiencies were improved/rectified by contractor during the site inspection.	

	Name	Signature	Date
Recorded by	Ivy Tam	Tub	23 July 2013
Checked by	Dr. Priscilla Choy	WI	23 July 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

<u>Environmental Observations Identified during the Environmental Site Inspection</u> (23 July 2013)

Ref No: 130723-R01

Impact:

Waste / Chemical Management (F9)

Details:

To seal the hole of the drip tray near the office containers at Portion C.

Ref No: 130723-R02

Impact:

Waste / Chemical Management (F4ii.)

Details:

To remove the construction materials which were placed at near the tree at Portion C.

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Ref No: 130723-R03

Impact:

Waste / Chemical Management (F6)

Clear the deposit silt and sediment at the site exit and drainage channel at Portion C.

Ref No: 130723-R04

Impact: Waste / Chemical Management (F8)

Clear the oil stain at near the Pontoon at WA4.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 130716-R01

Impact:

Noise (E9)

Details:

To close the door of air compressor which is in operation at P50.

Follow Up:-

The door of the air compressor was closed.

Ref No: 130716-R02

Impact:

Air Quality (D19)

Details:

To check the air compressor at P50 to avoid emitting grey smoke.

Follow Up:-

No dark/grey smoke was emitted from air compressor.

Ref No: 130716-R03

Impact:

Water Quality (B20)

Details

To clear the sediment at the deck of flap-top work barge at P50.

Follow Up:-

The deck of flap-top work barge was observed clear.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Weekly Site Inspection Record Summary Inspection Information

This pection into mation	
Checklist Reference Number	130730
Date	30 July 2013 (Tuesday)
Time	13:30 – 15:00

7. 4.37		Related
Ref. No.	Non-Compliance	Item No.
-	None identified	-
		Related
Ref. No.	Remarks/Observations	Item No.
	A. Water Quality	
	No environmental deficiency was identified during site inspection.	
	B. Ecology	
	No environmental deficiency was identified during site inspection.	
	C. Air Quality	
	No environmental deficiency was identified during site inspection.	
	D. Noise	
	No environmental deficiency was identified during site inspection.	
	E. Waste / Chemical Management	
130730-R01	To remove the construction materials which were placed at near the tree at Portion C.	F4ii.
130730-R02	Clear the deposit silt and sediment at the drainage channel at Portion C.	F6
130730-R03	To seal the hole of the drip tray near the office containers at Portion C.	F9
	F. Permits/Licences	
	No environmental deficiency was identified during site inspection.	
	G. Others	
	• Follow-up on previous site audit session (Ref. No. 130723), follow up action is needed for the item 130723-R01 and 130723-R02 and renamed as 130730-R03 and 130730-R01 respectively.	

	Name	Signature	Date
Recorded by	Ivy Tam	Yw	30 July 2013
Checked by	Dr. Priscilla Choy	WZ	30 July 2013

Hong Kong-Zhuhai-Macao Bridge Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

<u>Environmental Observations Identified during the Environmental Site Inspection</u> (30 July 2013)

Ref No: 130730-R01

Impact:

Waste / Chemical Management (F4ii.)

Details:

To remove the construction materials which were placed at near the tree at Portion C.

Ref No: 130730-R02

Impact:

Waste / Chemical Management (F6)

Details:

Clear the deposit silt and sediment at the drainage channel at Portion C.

Ref No: 130730-R03

Impact:

Waste / Chemical Management (F9)

Details

To seal the hole of the drip tray near the office containers at Portion C.

Hong Kong-Zhuhai-Macao Bridge

Hong Kong Link Road-Section between HKSAR Boundary and Scenic Hill

Rectification Actions taken by the Contractor for Environmental Deficiencies Identified during Previous Audit Session

Ref No: 130723-R03

Impact:

Waste / Chemical Management (F6)

Details

Clear the deposit silt and sediment at the site exit and drainage channel at Portion C.

Follow Up:

The silt and sediment at the site exit was cleared by the workers.

Ref No: 130723-R04

Impact:

Waste / Chemical Management (F8)

Details:

Clear the oil stain at near the Pontoon at WA4.

Follow Up:

The oil stain was cleared.

APPENDIX N UPDATED ENVIRONMENTAL MITIGATION IMPLEMENTATION SCHEDULE (EMIS)

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
Air Quali	ity						
S5.5.6.1	A1	1) The contractor shall follow the procedures and requirements given in	Good construction site	Contractor	All construction	Construction	۸
		the Air Pollution Control (Construction Dust) Regulation	practices to control the dust		sites	stage	
			impact at the nearby				
			sensitive receivers to within				
			the relevant criteria.				
S5.5.6.2	A2	2) Proper watering of exposed spoil should be undertaken throughout the	Good construction site	Contractor	All construction	Construction	
		construction phase:	practices to control the dust		sites	stage	
		Any excavated or stockpile of dusty material should be covered	impact at the nearby				
		entirely by impervious sheeting or sprayed with water to maintain	sensitive receivers to within				۸
		the entire surface wet and then removed or backfilled or reinstated	the relevant criteria.				
		where practicable within 24 hours of the excavation or unloading;					
		Any dusty materials remaining after a stockpile is removed should					۸
		be wetted with water and cleared from the surface of roads;					
		A stockpile of dusty material should not be extend beyond the					۸
		pedestrian barriers, fencing or traffic cones.					
		The load of dusty materials on a vehicle leaving a construction site					۸
		should be covered entirely by impervious sheeting to ensure that the					
		dusty materials do not leak from the vehicle;					
		Where practicable, vehicle washing facilities with high pressure					
		water jet should be provided at every discernible or designated					۸
		vehicle exit point. The area where vehicle washing takes place and					
		the road section between the washing facilities and the exit point					
		should be paved with concrete, bituminous materials or hardcores;					
S5.5.6.2	A2	When there are open excavation and reinstatement works, hoarding	Good construction site	Contractor	All construction	Construction	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		of not less than 2.4m high should be provided as far as practicable	practices to control the dust		sites	stage	
		along the site boundary with provision for public crossing. Good site	impact at the nearby				
		practice shall also be adopted by the Contractor to ensure the	sensitive receivers to within				
		conditions of the hoardings are properly maintained throughout the	the relevant criteria.				
		construction period;					
		The portion of any road leading only to construction site that is within					۸
		30m of a vehicle entrance or exit should be kept clear of dusty					
		materials;					
		Surfaces where any pneumatic or power-driven drilling, cutting,					۸
		polishing or other mechanical breaking operation takes place should					
		be sprayed with water or a dust suppression chemical continuously;					
		Any area that involves demolition activities should be sprayed with					
		water or a dust suppression chemical immediately prior to, during					۸
		and immediately after the activities so as to maintain the entire					
		surface wet;					
		Where a scaffolding is erected around the perimeter of a building					
		under construction, effective dust screens, sheeting or netting					N/A
		should be provided to enclose the scaffolding from the ground floor					
		level of the building, or a canopy should be provided from the first					
		floor level up to the highest level of the scaffolding;					
		Any skip hoist for material transport should be totally enclosed by					۸
		impervious sheeting;					
		Every stock of more than 20 bags of cement or dry pulverised fuel					۸
		ash (PFA) should be covered entirely by impervious sheeting or					
		placed in an area sheltered on the top and the 3 sides;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
S5.5.6.2	A2	Cement or dry PFA delivered in bulk should be stored in a closed	Good construction site	Contractor	All construction	Construction	N/A
		silo fitted with an audible high level alarm which is interlocked with	practices to control the dust		sites	stage	
		the material filling line and no overfilling is allowed;	impact at the nearby				
		Loading, unloading, transfer, handling or storage of bulk cement or	sensitive receivers to within				٨
		dry PFA should be carried out in a totally enclosed system or facility,	the relevant criteria.				
		and any vent or exhaust should be fitted with an effective fabric filter					
		or equivalent air pollution control system; and					
		Exposed earth should be properly treated by compaction, turfing,					
		hydroseeding, vegetation planting or sealing with latex, vinyl,					۸
		bitumen, shotcrete or other suitable surface stabiliser within six					
		months after the last construction activity on the construction site or					
		part of the construction site where the exposed earth lies.					
S5.5.6.3	А3	3) The Contractor should undertake proper watering on all exposed spoil	Control construction dust	Contractor	All construction	Construction stage	۸
		(with at least 8 times per day) throughout the construction phase.			sites		
S5.5.6.4	A 5	5) Implement regular dust monitoring under EM&A programme during the	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	۸
		construction stage.	TSP levels at the		representative	stage	
			representative dust		dust		
			monitoring stations to ensure		monitoring station		
			compliance with relevant				
			criteria throughout the				
			construction period.				
S5.5.7.1	A6	The following mitigation measures should be adopted to prevent fugitive	Monitor the 24 hr and 1hr	Contractor	Selected	Construction	
		dust emissions for concrete batching plant:	TSP levels at the		representative	stage	
		Loading, unloading, handling, transfer or storage of any dusty	representative dust		dust		N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		materials should be carried out in totally enclosed system;	monitoring stations to ensure		monitoring station		
		All dust-laden air or waste gas generated by the process operations	compliance with relevant				N/A
		should be properly extracted and vented to fabric filtering system to	criteria throughout the				
		meet the emission limits for TSP;	construction period.				
		Vents for all silos and cement/pulverised fuel ash (PFA) weighing					N/A
		scale should be fitted with fabric filtering system;					
		The materials which may generate airborne dusty emissions should					
		be wetted by water spray system;					N/A
		All receiving hoppers should be enclosed on three sides up to 3m					
		above unloading point;					N/A
		All conveyor transfer points should be totally enclosed;					N/A
		All access and route roads within the premises should be paved and					N/A
		wetted; and					
		Vehicle cleaning facilities should be provided and used by all					N/A
		concrete trucks before leaving the premises to wash off any dust on					
		the wheels and/or body.					
S5.5.2.7	A7	The following mitigation measures should be adopted to prevent	Control construction dust	Contractor	All construction	Construction	
		fugitive dust emissions at barging point:			sites	stage	
		All road surface within the barging facilities will be paved;					N/A
		Dust enclosures will be provided for the loading ramp;					N/A
		Vehicles will be required to pass through designated wheels wash					N/A
		facilities; and					
		Continuous water spray at the loading points.					N/A
Construc	tion Nois	se (Air borne)					
S6.4.10	N1	1) Use of good site practices to limit noise emissions by considering the	Control construction airborne	Contractor	All construction	Construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		following:	noise by means of good site		sites	stage	
		only well-maintained plant should be operated on-site and plant	practices				*
		should be serviced regularly during the construction programme;					
		machines and plant (such as trucks, cranes) that may be in					۸
		intermittent use should be shut down between work periods or					
		should be throttled down to a minimum;					
		plant known to emit noise strongly in one direction, where possible,					۸
		be orientated so that the noise is directed away from nearby NSRs;					
		silencers or mufflers on construction equipment should be properly					۸
		fitted and maintained during the construction works;					
		mobile plant should be sited as far away from NSRs as possible and					
		practicable;					۸
		material stockpiles, mobile container site officer and other structures					
		should be effectively utilised, where practicable, to screen noise					۸
		from on-site construction activities.					
S6.4.11	N2	2) Install temporary hoarding located on the site boundaries between	Reduce the construction	Contractor	All construction	Construction	۸
		noisy construction activities and NSRs. The conditions of the hoardings	noise levels at low-level		sites	stage	
		shall be properly maintained throughout the construction period.	zone of NSRs through partial				
			screening.				
S6.4.12	N3	3) Install movable noise barriers (typically density @14kg/m²), acoustic	Screen the noisy plant items	Contractor	For plant items	Construction	۸
		mat or full enclosure close to noisy plants including air compressor,	to be used at all construction		listed in Appendix	stage	
		generators, saw.	sites		6D of the EIA		
					report at all		
					construction sites		
S6.4.13	N4	4) Select "Quiet plants" which comply with the BS 5228 Part 1 or TM	Reduce the noise levels of	Contractor	For plant items	Construction	۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		standards.	plant items		listed in Appendix	stage	
					6D of the EIA		
					report at all		
					construction sites		
S6.4.14	N5	5) Sequencing operation of construction plants where practicable.	Operate sequentially within	Contractor	All construction	Construction	۸
			the same work site to reduce		sites where	stage	
			the construction airborne		practicable		
			noise				
	N6	6) Implement a noise monitoring under EM&A programme.	Monitor the construction	Contractor	Selected	Construction	۸
			noise levels at the selected		representative	stage	
			representative locations		noise monitoring		
					station		
Waste Ma	anageme	nt (Construction Waste)					
S8.3.8	WM1	Construction and Demolition Material	Good site practice to	Contractor	All construction	Construction	
		The following mitigation measures should be implemented in	minimize the waste		sites	stage	
		handling the waste:	generation and recycle the				
		Maintain temporary stockpiles and reuse excavated fill material for	C&D materials as far as				۸
		backfilling and reinstatement;	practicable so as to reduce				
		Carry out on-site sorting;	the amount for final disposal				۸
		Make provisions in the Contract documents to allow and promote					۸
		the use of recycled aggregates where appropriate;					
		Adopt 'Selective Demolition' technique to demolish the existing					
		structures and facilities with a view to recovering broken concrete					۸
		effectively for recycling purpose, where possible;					
		Implement a trip-ticket system for each works contract to ensure that					۸

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		the disposal of C&D materials are properly documented and verified;					
		and					
		Implement an enhanced Waste Management Plan similar to					۸
		ETWBTC (Works) No. 19/2005 – "Environmental Management on					
		Construction Sites" to encourage on-site sorting of C&D materials					
		and to minimize their generation during the course of construction.					
		In addition, disposal of the C&D materials onto any sensitive					
		locations such as agricultural lands, etc. should be avoided. The					۸
		Contractor shall propose the final disposal sites to the Project					
		Proponent and get its approval before implementation					
S8.3.9 -	WM2	C&D Waste	Good site practice to	Contractor	All construction	Construction	
S8.3.11		Standard formwork or pre-fabrication should be used as far as	minimize the waste		sites	stage	٨
		practicable in order to minimise the arising of C&D materials. The	generation and recycle the				
		use of more durable formwork or plastic facing for the construction	C&D materials as far as				
		works should be considered. Use of wooden hoardings should not	practicable so as to reduce				
		be used, as in other projects. Metal hoarding should be used to	the amount for final disposal				
		enhance the possibility of recycling. The purchasing of construction					
		materials will be carefully planned in order to avoid over ordering					
		and wastage.					
		The Contractor should recycle as much of the C&D materials as					
		possible on-site. Public fill and C&D waste should be segregated					۸
		and stored in different containers or skips to enhance reuse or					
		recycling of materials and their proper disposal. Where					
		practicable, concrete and masonry can be crushed and used as fill.					
		Steel reinforcement bar can be used by scrap steel mills. Different					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		areas of the sites should be considered for such segregation and					
		storage.					
S8.2.12-	WM3	Chemical Waste	Control the chemical waste	Contractor	All construction	Construction	
S8.3.15		Chemical waste that is produced, as defined by Schedule 1 of the	and ensure proper storage,		sites	stage	۸
		Waste Disposal (Chemical Waste) (General) Regulation, should be	handling and disposal.				
		handled in accordance with the Code of Practice on the Packaging,					
		Labelling and Storage of Chemical Wastes.					
		Containers used for the storage of chemical wastes should be					۸
		suitable for the substance they are holding, resistant to corrosion,					
		maintained in a good condition, and securely closed; have a					
		capacity of less than 450 liters unless the specification has been					
		approved by the EPD; and display a label in English and Chinese in					
		accordance with instructions prescribed in Schedule 2 of the					
		regulation.					
		The storage area for chemical wastes should be clearly labelled and					۸
		used solely for the storage of chemical waste; enclosed on at least 3					
		sides; have an impermeable floor and bunding of sufficient capacity					
		to accommodate 110% of the volume of the largest container or 20					
		% of the total volume of waste stored in that area, whichever is the					
		greatest; have adequate ventilation; covered to prevent rainfall					
		entering; and arranged so that incompatible materials are					
		adequately separated.					
		Disposal of chemical waste should be via a licensed waste collector;					
		be to a facility licensed to receive chemical waste, such as the					۸
1		Chemical Waste Treatment Centre which also offers a chemical					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		waste collection service and can supply the necessary storage					
		containers; or be to a reuser of the waste, under approval from the					
		EPD.					
S8.3.16	WM4	<u>Sewage</u>	Proper handling of sewage	Contractor	All construction	Construction	
		Adequate numbers of portable toilets should be provided for the	from worker to avoid odour,		sites	stage	
		workers. The portable toilets should be maintained in a state,	pest and litter impacts				٨
		which will not deter the workers from utilizing these portable toilets.					
		Night soil should be collected by licensed collectors regularly.					
S8.3.17	WM5	General Refuse	Minimize production of the	Contractor	All construction	Construction stage	
		General refuse generated on-site should be stored in enclosed	general refuse and avoid		sites		۸
		bins or compaction units separately from construction and chemical	odour, pest and litter impacts				
		wastes.					
		A reputable waste collector should be employed by the Contractor to					
		remove general refuse from the site, separately from construction					٨
		and chemical wastes, on a daily basis to minimize odour, pest and					
		litter impacts. Burning of refuse on construction sites is prohibited					
		by law.					
		Aluminium cans are often recovered from the waste stream by					
		individual collectors if they are segregated and made easily					٨
		accessible. Separate labelled bins for their deposit should be					
		provided if feasible.					
		Office wastes can be reduced through the recycling of paper if					
		volumes are large enough to warrant collection. Participation in a					
		local collection scheme should be considered by the Contractor. In					٨
		addition, waste separation facilities for paper, aluminum cans,					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			plastic bottles etc., should be provided.					
		•	Training should be provided to workers about the concepts of site					۸
			cleanliness and appropriate waste management procedure,					
			including reduction, reuse and recycling of wastes.					
Water Qu	ality (Co	nstr	ruction Phase)					
S9.11.1 –	W1	•	Mitigation during the marine works to reduce impacts to within	To control construction water	Contractor	During seawall	Construction	۸
S9.11.1.2			acceptable levels have been recommended and will comprise a	quality		dredging and	stage	
			series of measures that restrict the method and sequencing of			filling		
			dredging/backfilling, as well as protection measures. Details of the					
			measures are provided below and summarised in the Environmental					
			Mitigation Implementation Schedule in EM&A Manual.					
		•	Export for dredged spoils from NWWCZ avoiding exerting high					۸
			demand on the disposal facilities in the NWWCZ and, hence,					
			minimise potential cumulative impacts;					
		•	For the marine viaducts of HKLR, the bored piling will be undertaken					
			within a metal casing;					۸
		•	where public fill is proposed for filling below -2.5mPD, the fine					
			content in the public fill will be controlled to 25%;					N/A
		•	single layer silt curtains will be applied around all works;					۸
		•	during the first two months of dredging work for HKLR, the					
			silt-removal efficiency of the silt-curtains shall be verified by					N/A
			examining the results of water quality monitoring points. The water					
			quality monitoring points to be selected for the above shall be those					
			close to the locations of the initial period of dredging work. Details in					
			this regard shall be determined by the ENPO to be established,					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		taking account of the Contractor's proposed actual locations of his					
		initial period of dredging work.					
		silt curtain shall be fully maintained throughout the works.					۸
		In addition, dredging operations should be undertaken in such a manner					
		as to minimise resuspension of sediments. Standard good dredging					
		practice measures should, therefore, be implemented including the					
		following requirements which should be written into the dredging contract.					
		trailer suction hopper dredgers shall not allow mud to overflow;					N/A
		use of Lean Material Overboard (LMOB) systems shall be					
		prohibited;					۸
		mechanical grabs shall be designed and maintained to avoid					
		spillage and should seal tightly while being lifted;					۸
		barges and hopper dredgers shall have tight fitting seals to their					
		bottom openings to prevent leakage of material;					۸
		any pipe leakages shall be repaired quickly. Plant should not be					
		operated with leaking pipes;					۸
		loading of barges and hoppers shall be controlled to prevent					
		splashing of dredged material to the surrounding water. Barges or					۸
		hoppers shall not be filled to a level which will cause overflow of					
		materials or pollution of water during loading or transportation;					
		excess material shall be cleaned from the decks and exposed					*
		fittings of barges and hopper dredgers before the vessel is moved;					
		adequate freeboard shall be maintained on barges to reduce the					۸
		likelihood of decks being washed by wave action;					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		all vessels shall be sized such that adequate clearance is					٨
		maintained between vessels and the sea bed at all states of the tide					
		to ensure that undue turbidity is not generated by turbulence from					
		vessel movement or propeller wash; and					
		the works shall not cause foam, oil, grease, litter or other					
		objectionable matter to be present in the water within and adjacent					۸
		to the works site.					
S9.11.1.3	W2	Land Works	To control construction water	Contractor	During seawall	Construction stage	
		General construction activities on land should also be governed by	quality		dredging and		
		standard good working practice. Specific measures to be written into			filling		
		the works contracts should include:					
		wastewater from temporary site facilities should be controlled to					۸
		prevent direct discharge to surface or marine waters;					
		sewage effluent and discharges from on-site kitchen facilities shall					N/A
		be directed to Government sewer in accordance with the					
		requirements of the WPCO or collected for disposal offsite. The					
		use of soakaways shall be avoided;					
		storm drainage shall be directed to storm drains via adequately					
		designed sand/silt removal facilities such as sand traps, silt traps					
		and sediment basins. Channels, earth bunds or sand bag barriers					٨
		should be provided on site to properly direct stormwater to such silt					
		removal facilities. Catchpits and perimeter channels should be					
		constructed in advance of site formation works and earthworks;					
		silt removal facilities, channels and manholes shall be maintained					*
		and any deposited silt and grit shall be removed regularly, including					

EIA Ref.	EM&A		Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref			recommended Measures &	implement the	measures	Implement the	Status
				Main Concerns to address	measures?		measures?	
			specifically at the onset of and after each rainstorm;					
		•	temporary access roads should be surfaced with crushed stone or					۸
			gravel;					
		•	rainwater pumped out from trenches or foundation excavations					۸
			should be discharged into storm drains via silt removal facilities;					
		•	measures should be taken to prevent the washout of construction					۸
			materials, soil, silt or debris into any drainage system;					
		•	open stockpiles of construction materials (e.g. aggregates and					۸
			sand) on site should be covered with tarpaulin or similar fabric					
			during rainstorms;					
		•	manholes (including any newly constructed ones) should always be					۸
			adequately covered and temporarily sealed so as to prevent silt,					
			construction materials or debris from getting into the drainage					
			system, and to prevent storm run-off from getting into foul sewers;					
		•	discharges of surface run-off into foul sewers must always be					۸
			prevented in order not to unduly overload the foul sewerage system;					
		•	all vehicles and plant should be cleaned before they leave the					*
			construction site to ensure that no earth, mud or debris is deposited					
			by them on roads. A wheel washing bay should be provided at every					
			site exit;					
		•	wheel wash overflow shall be directed to silt removal facilities before					
			being discharged to the storm drain;					۸
		•	the section of construction road between the wheel washing bay and					
			the public road should be surfaced with crushed stone or coarse					۸
			gravel;					

EIA Ref.	ЕМ&А	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		wastewater generated from concreting, plastering, internal					۸
		decoration, cleaning work and other similar activities, shall be					
		screened to remove large objects;					
		vehicle and plant servicing areas, vehicle wash bays and lubrication					۸
		facilities shall be located under roofed areas. The drainage in					
		these covered areas shall be connected to foul sewers via a petrol					
		interceptor in accordance with the requirements of the WPCO or					
		collected for off site disposal;					
		the contractors shall prepare an oil / chemical cleanup plan and					
		ensure that leakages or spillages are contained and cleaned up					*
		immediately;					
		waste oil should be collected and stored for recycling or disposal, in					۸
		accordance with the Waste Disposal Ordinance;					
		all fuel tanks and chemical storage areas should be provided with					
		locks and be sited on sealed areas. The storage areas should be					۸
		surrounded by bunds with a capacity equal to 110% of the storage					
		capacity of the largest tank; and					
		surface run-off from bunded areas should pass through oil/grease					
		traps prior to discharge to the stormwater system.					۸
S9.14	W3	Implement a water quality monitoring programme	Control water quality	Contractor	At identified	During	۸
					monitoring	construction period	
					location		
Ecology	(Constru	ction Phase)		•	•		
S10.7	E1	Good site practices to avoid runoff entering woodland habitats in	Avoid potential disturbance	Designer;	Scenic Hill	During	۸
		Scenic Hill	on habitat of Romer's Tree	Contractor		construction	

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Reinstate works areas in Scenic Hill	Frog in Scenic Hill				N/A
		Avoid stream modification in Scenic Hill					٨
S10.7	E2	Use closed grab in dredging works.	Minimise marine water	Contractor	Seawall,	During	٨
		Install silt curtain during the construction.	quality impacts			construction	۸
		Limit dredging and works fronts.					۸
		Good site practices					۸
		Strict enforcement of no marine dumping.					۸
		Site runoff control					۸
		Spill response plan					۸
S10.7	E3	Reprovision of replacement Artificial Reefs (of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or operation	
						phase	
S10.7	E4	Watering to reduce dust generation; prevention of siltation of	Prevent Sedimentation from	Contractor	Land-based works	During	۸
		freshwater habitats; Site runoff should be desilted, to reduce the	Land-based works areas		areas	construction	
		potential for suspended sediments, organics and other					
		contaminants to enter streams and standing freshwater					
S10.7	E5	Good site practices, including strictly following the permitted	Prevent disturbance to	Contractor	Land-based works	During	٨
		works hours, using quieter machines where practicable, and	terrestrial fauna and habitats		areas	construction	
		avoiding excessive lightings during night time					
S10.7	E6	Dolphin Exclusion Zone;	Minimize temporary marine	Contractor	Marine works	During marine	٨
		Dolphin watching plan	habitat loss impact to			works	۸
			dolphins				
S10.7	E7	Decouple compressors and other equipment on working vessels	Minimise marine noise	Contractor	Marine works	During marine	۸
		Avoidance of percussive piling	impacts on dolphins			works	۸
		Marine underwater noise monitoring					٨

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		Temporal suspension of drilling bored pile casing in rock during peak					N/A
		dolphin calving season in May and June					
S10.7	E8	Control vessel speed	Minimise marine traffic	Contractor	Marine traffic	During marine	٨
		Skipper training.	disturbance on dolphins			works	٨
		Predefined and regular routes for working vessels; avoid Brothers					٨
		Islands.					
S10.10	E9	Dolphin vessel monitoring	Minimise marine traffic	Contractor	North Lantau and	Prior to	۸
			disturbance on dolphins		West Lantau	construction,	
						during	
						construction, and 1	
						year after	
						operation	
Fisheries	s						
S11.7	F1	Reprovision of replacement Artificial Reefs(of the same volume as	Mitigate water quality	Project	To be determined	Construction	N/A
		the existing ARs inside Marine Exclusion Zone)	impacts on the existing ARs	proponent		phase or	
						operation	
						phase	
S11.7	F2	Reduce re-suspension of sediments	Minimise marine water	Contractor	Seawall,	During	۸
		Limit dredging and works fronts.	quality impacts			construction	٨
		Good site practices					٨
		Strict enforcement of no marine dumping					٨
		Spill response plan					۸
Landsca	pe & Visu	al (Construction Phase)					
S14.3.3.3	LV2	Mitigate both Landscape and Visual Impacts	Minimise visual &	Contractor	HKLR	Construction	
		G1. Grass-hydroseed bare soil surface and stock pile areas.	landscape impact			stage	N/A

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
		G2. Add planting strip and automatic irrigation system if appropriate					N/A
		at some portions of bridge or footbridge to screen bridge and traffic.					
		G3. For HKLR, providing aesthetic design on the viaduct, tunnel					N/A
		portals, at-grade roads (e.g. subtle colour tone and slim form for					
		viaduct, featured form of tunnel portals, roadside planting along					
		at-grade roads and landscape berm on) to beautify the HKLR					
		alignment.					
		G5. Vegetation reinstatement and upgrading to disturbed areas.					N/A
		G6. Maximize new tree, shrub and other vegetation planting to					N/A
		compensate tree felled and vegetation removed.					
		G7. Provide planting area around peripheral of and within HKLR for					N/A
		tree screening buffer effect.					
		G8. Plant salt tolerant native tree and shrubs etc along the planter					N/A
		strip at affected seawall.					
		G9. Reserve of loose natural granite rocks for re-use. Provide new					
		coastline to adopt "natural-look" by means of using armour rocks in					N/A
		the form of natural rock materials and planting strip area					
		accommodating screen buffer to enhance "natural-look" of the new					
		coastline (see Figure 14.4.2 for example).					
S14.3.3.3	LV3	Mitigate Visual Impacts					
		V1.Minimize time for construction activities during construction					٨
		period.					
		V2.Provide screen hoarding at the portion of the project site / works					٨
		areas / storage areas near VSRs who have close low-level views to					
		the Project during HKLR construction.					

EIA Ref.	EM&A	Recommended Mitigation Measures	Objectives of the	Who to	Location of the	When to	Implementation
	Log Ref		recommended Measures &	implement the	measures	Implement the	Status
			Main Concerns to address	measures?		measures?	
EM&A							
S15.2.2	EM1	An Independent Environmental Checker needs to be employed as	Control EM&A Performance	Project	All construction	Construction	۸
		per the EM&A Manual.		Proponent	sites	stage	
S15.5 -	EM2	1) An Environmental Team needs to be employed as per the EM&A	Perform environmental	Contractor	All construction	Construction	۸
S15.6		Manual.	monitoring & auditing		sites	stage	
		2) Prepare a systematic Environmental Management Plan to ensure					۸
		effective implementation of the mitigation measures.					
		3) An environmental impact monitoring needs to be implementing by the					۸
		Environmental Team to ensure all the requirements given in the EM&A					
		Manual are fully complied with.					

Remarks:

- Compliance of mitigation measure
- * Recommendation was made during site audit but improved/rectified by the contractor

N/A Not Applicable at this stage as no such site activities were conducted in the reporting month (e.g. concrete batching plan, barging point, seawall dredging and filling, bored piling, landscaping works etc)

APPENDIX O WASTE GENERATION IN THE REPORTING MONTH

Contract No. HY/2011/09 Hong Kong - Zhuhai - Macao Bridge Hong Kong Link Road -Section between HKSAR Boundary and Scenic Hill

Appendix: C6 Monthly Summary Waste Flow Table

Name of Department: HyD

Contract No.: HY/2011/09

Monthly Summary Waste Flow Table for 2013 (Year)

		Actual Quantit	ties of Inert C&I	Materials Gene	erated Monthly		Actual Quantities of C&D Wastes Generated Monthly				
Month	Total Quantity Generated	Hard Rock and Large Broken Concrete ⁶	Reused in the Contract ^{8,9}	Reused in other Projects ^{5,8,9}	Disposed as Public Fill ⁷	Imported Fill ^{6,7,8,9}	Metals	Paper/ cardboard packaging	Plastics ³	Chemical Waste	Others, e.g. general refuse ^{8,9}
	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
Jan	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.150
Feb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.375	0.000	0.000	0.072
Mar	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.091
Apr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.410	0.000	0.000	0.098
May	1.436	0.000	0.000	0.000	1.436	0.000	0.000	0.465	0.000	0.000	0.117
Jun	5.335	0.000	0.000	0.000	5.335	0.000	0.000	0.426	0.000	0.000	0.111
Sub-Total	6.771	0.000	0.000	0.000	6.771	0.000	0.000	1.676	0.000	0.000	0.637
Jul	12.438	0.000	0.280	0.000	5.896	6.262	0.000	0.447	0.000	0.000	0.117
Aug											
Sep											
Oct											
Nov											
Dec											
Total	19.209	0.000	0.280	0.000	12.667	6.262	0.000	2.123	0.000	0.000	0.754

Contract No. HY/2011/09
Hong Kong - Zhuhai - Macao Bridge
Hong Kong Link Road Section between HKSAR Boundary and Scenic Hill

	Forecast of Total Quantities of C&D Materials to be Generated from the Contract 10									
Total Quantity Generated	Hard Rock and Large Broken Concrete ⁶	Reused in the Contract ^{8,9}	Reused in other Projects ^{5,8,9}	Disposed as Public Fill ⁷	Imported Fill ^{6,7,8,9}	Metals	Paper/ cardboard packaging	Plastics ³	Chemical Waste	Others, e.g. general refuse ^{8,9}
(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 m ³)	(in '000 kg)	(in '000 kg)	(in '000 kg)	(in '000 m ³)
0.000	124.366	0.000	124.366	0.000	0.000	0.000	9.681	0.000	0.000	2.940

Notes:

- (1) The performance targets are given in ER Appendix 8J Clause 14 and the EM&A Manual.
- (2) The waste flow table shall also include C&D materials to be imported for use at the Site.
- (3) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging material
- (4) The Contractor shall also submit the latest forecast of the total amount of C&D materials expected to be generated from the Works, together with a breakdown of the nature where the total amount of C&D materials expected to be generated from the Works is equal to or exceeding 50,000 m³. (ER Part 8 Clause 8.8.5 (d) (ii) refers).
- (5) The materials reused in other Project shall not be treated as waste under the Waste Disposal Ordinance (CAP354).
- (6) According to the EIA Appendix 8B, the density of rock (bulked) is 2.0 tonnes/m³.
- (7) According to the EIA Appendix 8B, the density of soil (bulked) is 1.8 tonnes/m³.
- (8) Assuming the loading quantities of a 30-tonne truck is 8.0m³.
- (9) Assuming the loading quantities of a 24-tonne truck is 6.5m³.
- (10) The forcast of C&D materials to be generated from the Contract is sourced from the works program in December 2012.

APPENDIX P COMPLAINT LOG

Appendix P - Complaint Log

Log Ref.	Location	Received Date	Details of Complaint	Investigation/ Mitigation Action	Status
Com-2013-04-001	Near Tung Chung New Development Pier	8 April 2013	EPD received the complaint on 8 April 2013. The complainant complained about oil was dumped from various vessels operating for Hong Kong-Zhuhai-Macao Bridge Hong Kong (HZMB HK) Projects near Tung Chung New Development Pier over the past few months.	inspection conducted on 9 April 2013 at near Tung Chung New Development Ferry Pier. 3) Joint site inspection (DCVJV and ARUP) was conducted on 10 April	Closed
Com-2013-05-001	WA6	2 May 2013	ARUP received the complaint on 2 May 2013. The complainant alleged the noise nuisance was generated from the Works Area	•	Closed

Contract No. HY/2011/09
Hong Kong-Zhuhai-Macao Bridge
Hong Kong Link Road – Section between
HKSAR Boundary and Scenic Hill
Monthly EM&A Report – July 2013

			1	Wollding EMACA Report – Ju	ary 2018
			WA6 at around 13:00 on 1 May 2013 (Wednesday).	WA6 according to the security guard who on duty at WA6 on 1 May 2013. Based on the information provided, the complaint regarding the construction noise at WA6 is not considered justifiable.	
Com-2013-05-002	WA6	18 May 2013	ARUP received the complaint on 18 May 2013. The complainant advised that the noise nuisance due to loading of metal parts at barge near the seawall of Works Area WA6 early morning (around8:45a.m) on 18 May 2013 (Saturday).	Based on the record of site activities at WA6 on 18 May 2013, 4 metal plates and 2 oxygen-acetylene set were lifted onto a derrick boat "Chiu Kee" by a crane near seawall at WA6 in the morning on that day. Such operation was commenced around 8:40a.m and completed in 10 minutes during the normal construction working hour (0700 – 1900 Monday to Saturday). However, the duration of aforesaid activities is very short and infrequent. Nevertheless, the Contractor was reminded to strengthen their site supervision and provide training for the workers regularly to increase awareness of their environmental responsibilities to minimize the noise impact to the nearby residents and the specific mitigation measures for the complaint including but not limited to:- • To place wooden planks or rubber	Closed

				Monthly EM&A Report – J	uly 2015
				mats on ground for loading and unloading heavy or metal objects; and • To deploy professional personnel to supervise the works. After receiving the complaint, additional site inspection was	
Com-2013-05-003	Near Tung Chung New Development Pier	18 May 2013	EPD received the public complaint on 18 May 2013. This complaint was a follow-up of a previous complaint received by EPD on 8 April 2013 (Com-2013-04-001). The complainant complained again about the oil was dumped from various vessels operating for Hong Kong-Zhuhai-Macao Bridge Hong Kong (HZMB HK) Projects near Tung Chung New Development Pier over the past months.	conducted at near Tung Chung New Development Pier on 30 May 2013 to investigate whether oil dumped was due to Contract No. HY/2011/09's vessels. During the site inspection, three working vessels under Contract No.HY/2011/09 was anchored off near Tung Chung New Development Pier. No oil dumped from Contract No. HY/2011/09's vessels were observed and the water around the vessels was clear. The following mitigation measures have been implemented by DCVJV: DCVJV has sent the letter to the shipping agent to remind them to ensure the vessels under Contract No. HY/2011/09 are in good condition and any oil dumped to sea should be avoided to prevent water pollution. Provide training to the vessel skippers for prevention of pollution	Closed

				Monthly EM&A Report – J	uly 2013
				from ships. • DCVJV requested vessel skippers	
				to provide engine oil disposal records The vessel skippers assured to us that all waste lubricants were sent to waste collectors regularly and no oil	
				discharge into seawater.	
Com-2013-07-001	Southeast Quay of Chek Lap Kok near the junction of Chek Lap Kok South Road and Scenic Road	17 July 2013	The complaint was received by EPD on 17 th July 2013. According to the EPD's letter, the complainant was concerned for the noise nuisance generated from the operation of concrete lorry mixers during evening and night-time period at Southeast Quay of Chek Lap Kok.	In response to the complaint, ET conducted two times site inspections at Southeast Quay at Chek Lap Kok between 18:45 and 20:30 hours on 23 July 2013 and 20:30 to 22:30 hours on 30 July 2013.	In progress

	Monthly EM&A Report – July 2013
	According to the Contractor, there was
	no concreting works for the pier sites
	on 23 July 2013 and therefore no
	loading and unloading operation at
	Southeast Quay at Chek Lap Kok.
	Concreting works were performed at
	Pier 0 on 30 July 2013. As the
	Contractor anticipated the arrival time
	of tug boat and flap-top barge at
	Southeast Quay will exceed 23:00
	hours after the concreting works, they
	decided to arrange the tug boat and
	flap-top barge with concrete lorry
	mixers anchored off around Pier 66
	after 23:00 hours. So, no loading and
	unloading operation at Southeast Quay
	at Chek Lap Kok was observed.
	Further night time site inspection will
	be conducted during the loading and
	unloading operation at Southeast Quay
	of Chek Lap Kok to check whether the
	Contractor comply with the condition
	of CNP No. GW-RS0426-13.
	01 01 110. 0 11 100 120 13.