Appendix L1 Cumulative Statistics on Exceedances

		Total No. recorded in this quarter	Total No. recorded since project commencement
1-Hr TSP	Action	0	0
	Limit	0	1
24-Hr TSP	Action	0	2
	Limit	0	0
Noise	Action	0	0
	Limit	0	0
Water Quality	Action	2	138
•	Limit	0	15
Impact Dolphin	Action	0	11
Monitoring	Limit	1	12

Appendix L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period		Cumulative Statistics	
_	Complaints	Notifications of	Successful
		Summons	Prosecutions
This quarter	0	0	0
Total No. received since project commencement	12	0	0

Email message

Environmental Resources Management

To Ramboll Hong Kong, Limited (ENPO)

16/F Berkshire House, 25 Westlands Road Quarry Bay, Hong Kong Telephone: (852) 2271 3113

From

ERM- Hong Kong, Limited

Quarry Bay, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number

Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject

Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date

03 April 2018

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_23 March 2018_Depth-averaged SS_F_Station IS8

A total of one (1) exceedance was recorded on 23 March 2018.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

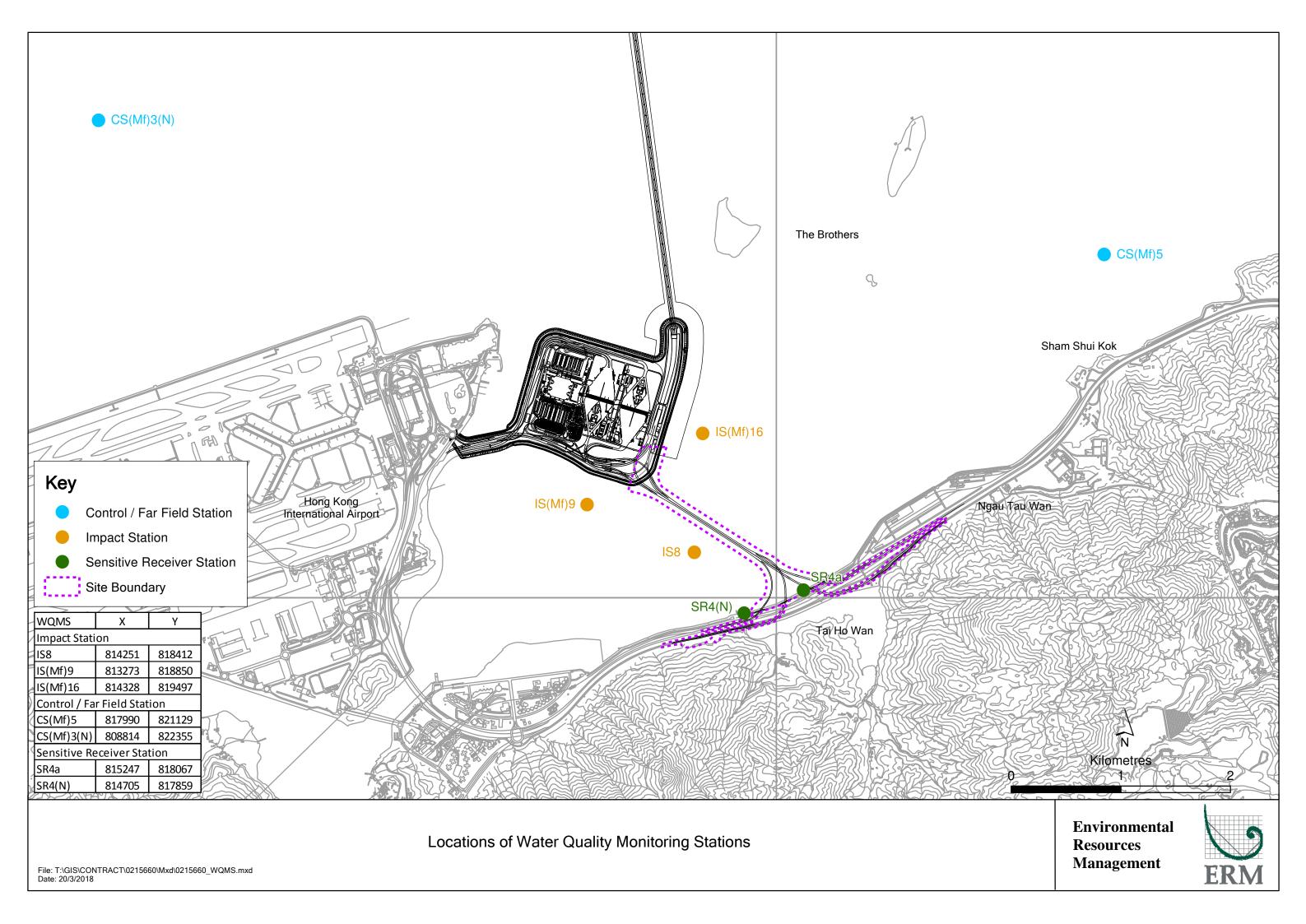
ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	Action Level Exceedance 0215660_23 March 2018_Depth-averaged SS_F_Station IS8								
		[Total No. of Exceedances = 1]							
Date		23 March 2018 (Measured)							
		4 March 2018 (In situ results received by ERM)							
	03 2	April 2018 (Laboratory results received by ERM)							
Monitoring Station	CS(Mf)	5, SR4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)							
Parameter(s) with Exceedance(s)	Depth-averaged Suspended Solids (SS)								
Action Levels for SS	SS 120% of upstream control station at the same tide of and 95%-ile of baseline data (i.e., 23.5 mg/L).								
Limit Levels for SS	SS	130% of upstream control station at the same tide of the same day and 99%-ile of baseline data. (i.e., 34.4 mg/L)							
Measured Levels	Action Level Exceedance 1. Mid-flood at IS8 (Depth	n-averaged SS = 24.7mg/L).							
Works Undertaken (at the time of monitoring event)	No major marine works was	s undertaken under this Contract on 23 March 2018.							
Possible Reason for Action or Limit Level	_	veraged SS are unlikely to be due to the Project, in view of the following: undertaken under this Contract on 23 March 2018.							
Exceedance(s)	 Apart from IS8, depth-averaged SS levels at all other sensitive receiver stations and impact stations were in compliance with the Action and Limit Levels during both mid-flood and mid-ebb tides on the same day. Depth-averaged Turbidity levels and average DO levels at all stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. No particular site observations was recorded at IS8 during the mid-flood tide on 23 March 2018 (refer to site photo record). 								
Actions Taken / To Be Taken	No immediate action is consexceedances.	sidered necessary. The ET will monitor for future trends in							
Remarks		3 March 2018 and locations of water quality monitoring stations are d on 23 March 2018 is attached.							


Project	Works	Date (yyyy-mm-dd)	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)5	16:57	Surface	1	20.1	8.0	30.1	6.9		4.0		5.6	<u> </u>
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)5	16:57	Surface	2	19.8	8.1	30.1	6.9	6.9	4.1		6.8	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)5	16:57	Middle	1	19.9	8.0	30.2	6.8	0.9	5.2	E /	7.6	7.6
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)5	16:57	Middle	2	19.7	8.1	30.2	6.9		5.1	5.4	7.5	7.0
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)5	16:57	Bottom	1	19.8	8.0	30.6	6.7	6.8	6.8		9.8	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)5	16:57	Bottom	2	19.5	8.1	30.6	6.8	0.6	7.1		8.0	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)3(N)	15:41	Surface	1	20.1	8.0	29.5	8.1		4.9		5.9	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)3(N)	15:41	Surface	2	20.1	8.1	29.5	8.1	8.2	4.9		6.2	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)3(N)	15:41	Middle	1	19.9	8.1	30.5	8.2	0.2	7.4	6.4	6.9	7.1
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)3(N)	15:41	Middle	2	19.9	8.1	30.5	8.2		7.4	6.4	8.3] /.1
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)3(N)	15:41	Bottom	1	19.9	8.1	30.5	8.1	8.1	6.9		7.6	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	CS(Mf)3(N)	15:41	Bottom	2	19.9	8.1	30.5	8.0	0.1	7.0		7.4	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)16	16:28	Surface	1	20.7	8.0	29.6	7.0		6.6		9.6	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)16	16:28	Surface	2	20.5	8.1	29.7	7.1	7.1	7.1		10.6	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)16		Middle	1					7.1		7.4		11.4
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)16		Middle	2							7.4		11.4
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)16	16:28	Bottom	1	20.0	8.0	29.8	6.8	6.0	7.7		12.0	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)16	16:28	Bottom	2	19.8	8.1	29.9	6.9	6.9	8.1		13.4	1
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4a	16:17	Surface	1	20.4	8.0	29.6	6.8		8.4		10.6	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4a	16:17	Surface	2	20.2	8.1	29.7	6.9	<i>C</i> 0	8.2	10.7	10.7	1
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4a		Middle	1					6.9		101		14.7
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4a		Middle	2							10.1	13.0	11.7
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4a	16:17	Bottom	1	20.3	8.0	29.7	6.9	6.0	11.9			
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4a	16:17	Bottom	2	20.0	8.1	29.7	6.9	6.9	12.0	12.6	12.6	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4(N)	16:11	Surface	1	21.9	8.0	29.1	7.2		4.3		7.5	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4(N)	16:11	Surface	2	21.6	8.1	29.2	7.3	7.3	4.3		6.4	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4(N)		Middle	1					7.5		4.8		7.4
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4(N)		Middle	2							4.0] 7.4
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4(N)	16:11	Bottom	1	21.3	8.0	29.4	7.1	7.2	5.1		7.2	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	SR4(N)	16:11	Bottom	2	21.0	8.1	29.5	7.2	7.2	5.4		8.3	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS8	16:05	Surface	1	20.8	8.0	29.6	6.9		6.6		9.7	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS8	16:05	Surface	2	20.5	8.1	29.6	6.9	6.0	6.6		9.1	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS8		Middle	1					6.9		7.1		10.7
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS8		Middle	2							7.1		10.7
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS8	16:05	Bottom	1	20.6	8.0	29.6	6.9	6.0	7.6	1 -	13.0	1
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS8	16:05	Bottom	2	20.3	8.1	29.7	6.9	6.9	7.4		11.1	1
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)9	15:54	Surface	1	21.6	8.0	29.4	7.2	-	6.0		6.7	
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)9	15:54	Surface	2	21.3	8.1	29.6	7.3	7.2	6.2		6.7]
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)9		Middle	1					7.3		6.3		7.7
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)9		Middle	2									
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)9	15:54	Bottom	1	20.7	8.0	29.6	7.1	7.0	6.8		8.8	1
TMCLKL	HY/2012/07	2018-03-23 Mid-Ebb	IS(Mf)9	15:54	Bottom	2	20.4	8.1	29.7	7.2	7.2	6.2		8.6]

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)5	9:30	Surface	1	19.7	8.1	29.9	7.1		2.1		3.7	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)5	9:30	Surface	2	20.0	8.0	29.8	7.0	7.0	2.5		4.7	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)5	9:30	Middle	1	19.6	8.1	30.1	6.9	7.0	2.4	5.9	6.3	5.1
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)5	9:30	Middle	2	19.9	8.0	30.0	6.8		2.6		5.3	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)5	9:30	Bottom	1	19.5	8.1	30.6	6.9	6.0	13.0		5.2	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)5	9:30	Bottom	2	19.8	8.0	30.5	6.8	6.9	12.7		5.1	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)3(N)	10:25	Surface	1	19.9	8.0	28.9	7.8		3.8		6.2	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)3(N)	10:25	Surface	2	19.9	8.0	28.9	7.8	7.8	3.8		7.7	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)3(N)	10:25	Middle	1	19.8	8.0	29.1	7.7	7.0	6.1	E 0	6.7	7.3
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)3(N)	10:25	Middle	2	19.8	8.0	29.1	7.7		6.1	5.0	7.5	7.3
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)3(N)	10:25	Bottom	1	19.8	8.0	29.0	7.7	7.7	5.2		7.7	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	CS(Mf)3(N)	10:25	Bottom	2	19.8	8.0	29.1	7.7	7.7	5.2		7.9	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)16	9:59	Surface	1	19.8	8.1	29.8	7.0		6.7		10.6	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)16	9:59	Surface	2	20.1	8.0	29.7	7.0	7.0	6.2		11.0	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)16		Middle	1					7.0		6.7		11.2
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)16		Middle	2							0.7		
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)16	9:59	Bottom	1	19.8	8.1	29.8	7.0	7.0	7.2	1	11.2	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)16	9:59	Bottom	2	20.0	8.0	29.7	7.0	7.0	6.7	11.9		
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4a	10:08	Surface	1	19.7	8.1	29.8	7.0		10.0		16.1	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4a	10:08	Surface	2	20.0	8.0	29.7	6.9	7.0	10.2	16.7	16.7	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4a		Middle	1					7.0		10.0		15.8
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4a		Middle	2							10.0		15.6
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4a	10:08	Bottom	1	19.7	8.0	29.8	7.0	7.0	10.0		15.1	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4a	10:08	Bottom	2	20.0	8.0	29.7	6.9	7.0	9.8		15.2	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4(N)	10:16	Surface	1	19.7	8.0	29.7	6.8		12.2		18.3	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4(N)	10:16	Surface	2	20.0	8.0	29.6	6.8	6.8	12.6		19.8	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4(N)		Middle	1					0.6		12.8		20.8
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4(N)		Middle	2							12.0		20.8
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4(N)	10:16	Bottom	1	19.7	8.0	29.7	6.9	7.0	13.2		21.7	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	SR4(N)	10:16	Bottom	2	20.0	8.0	29.6	7.0	7.0	13.0		23.3	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS8	10:23	Surface	1	19.8	8.1	29.7	6.9		16.5		24.6	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS8	10:23	Surface	2	19.8	8.0	29.7	6.9	6.9	16.4		25.4	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS8		Middle	1					0.5		16.0		24.7
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS8		Middle	2							10.0		24.7
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS8	10:23	Bottom	1	19.8	8.1	29.8	6.9	6.9	15.5	24.4	24.4	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood		10:23	Bottom	2	19.8	8.0	29.7	6.9	U.J	15.4		24.4	
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)9	10:31	Surface	1	19.9	8.1	29.6	6.9		9.6		15.8]
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)9	10:31	Surface	2	20.2	8.0	29.5	6.8	6.0	9.5		15.6]
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)9		Middle	1					6.9		10.1		15.5
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)9		Middle	2							10.1] 15.5
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)9	10:31	Bottom	1	19.9	8.1	29.7	6.9	6.0	10.7		14.6]
TMCLKL	HY/2012/07	2018-03-23	Mid-Flood	IS(Mf)9	10:31	Bottom	2	20.2	8.0	29.6	6.8	6.9	10.4		16.0	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Flood at IS8 on 23 March 2018

Email message

Environmental Resources Management

To Ramboll Hong Kong Limited (ENPO)

2507, 25/F One Harbourfront, 18 Tak Fung Street,

From

ERM- Hong Kong, Limited

18 Tak Fung Street, Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jovy.tam@erm.com

Ref/Project number

Contract No. HY/2012/07

Tuen Mun - Chek Lap Kok Link - Southern

Connection Viaduct Section

Subject

Notification of Exceedance for Marine Water

Quality Impact Monitoring

Date 29 May 2018

ERM

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance 0215660_25 May 2018_ Bottom-depth DO_E_Station IS8

A total of one exceedance was recorded on 25 May 2018.

Regards,

Mr Jovy Tam

Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

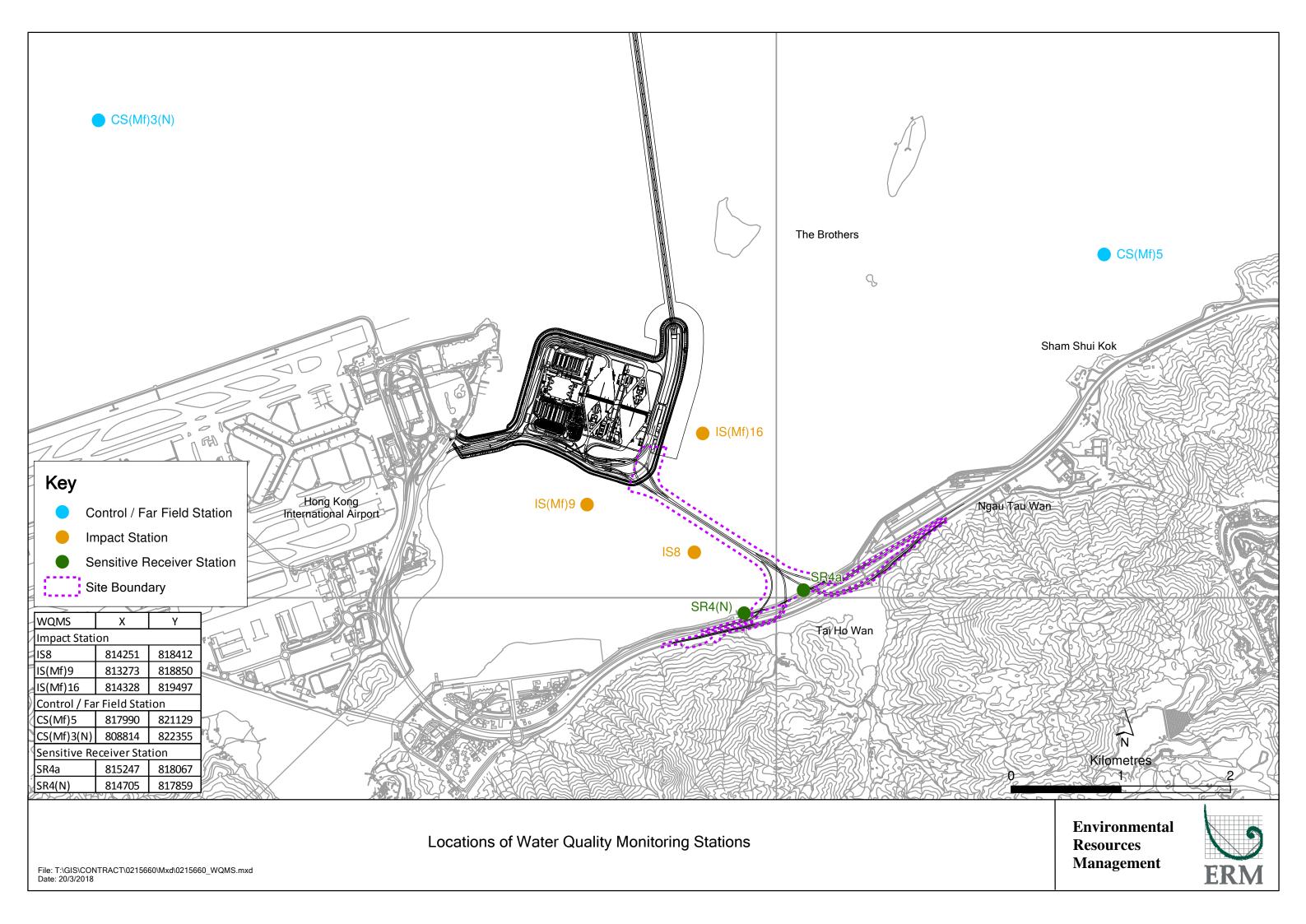
ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	Action Level Exceedance 0215660_25 May 2018_ Bottom-depth DO_E_Station IS8 [Total No. of Exceedances = 1] 25 May 2018 (Measured) 26 May 2018 (In situ results received by ERM)									
		2018 (Laboratory results received by ERM)								
Monitoring Station	CS(Mf)5,	SR4a, SR4, IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)								
Parameter(s) with Exceedance(s)	В	ottom-depth Dissolved Oxygen (DO)								
Action Levels for DO	Bottom-depth DO	$4.7\mathrm{mg/L}$								
Limit Levels for DO	Bottom-depth DO	3.6 mg/L								
Measured Levels	Action Level Exceedance 1. Mid-ebb at IS8 (Bottom-depth DO = 4.5mg/L)									
Works Undertaken (at the time of monitoring event)	No major marine works was undertaken under this Contract on 25 May 2018.									
Possible Reason for Action or Limit Level Exceedance(s)	 in view of the following: No marine works was un Apart from marginal DO compliance with the Action the same day. DO levels were generally reasons of natural variation. Natural ability for wastemperature in summed 2. The higher Salinity restratification of seaw. River tended to form responsible for the lotthe higher Salinity restratification of seaw. Of lower levels of DO 	ater to hold dissolved oxygen is reduced due to higher water mer months. ecorded at the bottom level of IS8 was possibly caused by the ater during summer when the freshwater discharged from the Pearl a surface layer of lower salinity water, which is probably ower Salinity recorded at the surface and middle levels compared to ecorded at the bottom level of the monitoring stations. The ater in the water column is likely a contributing factor to the results of at the bottom level.								
Actions Taken/To Be		ed necessary. The ET will monitor for future trends in								
Taken	exceedances.									
Remarks	The monitoring results on 25 Ma attached. Site photo record on 2	y 2018 and locations of water quality monitoring stations are 25 May 2018 is attached.								


Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)5	9:57	Surface	1	28.1	8.1	24.2	6.6		3.0		3.8	<u> </u>
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)5	9:57	Surface	2	28.1	8.1	24.0	6.8	6.5	3.1]	4.1	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)5	9:57	Middle	1	27.1	8.1	25.7	6.1	0.5	3.2	3.3	4.5	3.9
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)5	9:57	Middle	2	27.1	8.0	25.5	6.3		3.3	3.3	3.5	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)5	9:57	Bottom	1	26.5	8.0	30.5	5.0	5.1	3.6		3.7	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)5	9:57	Bottom	2	26.5	8.1	30.2	5.2	J.1	3.7		3.5	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)3(N)	11:11	Surface	1	29.5	8.0	18.1	7.2		2.9		4.1	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)3(N)	11:11	Surface	2	29.1	8.1	18.2	7.2	6.6	2.9		5.0	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)3(N)	11:11	Middle	1	28.9	7.9	21.4	5.9	0.0	5.9	5.5	6.5	5.6
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)3(N)	11:11	Middle	2	28.5	8.0	21.5	5.9		5.9	5.5	7.0	3.0
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)3(N)	11:11	Bottom	1	28.6	7.9	22.9	5.5	5.5	7.6		5.6	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	CS(Mf)3(N)	11:11	Bottom	2	28.2	7.9	23.0	5.5	5.5	7.9		5.1	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)16	10:28	Surface	1	28.6	8.2	23.5	7.2		4.5		2.8	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)16	10:28	Surface	2	28.6	8.2	23.0	7.2	7.2	4.6		2.9	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)16	10:28	Middle	1					7.2		5.3] ,,
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)16	10:28	Middle	2							5.5		3.3
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)16	10:28	Bottom	1	28.0	8.1	25.3	6.5	6.6	6.1		3.6	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)16	10:28	Bottom	2	28.0	8.1	25.1	6.6	0.0	6.1		4.0]
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4a	10:38	Surface	1	28.6	8.1	23.0	6.2		7.5		4.1	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4a	10:38	Surface	2	28.6	8.1	22.7	6.2	6.2	7.6		4.0	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4a	10:38	Middle	1					0.2		10.2		T.6
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4a	10:38	Middle	2							10.2		5.6
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4a	10:38	Bottom	1	27.8	8.0	26.0	5.1	5.1	12.8		6.2	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4a	10:38	Bottom	2	27.8	8.0	25.6	5.1	J.1	12.9		8.0	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4(N)	10:45	Surface	1	29.1	8.2	21.5	7.5		6.1		3.1	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4(N)	10:45	Surface	2	29.1	8.2	21.2	7.5	7.5	6.2		4.7	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4(N)	10:45	Middle	1					7.5		6.1		4.4
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4(N)	10:45	Middle	2							0.1] 4.4
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4(N)	10:45	Bottom	1	29.1	8.2	21.4	7.5	7.5	6.0		5.2	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	SR4(N)	10:45	Bottom	2	29.1	8.2	21.2	7.5	7.5	6.0		4.6	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS8	10:52	Surface	1	29.2	8.3	21.2	7.8		2.5		3.5	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS8	10:52	Surface	2	29.2	8.3	21.0	7.8	7.8	2.6		4.7	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS8	10:52	Middle	1					7.0		2.9		3.9
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS8	10:52	Middle	2							2.9] 3.9
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS8	10:52	Bottom	1	28.2	7.8	24.6	4.4	4.5	3.2	1	3.9	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS8	10:52	Bottom	2	28.2	7.8	24.2	4.5	4.5	3.2		3.5]
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)9	11:01	Surface	1	29.2	8.3	21.8	8.6		5.9		3.0	
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)9	11:01	Surface	2	29.1	8.3	21.6	8.6	8.6	5.9		2.5]
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)9	11:01	Middle	1							6.0		2.6
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)9	11:01	Middle	2									
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)9	11:01	Bottom	1	29.2	8.2	21.8	8.7	0 7	6.0		2.2]
TMCLKL	HY/2012/07	2018-05-25	Mid-Ebb	IS(Mf)9	11:01	Bottom	2	29.1	8.3	21.6	8.6	8.7	6.1		2.5	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)5	16:03	Surface	1	29.2	8.2	20.6	7.9		2.7	•	5.3	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)5	16:03	Surface	2	29.2	8.2	20.8	7.9	7.4	2.7		5.8	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)5	16:03	Middle	1	27.1	8.0	25.7	6.2	7.1	7.3	7	5.3] [
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)5	16:03	Middle	2	27.2	8.0	25.9	6.2		7.5	5.4	5.4	5.4
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)5	16:03	Bottom	1	26.8	7.9	29.0	5.7	го	6.0		5.1	1
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)5	16:03	Bottom	2	26.8	8.0	29.3	5.8	5.8	6.0	1	5.3	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)3(N)	14:55	Surface	1	29.8	8.1	16.8	8.0		5.8		4.8	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)3(N)	14:55	Surface	2	30.2	8.0	16.7	8.1	7.4	5.7		3.8	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)3(N)	14:55	Middle	1	29.0	8.0	19.1	6.8	7.4	4.3	40	5.0	4.8
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)3(N)	14:55	Middle	2	29.4	7.9	19.0	6.8		4.3	4.8	5.3	4.0
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)3(N)	14:55	Bottom	1	28.5	7.9	22.1	6.2	6.2	4.4		4.9	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	CS(Mf)3(N)	14:55	Bottom	2	28.9	7.9	22.1	6.2	0.2	4.2		5.1	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS(Mf)16	15:37	Surface	1	29.2	8.3	21.1	9.3		2.6		4.3	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS(Mf)16	15:37	Surface	2	29.2	8.3	21.3	9.3	9.3	2.6		4.4	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS(Mf)16	15:37	Middle	1					9.3		2.9		4.2
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS(Mf)16	15:37	Middle	2							2.9] 4.2
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS(Mf)16	15:37	Bottom	1	29.2	8.3	21.2	9.3	9.4	3.1		4.3]
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS(Mf)16	15:37	Bottom	2	29.2	8.3	21.5	9.4	5.4	3.2		3.8	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4a	15:27	Surface	1	29.0	8.2	21.1	8.4		6.4		6.2	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4a	15:27	Surface	2	29.0	8.3	21.4	8.4	8.4	6.6	↓	6.7	1
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4a	15:27	Middle	1					0.4		6.2		6.3
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4a	15:27	Middle	2							0.2		0.3
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4a	15:27	Bottom	1	28.0	8.0	25.3	6.7	6.7	5.8		7.2	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4a	15:27	Bottom	2	27.9	8.0	25.7	6.7	0.7	5.9		5.2	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4(N)	15:21	Surface	1	29.7	8.3	21.3	9.0		3.1		4.4	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4(N)	15:21	Surface	2	29.7	8.3	21.5	9.1	9.1	3.3		6.0	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4(N)	15:21	Middle	1					5.1		3.3		4.7
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:21	Middle	2							3.5]
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	SR4(N)	15:21	Bottom	1	29.7	8.3	21.3	9.0	9.1	3.3		4.3	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:21	Bottom	2	29.7	8.3	21.6	9.1	J.1	3.4		4.2	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS8	15:16	Surface	1	29.9	8.3	21.5	9.3		1.8		3.5	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS8	15:16	Surface	2	29.9	8.3	21.7	9.4	9.4	1.8		3.2	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS8	15:16	Middle	1					J. T		1.8		3.7
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS8	15:16	Middle	2							1.0] 3.,
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS8	15:16	Bottom	1	30.0	8.3	21.4	9.3	9.4	1.6		4.4	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:16	Bottom	2	30.0	8.3	21.6	9.4	J.T	1.8		3.7	
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:07	Surface	1]
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:07	Surface	2					9.1]		<u> </u>
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:07	Middle	1	30.0	8.3	21.6	9.0	5.1	1.7	1.8	2.3	2.8
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:07	Middle	2	30.0	8.3	21.8	9.1		1.8	1.0	3.2] -:-
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood		15:07	Bottom	1]
TMCLKL	HY/2012/07	2018-05-25	Mid-Flood	IS(Mf)9	15:07	Bottom	2									

Note: Indicates Exceedance of Action Level
Indicates Exceedance of Limit Level

Photo 1 - Mid-Ebb at IS8 on 25 May 2018

Email message **Environmental** Resources Management

To Ramboll Hong Kong, Limited (ENPO) 2507 25/F

From ERM- Hong Kong, Limited One Harbourfront 18 Tak Fung Street Hunghom

Kowloon Hong Kong

Ref/Project number Contract No. HY/2012/07 Tuen Mun-Chek Lap Kok Link-Southern Connection Viaduct Section

Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660

Subject Notification of Exceedance for Impact Dolphin E-mail: jasminé.ng@erm.com

Monitoring

Date 05 September 2018

Dear Sir or Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

0215660_Mar/May2018_dolphin_STG&ANI_NEL&NWL

A total of one limit level exceedance was recorded in the quarterly impact dolphin monitoring data between March and May 2018.

Regards,

Dr Jasmine Ng

Environmental Team Leader

CONFIDENTIALITY NOTICE

This email transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this email. If you are not the intended recipient, please telephone or fax us.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN - CHEK LAP KOK LINK SOUTHERN CONNECTION VIADUCT SECTION

Impact Dolphin Monitoring Notification of Exceedance

Log No.	0215660_Mar/May2018_dolphin_STG&ANI_NEL&NWL									
		[Total No. of Exceedance = 1]								
Date		March to May 2018 (monitored)								
	23 August 2018 (results received by ERM)									
Monitoring Area	Northeast	: Lantau (NEL) and Northwest Lantau (NWL)								
Parameter(s) with	Quarter	ly encounter rate of dolphin sightings (STG)								
Exceedance(s)	Quarterly en	ncounter rate of total number of dolphins (ANI)								
Action Levels		NEL: STG < 4.2 & ANI < 15.5								
		or NWL: STG < 6.9 & ANI < 31.3								
Limit Levels	North Lantau Social cluster	NEL: STG < 2.4 & ANI < 8.9								
		and								
		NWL: STG < 3.9 & ANI < 17.9								
Recorded Levels	NEL	STG = 0 & ANI = 0								
	NWL	STG = 2.88 & ANI = 11.12								
	One Limit Level Exceedance was recorded in the quarterly impact dolphin monitoring at NEL and									
	NWL between March and May 2018. The exceedance was reported in the approved <i>Fifty-fifth</i>									
	Monthly EM&A Report dated 13 J									
Statistical Analyses	Further to the review of the available and relevant dolphin monitoring data in the EM&A under this Contract, statistical analyses were conducted as follows:									
	A two-way ANOVA with repeated measures and unequal sample size was conducted using Period (2 levels: baseline vs impact – present impact quarter, March to May 2018) and									
	•	d NWL) as fixed factors to examine whether there were any								
	,	ne average encounter rates between the baseline and present impact								
	, and the second	etting α = 0.05 as the significance level in the statistical tests,								
	significant differences in S Periods.	TG (p = 0.0095) and ANI (p = 0.0390) were detected between								
	A two-way ANOVA with:	repeated measures and unequal sample size was conducted using								
	Cumulative Period (2 leve	ls: baseline vs impact - cumulative quarters, December 2012 to May								
	, ,	ls: NEL and NWL) as fixed factors to examine whether there were								
		in the average encounter rates between the baseline and cumulative								
		By setting $\alpha = 0.00001$ as the significance level in the statistical								
	Ü	e in STG ($p = 0.000000$) and in ANI ($p = 0.000000$) between ne and impact phases) and Location (NEL and NWL) were detected.								
	,	nt date under <i>Contract No. HY/2012/07</i> is 31 October 2013.								
Works Undertaken (in		ad May 2018, no marine works was undertaken under <i>Contract No.</i>								
the monitoring	HY/2012/07.									
quarter)	, , ,									
1										

Possible Reason for Action or Limit Level Exceedance(s)

The potential factors that may have contributed to the observed exceedance are reviewed below:

- Blocking of CWD travelling corridor:

 The *Monitoring of Marine Mammals in Hong Kong Waters* (2017 18) ⁽¹⁾ reported that dolphin usage and traveling activities to the northern side of the airport (dolphin traveling corridor) are affected by frequent high-speed ferry traffic from Sky Pier (not related to this Contract), which
- usage and traveling activities to the northern side of the airport (dolphin traveling corridor) are affected by frequent high-speed ferry traffic from Sky Pier (not related to this Contract), which is likely one of the factors resulting in the decrease in dolphin abundances in North Lantau.

 Marine works of the Contract:
 - As per the findings from the EIA report (Section 8.11.9), the major influences on the Chinese White Dolphin (CWD) Sousa chinensis under this Contract are marine traffics and bored piling works. The Monitoring of Marine Mammals in Hong Kong Waters (2017-2018) also reported that CWD decline were likely influenced by reclamation works, bored piling and intensive marine traffic from construction activities.

Based on these possible reasons, implementation of mitigation measures are reviewed. This Contract does not have any reclamation works, thus no habitat loss was caused by reclamation. In the reporting period, the Contractor implemented the marine traffic control as per the requirements in the *EP-354/2009/D* and the updated *EM&A Manual*. Most of the vessels of this Contract also worked within the site boundary, in which the area is seldom used by CWD. Disturbance from vessels of this Contract is considered minor. All of the marine bored piling works of this Contract was completed in September 2015. Thus, underwater noise emission from this Contract had been substantially reduced. During dolphin monitoring in this quarter, no unacceptable impact on CWD due to the activities under this Contract was observed.

• Impact on water quality:
According to the findings in the water quality monitoring results at the impact monitoring stations between March and May 2018, there were one (1) Action Level of Suspended Solids (SS) exceedances and one (1) Action Level of Dissolved Oxygen (DO) for water quality impact monitoring in the reporting period. The exceedances were considered not related to this Contract upon further investigation and the investigation reports are presented in *Appendix L* of the 18th Quarterly EM&A Report (March – May 2018).

In view of the above, marine ecological mitigation measures were considered properly implemented, and thus no unacceptable impact on CWD or its habitat was associated with this Contract in this quarter.

Actions Taken / To Be Taken

With reference to the site inspection records in this quarter, the respective marine ecological mitigation measures have been implemented properly by the Contractor throughout the marine works period, including:

- 1. 250m dolphin exclusion zone;
- 2. Acoustic decoupling plan;
- 3. Training to workers;
- 4. Offsite vessel routing control in accordance with Regular Marine Travel Routes Plan, including routing control within existing marine park boundaries;
- 5. Vessels speed limited at 5 knots and 10 knots within existing marine park boundaries and site boundary respectively;
- 6. Idling and mooring of working vessels within site boundary

The existing mitigation measures are recommended to be continuously implemented. Furthermore, it is also recommended to reduce the vessels for marine works as much as possible. The ET will monitor for future trends in exceedance(s).

A joint team meeting was held on 4 September 2018 for discussion on CWD trend, with attendance of ENPO, Representatives of Resident Site Staff (RSS), Representatives of Environmental Teams (ETs) for Contract No. HY/2013/01, HY/2011/03, HY/2012/07 and HY/2012/08. The discussion/recommendation as recorded in the minutes of the meeting, which might be relevant to this Contract are summarized below. It was concluded that the HZMB works is one of the contributing factors affecting the dolphins. It was also concluded the contribution of impacts due to the HZMB works as a whole (or individual marine contracts) cannot be quantified or separate from the other stress factors. It was reminded that the ETs shall keep reviewing the implementation status of the dolphin related mitigation measures and remind the contractors to ensure the relevant measures are fully implemented. It was recommended that the marine works of HZMB projects should be completed as soon as possible to reduce the overall duration of impacts and allow the dolphins population to recover as early as possible. The participants were also reminded that the protection measures (e.g. speed limit control) for the BMP shall be implemented so as to provide a better habitat for dolphin recovery. It is noted that even though marine vessels may moor within the mooring site of BMP, commercial activities including loading / unloading / transhipment are not allowed except a permit is obtained. The HZMB works vessels were recommended to avoid the BMP. It was also recommended that the marine works footprint and vessels for the marine works should be reduced as much as possible, and vessels idling / mooring in other part of the North Lantau shall be avoided whenever possible.

Dolphin specialists of the Projects confirmed that the CWD sighting nearby north of Sha Chau and Lung Kwu Chau Marine Park has significantly declined. The reason for the decline was likely related to the re-routing of high-speed ferry from Skypier.

Remarks

The results of impact water quality and impact dolphin monitoring, the status of implemented marine ecological mitigation measures are documented in the approved *Fifty-third* to *Fifty-fifth Monthly EM&A Reports*. Comparison on water quality between impact and baseline periods is elaborated in the *18th Quarterly EM&A Report*.