Appendix L

Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Appendix L1 Cumulative Statistics on Exceedances

		Total No. recorded in this quarter	Total No. recorded since project commencement
1-Hr TSP	Action	0	0
	Limit	0	1
24-Hr TSP	Action	0	2
	Limit	0	0
Noise	Action	0	0
	Limit	0	0
Water Quality	Action	48	224
	Limit	5	24
Impact Dolphin	Action	0	11
Monitoring	Limit	1	14

Appendix L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics										
_	Complaints	Notifications of Summons	Successful Prosecutions								
This quarter	0	0	0								
Total No. received since project commencement	14	0	0								

Email message

To From	Ramboll Hong Kong Limited (ENPO) ERM- Hong Kong, Limited	2507, 25/F One Harbourfront, 18 Tak Fung Street, Hung Hom, Hong Kong Telephone: (852) 2271 3113
Ref/Project number	Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section	Facsimile: (852) 2723 5660 E-mail: jasmine.ng@erm.com
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	2
Date	04 September 2018	ERM

Environmental Resources

Management

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_03 September 2018_ Surface and Middle-depth DO_E_Station IS(Mf)16 0215660_03 September 2018_ Bottom-depth DO_E_Station IS(Mf)16 0215660_03 September 2018_ Surface and Middle-depth DO_E_SR4(N) 0215660_03 September 2018_ Bottom-depth DO_E_Station SR4(N) 0215660_03 September 2018_ Surface and Middle-depth DO_E_Station IS8 0215660_03 September 2018_ Bottom-depth DO_E_Station IS8 0215660_03 September 2018_ Surface and Middle-depth DO_E_Station IS8 0215660_03 September 2018_ Surface and Middle-depth DO_E_Station IS(Mf)9 0215660_03 September 2018_ Bottom-depth DO_E_Station IS(Mf)9 0215660_03 September 2018_ Bottom-depth DO_F_Station IS(Mf)16 0215660_03 September 2018_ Bottom-depth DO_F_Station SR4a

A total of ten exceedances were recorded on 03 September 2018.

Regards,

famin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_03 September 0215660_03 Septer 0215660_03 Septer 0215660_03 September 0215660_03 September 0215660_03 September 0215660_03 September 0215660_03 Septer 0215660_03 Septer 0215660_03 Septer 0215660_03 Septer 0215660_03 Septer	<u>Action Level Exceedance</u> 0215660_03 September 2018_ Surface and Middle-depth DO_E_Station IS(Mf)16 0215660_03 September 2018_ Bottom-depth DO_E_Station IS(Mf)16 0215660_03 September 2018_ Surface and Middle-depth DO_E_SR4(N) 0215660_03 September 2018_ Bottom-depth DO_E_Station SR4(N) 0215660_03 September 2018_ Bottom-depth DO_E_Station IS8 0215660_03 September 2018_ Bottom-depth DO_E_Station IS8 0215660_03 September 2018_ Bottom-depth DO_E_Station IS(Mf)9 0215660_03 September 2018_ Bottom-depth DO_E_Station IS(Mf)9 0215660_03 September 2018_ Bottom-depth DO_F_Station IS(Mf)9 0215660_03 September 2018_ Bottom-depth DO_F_Station IS(Mf)16 0215660_03 September 2018_ Bottom-depth DO_F_Station SR4a [Total No. of Exceedance = 10]									
Date		03 September 2018 (Measured)									
	04 Septe	mber 2018 (<i>In situ</i> results received by ERM)									
Magitarian Station	07 Septem	ber 2018 (Laboratory results received by ERM)									
Nonitoring Station	CS(Mf)5,	5K4a, 5K4(N), 158, 15(Mf)16, 15(Mf)9, C5(Mf)3(N)									
Exceedance(s)	Sur	face and Middle-depth DO, Bottom DO									
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L									
	Bottom-depth DO	4.7 mg/L									
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L									
	Bottom-depth DO	3.6 mg/L									
Measured Levels	Please refer to the attached data.										
Works Undertaken (at the time of monitoring event)	Demolition of marine platform w 2018.	vas undertaken at Viaduct E under this Contract on 03 September									
Possible Reason for	The exceedances of DO are unlik	ely to be due to the Project, in view of the following									
Action or Limit Level	All monitored parameters, ex	ccept DO, at all monitoring stations were in compliance with the									
Exceedance(s)	Action and Limit Levels duri	ng both mid-ebb and mid-flood tides on the same day.									
	Surface and Middle-depth an	id Bottom-depth DO levels during mid-ebb tide at IS(Mf)16, SR4(N),									
	158 and 15(MI)9 were similar	to the upstream control station CS(MI)3(N), in which the recorded									
	Low Bottom-depth DO durin	a both mid-ebh and mid-flood tide is likely due to relatively higher									
	• Low Bottom-depth DO during both mid-ebb and mid-flood tide is likely due to relatively higher Salinity recorded at the bottom level which was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the										
	monitoring stations.No particular observation wa	as reported at IS(Mf)16, SR4a, SR4(N), IS8 and IS(Mf)9.									
Actions Taken / To Be	No immediate action is consider	ed necessary. The ET will monitor for future trends in									
Taken	exceedances.										
Remarks	The monitoring results on 03 Sep attached. Site photo record on	otember 2018 and locations of water quality monitoring stations are 03 September 2018 is attached.									

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)5	5:27	Surface	1	27.9	7.9	14.9	4.9		1.6		2.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)5	5:27	Surface	2	27.9	7.9	15.1	4.9	47	3.3		3.3	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)5	5:27	Middle	1	27.3	8.0	20.0	4.4	4.7	2.5	2.4	4.7	2 7
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)5	5:27	Middle	2	27.3	8.0	20.3	4.4		3.8	5.4	5.3	5./
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)5	5:27	Bottom	1	25.7	8.0	27.5	4.0	4.0	4.9		2.6	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)5	5:27	Bottom	2	25.7	8.0	27.9	4.0	4.0	4.3		3.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)3(N)	5:54	Surface	1	28.2	7.7	13.7	4.5		4.3		6.2	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)3(N)	5:54	Surface	2	28.1	7.7	13.7	4.5	лл	4.0		3.9	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)3(N)	5:54	Middle	1	27.5	7.8	19.9	4.2	4.4	8.1	6.9	6.0	5 5
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)3(N)	5:54	Middle	2	27.4	7.8	20.1	4.2		8.0	0.9	6.0	5.5
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)3(N)	5:54	Bottom	1	27.3	7.8	21.0	4.3	12	8.6		5.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	CS(Mf)3(N)	5:54	Bottom	2	27.2	7.8	21.1	4.3	4.5	8.4		5.2	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)16	5:58	Surface	1	27.6	7.9	19.3	4.3		2.7		3.9	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)16	5:58	Surface	2	27.6	7.9	19.5	4.3	10	4.4		4.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)16	5:58	Middle	1					4.5		2 5		2.0
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)16	5:58	Middle	2							5.5		5.9
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)16	5:58	Bottom	1	27.4	7.9	20.2	4.2	4.2	3.6		3.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)16	5:58	Bottom	2	27.4	7.9	20.5	4.2	4.2	3.3		3.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4a	6:09	Surface	1	27.3	8.0	16.2	6.3		3.4		4.1	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4a	6:09	Surface	2	27.4	8.0	16.4	6.3	6.2	4.1		3.2	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4a	6:09	Middle	1					0.5		2.2		2.0
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4a	6:09	Middle	2							5.5		5.9
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4a	6:09	Bottom	1	27.2	8.0	16.4	6.4	6.4	2.5		3.6	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4a	6:09	Bottom	2	27.2	8.0	16.6	6.4	0.4	3.1		4.8	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4(N)	6:14	Surface	1	27.7	7.9	17.4	4.3		3.7		5.1	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4(N)	6:14	Surface	2	27.8	7.9	17.6	4.3	4.2	4.2		6.0	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4(N)	6:14	Middle	1					4.5		1.2		6.4
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4(N)	6:14	Middle	2							4.2		0.4
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4(N)	6:14	Bottom	1	27.7	7.9	18.8	4.2	4.2	4.2		7.2	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	SR4(N)	6:14	Bottom	2	27.7	7.9	19.0	4.2	4.2	4.8		7.1	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS8	6:20	Surface	1	27.7	7.9	17.2	4.7		4.9		2.0	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS8	6:20	Surface	2	27.7	7.9	17.6	4.6	47	3.6		2.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS8	6:20	Middle	1					4.7		11		2.4
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS8	6:20	Middle	2							4.1		2.4
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS8	6:20	Bottom	1	27.6	7.9	19.6	4.2	4.2	4.5		2.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS8	6:20	Bottom	2	27.6	7.9	19.7	4.1	4.2	3.3		2.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)9	6:28	Surface	1	27.8	7.9	16.7	4.9		1.8		2.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)9	6:28	Surface	2	27.8	7.9	17.0	4.9	4.0	3.5		3.0]
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)9	6:28	Middle	1					4.9		2.2		21
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)9	6:28	Middle	2							5.5] 3.1
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)9	6:28	Bottom	1	27.8	7.9	17.9	4.4	4.4	4.0		3.8]
TMCLKL	HY/2012/07	2018-09-03	Mid-Ebb	IS(Mf)9	6:28	Bottom	2	27.8	7.9	18.2	4.4	4.4	3.9		2.9	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)5	12:58	Surface	1	28.1	7.9	16.6	4.7		3.1		3.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)5	12:58	Surface	2	28.2	7.9	16.6	4.8	. 1	2.2		4.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)5	12:58	Middle	1	25.9	8.0	26.7	3.5	4.1	2.0	4.2	3.8	4.2
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)5	12:58	Middle	2	25.9	8.0	26.9	3.5		3.3	4.2	4.7	4.2
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)5	12:58	Bottom	1	24.6	8.0	31.1	3.4	2.4	7.2		4.3	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)5	12:58	Bottom	2	24.7	8.0	31.4	3.4	5.4	7.1		4.2	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)3(N)	11:47	Surface	1	28.6	7.5	8.6	4.4		6.1		6.5	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)3(N)	11:47	Surface	2	28.6	7.5	8.5	4.4		5.9		5.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)3(N)	11:47	Middle	1	28.3	7.6	9.7	4.4	4.4	5.7	F 0	5.7	6.0
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)3(N)	11:47	Middle	2	28.2	7.6	9.9	4.4		5.5	5.9	5.9	6.0
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)3(N)	11:47	Bottom	1	27.9	7.6	16.6	4.2	4.2	6.3		4.8	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	CS(Mf)3(N)	11:47	Bottom	2	27.9	7.6	16.7	4.2	4.2	5.9		7.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)16	12:31	Surface	1	27.9	7.9	15.2	5.2		5.3		5.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)16	12:31	Surface	2	28.0	7.9	15.3	5.2	F 2	5.3		4.1	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)16	12:31	Middle	1					5.2		11.0		C 1
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)16	12:31	Middle	2							11.8		0.1
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)16	12:31	Bottom	1	27.6	7.9	18.7	4.6	1.6	18.6		6.5	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)16	12:31	Bottom	2	27.7	7.9	19.0	4.5	4.0	18.0		8.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4a	12:21	Surface	1	28.2	7.8	13.5	5.1		7.6		2.8	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4a	12:21	Surface	2	28.2	7.9	13.6	5.1	Γ 1	6.8		3.4	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4a	12:21	Middle	1					5.1		0.0		2.0
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4a	12:21	Middle	2							9.0		3.8
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4a	12:21	Bottom	1	27.8	7.8	19.1	4.3	4.2	11.0		4.5	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4a	12:21	Bottom	2	27.8	7.9	19.2	4.2	4.5	10.6		4.5	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4(N)	12:16	Surface	1	28.4	7.9	14.0	5.2		4.2		5.6	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4(N)	12:16	Surface	2	28.4	7.9	14.1	5.2	5.2	4.6		5.6	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4(N)	12:16	Middle	1					5.2		F 7		4.0
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4(N)	12:16	Middle	2							5.7		4.8
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4(N)	12:16	Bottom	1	28.0	7.9	17.1	4.9	F 0	7.0		5.1	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	SR4(N)	12:16	Bottom	2	28.0	7.9	17.1	5.0	5.0	7.1		2.7	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS8	12:11	Surface	1	28.1	7.9	13.9	5.0		6.2		2.6	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS8	12:11	Surface	2	28.2	7.9	14.0	5.0	F 0	6.1		3.5	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS8	12:11	Middle	1					5.0		7.2		20
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS8	12:11	Middle	2							7.5		2.8
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS8	12:11	Bottom	1	28.0	7.9	16.2	4.9	1.0	8.7		2.5	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS8	12:11	Bottom	2	28.0	7.9	16.4	4.9	4.9	8.3		2.6	
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)9	12:03	Surface	1									
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)9	12:03	Surface	2					F 1				
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)9	12:03	Middle	1	27.9	7.9	16.8	5.1	5.1	7.1	7 0	5.0	1.6
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)9	12:03	Middle	2	28.0	7.9	17.0	5.1		7.2	1.2	4.2	4.0
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)9	12:03	Bottom	1									
TMCLKL	HY/2012/07	2018-09-03	Mid-Flood	IS(Mf)9	12:03	Bottom	2									

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Ebb at IS(Mf)16 on 03 September 2018

Photo 2 - Mid-ebb at SR4(N) on 03 September 2018

Photo 3 - Mid-ebb at IS8 on 03 September 2018

Photo 4 - Mid-ebb at IS(Mf)9 on 03 September 2018

Photo 5 - Mid-Flood at IS(Mf)16 on 03 September 2018

Photo 6 - Mid-Flood at SR4a on 03 September 2018

Email message

		Management
То	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660
Ref/Project number	Contract No. HY/2012/07	E-mail: jasmine.ng@erm.com
	Tuen Mun - Chek Lap Kok Link - Southern	
	Connection Viaduct Section	
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	
Date	06 September 2018	ERM

Environmental Resources

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance 0215660_05 September 2018_ Bottom-depth DO_E_Station IS(Mf)16 0215660_05 September 2018_ Bottom-depth DO_E_Station SR4a 0215660_05 September 2018_ Surface and Middle-depth DO_E_SR4(N) 0215660_05 September 2018_ Bottom-depth DO_F_Station SR4a

Limit Level Exceedance 0215660_05 September 2018_ Bottom-depth DO_E_Station SR4(N)

A total of five exceedances were recorded on 05 September 2018.

Regards,

famin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_05 Sept 0215660_05 Sep 0215660_05 Septen 0215660_05 Sep 0215660_05 Sept	<u>Action Level Exceedance</u> ember 2018_ Bottom-depth DO_E_Station IS(Mf)16 ptember 2018_ Bottom-depth DO_E_Station SR4a nber 2018_ Surface and Middle-depth DO_E_SR4(N) ptember 2018_ Bottom-depth DO_F_Station SR4a <u>Limit Level Exceedance</u> tember 2018_ Bottom-depth DO_E_Station SR4(N) [Total No. of Exceedance = 5]							
Date		05 September 2018 (Measured)							
	06 Septe	ember 2018 (In situ results received by ERM)							
	10 Septem	ber 2018 (Laboratory results received by ERM)							
Monitoring Station	CS(Mf)5,	SR4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)							
Parameter(s) with Exceedance(s)	Sur	face and Middle-depth DO, Bottom DO							
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L							
	Bottom-depth DO	4.7 mg/L							
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L							
	Bottom-depth DO	3.6 mg/L							
Measured Levels	Refer to the attached data.								
Works Undertaken (at the time of monitoring event)	Demolition of marine platform w 2018.	vas undertaken at Viaduct E under this Contract on 05 September							
Possible Reason for	The exceedances of DO are unlik	ely to be due to the Project, in view of the following							
Action or Limit Level	All monitored parameters, ex	ccept DO, at all monitoring stations were in compliance with the							
Exceedance(s)	Action and Limit Levels duri	ng both mid-ebb and mid-flood tides on the same day.							
	 Apart from marginal exceeda and Middle-depth DO at all r Levels during both tides. 	ance of Surface and Middle-depth DO level at SR4(N), all Surface monitoring stations were in compliance with the Action and Limit							
	• Low Bottom-depth DO during both mid-ebb and mid-flood tide is likely due to relatively higher Salinity recorded at the bottom level which was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations.								
	No particular observation wa	as reported at IS(Mf)16, SR4a and SR4(N).							
Actions Taken / To Be	No immediate action is considere	ed necessary. The ET will monitor for future trends in							
Taken Domarka	exceedances.								
Kemarks	attached. Site photo record on (05 September 2018 is attached.							

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)5	8:26	Surface	1	28.3	7.9	14.6	5.3		3.0		2.6	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)5	8:26	Surface	2	28.3	7.9	14.6	5.2	5.2	2.9		2.6	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)5	8:26	Middle	1	28.3	7.9	14.9	5.1	5.2	3.0	2 7	2.0	2.2
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)5	8:26	Middle	2	28.3	7.9	14.9	5.1		2.8	2.7	1.9	2.5
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)5	8:26	Bottom	1	26.1	8.0	26.3	4.1	<i>I</i> 1	2.6		2.1	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)5	8:26	Bottom	2	26.1	8.0	26.3	4.0	4.1	1.6		2.3	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)3(N)	9:47	Surface	1	28.9	7.7	10.7	5.6		8.8		2.5	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)3(N)	9:47	Surface	2	28.9	7.8	10.8	5.6	5.2	8.7		1.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)3(N)	9:47	Middle	1	28.3	7.8	14.3	4.7	5.2	8.2	8.4	1.0	10
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)3(N)	9:47	Middle	2	28.4	7.8	14.3	4.7		8.1	0.4	1.4	1.5
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)3(N)	9:47	Bottom	1	27.3	7.7	21.9	4.9	5.0	8.2		2.3	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	CS(Mf)3(N)	9:47	Bottom	2	27.2	7.7	22.6	5.0	5.0	8.1		2.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)16	8:57	Surface	1	28.8	8.0	13.9	5.6		3.7		3.0	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)16	8:57	Surface	2	28.9	8.0	13.9	5.6	5.6	3.1		2.6	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)16	8:57	Middle	1					5.0		4 9		25
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)16	8:57	Middle	2							4.5		2.5
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)16	8:57	Bottom	1	27.5	7.8	20.1	3.7	37	6.7		2.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)16	8:57	Bottom	2	27.6	7.9	20.1	3.7	5.7	6.1		2.0	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4a	9:06	Surface	1	28.9	7.9	13.1	5.6		4.5		1.7	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4a	9:06	Surface	2	28.9	8.0	13.1	5.6	5.6	3.7		2.3	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4a	9:06	Middle	1					5.0		6.9		25
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4a	9:06	Middle	2							0.5		2.5
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4a	9:06	Bottom	1	27.6	7.8	19.5	3.8	3.8	9.5		2.9	-
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4a	9:06	Bottom	2	27.6	7.8	19.5	3.8	5.0	9.7		3.1	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4(N)	9:14	Surface	1	28.9	7.9	13.7	4.9		7.2		1.2	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4(N)	9:14	Surface	2	28.9	7.9	13.7	4.9	4 9	6.5		2.1	_
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4(N)	9:14	Middle	1					т.у		12.8		2.6
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4(N)	9:14	Middle	2							12.0		2.0
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4(N)	9:14	Bottom	1	27.8	7.7	18.9	3.0	3.0	18.7		3.3	_
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	SR4(N)	9:14	Bottom	2	27.8	7.8	18.9	3.0	5.0	18.9		3.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS8	9:20	Surface	1	29.1	7.9	14.2	5.6		4.8		2.2	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS8	9:20	Surface	2	29.1	8.0	14.2	5.5	5.6	4.0		1.4	_
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS8	9:20	Middle	1					5.0		47		1.8
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS8	9:20	Middle	2							7.7		1.0
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS8	9:20	Bottom	1	28.7	7.9	15.4	5.1	5 1	5.3		1.0	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS8	9:20	Bottom	2	28.8	7.9	15.4	5.0	J.1	4.8		2.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)9	9:27	Surface	1	29.1	7.9	14.0	5.8		3.7		2.3	1
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)9	9:27	Surface	2	29.1	8.0	14.0	5.8	5 x	2.7		2.9	1
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)9	9:27	Middle	1					5.0		35		22
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)9	9:27	Middle	2							5.5		2.2
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)9	9:27	Bottom	1	28.9	7.9	14.8	5.4	5 /	4.1		1.7	1
TMCLKL	HY/2012/07	2018-09-05	Mid-Ebb	IS(Mf)9	9:27	Bottom	2	29.0	8.0	14.8	5.4	5.7	3.4		2.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)5	16:19	Surface	1	29.7	8.1	12.4	7.0		2.7		1.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)5	16:19	Surface	2	29.7	8.2	13.1	7.0		2.2		1.2	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)5	16:19	Middle	1	26.1	7.9	25.7	3.8	5.4	4.3	47	2.5	2.1
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)5	16:19	Middle	2	26.1	8.0	25.7	3.8		4.0	4.7	2.8	2.1
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)5	16:19	Bottom	1	24.6	8.0	31.2	3.5	3 5	7.3		2.3	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)5	16:19	Bottom	2	24.6	8.0	31.2	3.4	3.5	7.8		2.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)3(N)	15:03	Surface	1	30.0	7.7	8.1	6.1		5.9		4.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)3(N)	15:03	Surface	2	29.9	7.8	8.2	6.1		5.3		4.6	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)3(N)	15:03	Middle	1	28.5	7.7	12.9	4.8	5.5	8.1	7.0	4.9	4 7
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)3(N)	15:03	Middle	2	28.5	7.7	12.9	4.8		8.2	7.0	5.8	4./
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)3(N)	15:03	Bottom	1	27.8	7.6	16.8	5.0	E O	7.5		4.6	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	CS(Mf)3(N)	15:03	Bottom	2	27.8	7.7	16.7	5.0	5.0	7.1		4.0	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)16	15:41	Surface	1	29.4	8.1	13.7	7.1		6.3		5.0	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)16	15:41	Surface	2	29.4	8.2	13.7	7.2	7.2	6.6		5.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)16	15:41	Middle	1					7.2		C F		4.0
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)16	15:41	Middle	2							0.5		4.8
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)16	15:41	Bottom	1	28.5	7.9	15.7	5.3	F 2	6.3		3.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)16	15:41	Bottom	2	28.5	8.0	15.8	5.3	5.3	6.8		5.0	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4a	15:31	Surface	1	30.3	8.2	13.1	7.3		6.6		6.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4a	15:31	Surface	2	30.3	8.3	13.1	7.4	74	6.1		5.3	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4a	15:31	Middle	1					7.4		10.0		F 0
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4a	15:31	Middle	2							10.9		5.9
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4a	15:31	Bottom	1	28.2	7.8	17.5	4.0	1.0	15.7		5.2	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4a	15:31	Bottom	2	28.3	7.8	17.5	4.0	4.0	15.0		6.1	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4(N)	15:26	Surface	1	29.7	8.0	13.3	7.0		6.0		5.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4(N)	15:26	Surface	2	29.8	8.1	13.3	6.9	7.0	5.1		5.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4(N)	15:26	Middle	1					7.0		6.9		5.6
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4(N)	15:26	Middle	2							0.8		5.0
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4(N)	15:26	Bottom	1	29.3	8.0	13.9	6.3	6.2	8.1		5.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	SR4(N)	15:26	Bottom	2	29.3	8.1	13.9	6.3	0.3	8.1		5.3	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS8	15:20	Surface	1	29.7	8.1	13.3	7.0		5.1		6.0	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS8	15:20	Surface	2	29.7	8.1	13.3	7.0	7.0	5.5		5.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS8	15:20	Middle	1					7.0		6.2		6.2
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS8	15:20	Middle	2							0.5		0.5
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS8	15:20	Bottom	1	29.4	8.1	13.5	6.7	67	7.3		7.4	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS8	15:20	Bottom	2	29.5	8.1	13.5	6.7	0.7	7.2		5.8	
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)9	15:13	Surface	1									
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)9	15:13	Surface	2					68				
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)9	15:13	Middle	1	29.5	8.1	13.9	6.7	0.0	6.3	61	4.9	10
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)9	15:13	Middle	2	29.6	8.2	13.8	6.8		6.5	0.4	4.9	4.3
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)9	15:13	Bottom	1									
TMCLKL	HY/2012/07	2018-09-05	Mid-Flood	IS(Mf)9	15:13	Bottom	2									

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT IS(MF)16, SR4A AND SR4(N) ON 05 SEPTEMBER 2018

Photo 1 - Mid-Ebb at IS(Mf)16 on 05 September 2018

Photo 2 - Mid-Ebb at SR4a on 05 September 2018

Photo 3 - Mid-Ebb at SR4(N) on 05 September 2018

CONTRACT NO. HY/2012/07 - WQM SITE PHOTOS AT IS(MF)16, SR4A AND SR4(N) ON 05 SEPTEMBER 2018

Photo 4 - Mid-Flood at SR4a on 05 September 2018

Email message

0		Management
То	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660
Ref/Project number	Contract No. HY/2012/07	E-mail: jasmine.ng@erm.com
	Tuen Mun - Chek Lap Kok Link - Southern	
	Connection Viaduct Section	
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	
Date	10 September 2018	ERM

Environmental

Resources

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance 0215660_07 September 2018_ Bottom-depth DO_E_Station IS(Mf)16 0215660_07 September 2018_ Bottom-depth DO_E_Station SR4a 0215660_07 September 2018_ Surface and Middle-depth DO_E_SR4(N) 0215660_07 September 2018_ Bottom-depth DO_E_Station SR4(N) 0215660_07 September 2018_ Bottom-depth DO_F_Station SR4a

<u>Limit Level Exceedance</u> 0215660_07 September 2018_ Bottom-depth DO_E_Station IS8

A total of six exceedances were recorded on 07 September 2018.

Regards,

famin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_07 Septe 0215660_07 Sep 0215660_07 Septen 0215660_07 Sept 0215660_07 Sep 0215660_07 Sep	Action Level Exceedance ember 2018_ Bottom-depth DO_E_Station IS(Mf)16 otember 2018_ Bottom-depth DO_E_Station SR4a nber 2018_ Surface and Middle-depth DO_E_SR4(N) tember 2018_ Bottom-depth DO_E_Station SR4(N) otember 2018_ Bottom-depth DO_F_Station SR4a <u>Limit Level Exceedance</u> optember 2018_ Bottom-depth DO_E_Station IS8 [Total No. of Exceedance = 6]								
Date		07 September 2018 (Measured)								
	08 Septe	mber 2018 (In situ results received by ERM)								
	17 Septemb	per 2018 (Laboratory results received by ERM)								
Monitoring Station	CS(Mf)5, SF	{4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)								
Parameter(s) with Exceedance(s)	Surf	face and Middle-depth DO, Bottom DO								
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L								
	Bottom-depth DO	4.7 mg/L								
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L								
	Bottom-depth DO	3.6 mg/L								
Measured Levels	Refer to the attached data.									
Works Undertaken (at	Demolition of marine platform w	vas undertaken at Viaduct E under this Contract on 07 September								
the time of monitoring	2018.									
Possible Reason for	The exceedences of DO are unlik	aly to be due to the Project in view of the following								
Action or Limit Level	All monitored parameters ex	ccept DO at all monitoring stations were in compliance with the								
Exceedance(s)	Action and Limit Levels duri:	ng both mid-ebb and mid-flood tides on the same day.								
	• Bottom-depth DO levels at IS	(Mf)16, SR4a, SR4(N) and IS8 were similar to the corresponding								
	control stations, CS(Mf)3(N) a which the recorded Bottom-d Action Level.	and CS(Mf)5, during mid-ebb and mid-flood tides respectively, in lepth DO levels at the corresponding control stations were below								
	 Low Bottom-depth DO durin Salinity recorded at the bottom during summer when the free layer of lower salinity water, surface and middle levels cor monitoring stations. Surface and Middle-depth DO 	 Low Bottom-depth DO during both mid-ebb and mid-flood tide is likely due to relatively higher Salinity recorded at the bottom level which was possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. Surface and Middle depth DO level at SP4(N) was servered by with the surface response to the surface servered by the station. 								
	 station CS(Mf)3(N) at mid-eb Level. No particular observation was 	b tide where the surface and middle-depth DO was below Action as reported at IS(Mf)16, SR4a, SR4(N) and IS8.								
Actions Taken / To Be	No immediate action is consider	ed necessary The ET will monitor for future trends in								
Taken	exceedances.	in the first manual for future defies in								

Remarks	The monitoring results on 07 September 2018 and locations of water quality monitoring stations are
	attached. Site photo record on 07 September 2018 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)5	10:36	Surface	1	27.8	8.1	20.8	5.3		2.8	-	3.6	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)5	10:36	Surface	2	27.8	8.1	21.1	5.3	47	3.0		4.0	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)5	10:36	Middle	1	26.5	8.0	25.5	4.1	4.7	4.5	6.0	6.1	5.0
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)5	10:36	Middle	2	26.5	8.1	25.5	4.1		4.3	6.0	5.6	5.9
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)5	10:36	Bottom	1	25.2	8.0	29.8	3.9	2.0	10.3		8.0	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)5	10:36	Bottom	2	25.3	8.1	29.7	3.8	3.9	10.9		8.2	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)3(N)	11:48	Surface	1	28.4	8.0	17.5	4.8		8.8		5.0	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)3(N)	11:48	Surface	2	28.4	7.9	17.7	4.8	16	8.4		5.4	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)3(N)	11:48	Middle	1	27.7	8.0	20.0	4.3	4.0	9.0	10.4	5.8	F 0
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)3(N)	11:48	Middle	2	27.6	7.9	20.2	4.3		9.6	10.4	5.5	5.9
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)3(N)	11:48	Bottom	1	27.0	8.0	23.2	4.1	4.1	13.1		6.4	Ī
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	CS(Mf)3(N)	11:48	Bottom	2	27.0	7.9	23.5	4.1	4.1	13.2		7.2	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)16	11:09	Surface	1	27.9	8.1	21.8	5.0		4.4		5.8	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)16	11:09	Surface	2	27.9	8.2	21.8	5.0	F 0	4.2		5.5	Ī
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)16	11:09	Middle	1					5.0		7 5		6.4
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)16	11:09	Middle	2							7.5		0.4
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)16	11:09	Bottom	1	26.9	7.9	25.0	3.6	26	11.0		7.1	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)16	11:09	Bottom	2	26.9	8.0	25.0	3.6	5.0	10.4		7.0	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4a	11:17	Surface	1	28.3	8.1	20.0	5.5		3.2		3.8	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4a	11:17	Surface	2	28.3	8.2	20.0	5.5	F F	3.4		3.7	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4a	11:17	Middle	1					5.5		10.0		4.7
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4a	11:17	Middle	2							10.0		4.7
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4a	11:17	Bottom	1	27.0	7.9	23.6	3.6	26	16.4		5.4	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4a	11:17	Bottom	2	27.1	8.0	23.6	3.6	5.0	16.8		5.7	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4(N)	11:23	Surface	1	27.8	8.0	21.4	4.3		8.6		7.9	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4(N)	11:23	Surface	2	27.8	8.0	21.3	4.3	12	8.1		8.4	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4(N)	11:23	Middle	1					4.5		0.0		0 1
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4(N)	11:23	Middle	2							5.0		0.1
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4(N)	11:23	Bottom	1	27.2	7.9	23.0	3.7	27	9.4		7.9	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	SR4(N)	11:23	Bottom	2	27.2	8.0	23.0	3.6	5.7	10.0		8.2	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS8	11:29	Surface	1	28.5	8.1	20.3	5.7		4.7		6.3	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS8	11:29	Surface	2	28.5	8.2	20.4	5.7	5 7	4.5		5.9	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS8	11:29	Middle	1					5.7		9.6		6.2
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS8	11:29	Middle	2							5.0		0.2
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS8	11:29	Bottom	1	27.3	7.9	23.3	3.5	25	14.5		6.3	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS8	11:29	Bottom	2	27.3	8.0	23.3	3.5	5.5	14.5		6.2	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)9	11:38	Surface	1	28.8	8.2	19.4	6.6		3.3		4.6	
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)9	11:38	Surface	2	28.9	8.3	19.4	6.7	67	4.0		4.7	l l
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)9	11:38	Middle	1					0.7		61		51
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)9	11:38	Middle	2							0.1		5.4
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)9	11:38	Bottom	1	27.8	8.0	21.2	4.7	A 7	8.1		6.0	ļ
TMCLKL	HY/2012/07	2018-09-07	Mid-Ebb	IS(Mf)9	11:38	Bottom	2	27.9	8.1	21.2	4.7	4.7	9.0		6.3	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)5	18:14	Surface	1	27.1	8.1	24.4	5.1		2.3		6.4	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)5	18:14	Surface	2	27.1	8.1	24.3	5.1	4.8	2.8		6.0	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)5	18:14	Middle	1	25.7	8.0	28.9	4.4	4.0	4.0	ΕĴ	6.0	6.0
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)5	18:14	Middle	2	25.8	8.1	28.8	4.4		4.7	5.2	6.4	0.9
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)5	18:14	Bottom	1	25.2	8.0	29.8	3.6	3.6	8.8		8.3	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)5	18:14	Bottom	2	25.2	8.1	29.8	3.6	5.0	8.4		8.0	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)3(N)	16:47	Surface	1	29.3	7.7	12.0	5.2		5.8		5.0	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)3(N)	16:47	Surface	2	29.3	7.8	12.0	5.2	5 1	5.4		5.4	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)3(N)	16:47	Middle	1	29.2	7.7	13.0	5.0	5.1	5.9	5 9	5.7	5.8
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)3(N)	16:47	Middle	2	29.2	7.8	12.9	5.0		5.5	5.5	5.8	5.6
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)3(N)	16:47	Bottom	1	28.4	7.7	16.0	4.8	4.8	6.5		6.3	_
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	CS(Mf)3(N)	16:47	Bottom	2	28.4	7.8	15.7	4.8		6.3		6.5	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)16	17:45	Surface	1	28.6	8.2	20.4	7.2		4.1		7.8	_
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)16	17:45	Surface	2	28.6	8.3	20.3	7.2	7.2	4.6		8.3	_
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)16	17:45	Middle	1					, . <u>_</u>		7.0		84
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)16	17:45	Middle	2							7.0		0.1
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)16	17:45	Bottom	1	27.6	8.0	22.4	5.1	5.1	9.4		8.8	-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)16	17:45	Bottom	2	27.6	8.1	22.3	5.1		9.8		8.7	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4a	17:34	Surface	1	29.0	8.1	18.0	6.5		6.9		6.1	-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4a	17:34	Surface	2	29.0	8.2	18.0	6.5	6.5	7.2		5.9	-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4a	17:34	Middle	1							11.2		8.9
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4a	17:34	Middle	2									0.5
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4a	17:34	Bottom	1	27.4	8.0	23.0	4.3	4.3	15.7		11.9	-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4a	17:34	Bottom	2	27.5	8.0	23.0	4.3		15.1		11.5	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4(N)	17:29	Surface	1	28.9	8.2	18.4	6.7		5.8		6.3	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4(N)	17:29	Surface	2	28.9	8.3	18.4	6.8	6.8	5.3		6.5	-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4(N)	17:29	Middle	1							7.6		6.9
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4(N)	17:29	Middle	2									
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4(N)	17:29	Bottom	1	28.9	8.2	19.5	7.3	7.3	9.3		7.4	-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	SR4(N)	17:29	Bottom	2	28.9	8.3	19.4	7.3		9.8		7.2	
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS8	17:23	Surface	1									-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS8	17:23	Surface	2					6.4				-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS8	17:23	Middle	1	28.6	8.1	19.3	6.4	-	9.4	9.3	8.3	8.2
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS8	17:23	Middle	2	28.6	8.2	19.2	6.4		9.1		8.1	-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS8	17:23	Bottom	1									-
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS8	17:23	Bottom	2									
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)9	17:14	Surface	1									4
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)9	17:14	Surface	2					7.2				4
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)9	17:14	Middle	1	28.5	8.2	20.7	7.2		11.1	11.2	8.5	8.9
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)9	17:14	Middle	2	28.6	8.3	20.6	7.2		11.3		9.2	4
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)9	17:14	Bottom	1			ļ						4
TMCLKL	HY/2012/07	2018-09-07	Mid-Flood	IS(Mf)9	17:14	Bottom	2									

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Ebb at IS(Mf)16 on 7 September 2018

Photo 2 - Mid-Ebb at SR4a on 7 September 2018

Photo 3 - Mid-Ebb at SR4(N) on 7 September 2018

Photo 4 - Mid-Ebb at IS8 on 7 September 2018

Photo 5 - Mid-Flood at SR4a on 7 September 2018

Email message

То	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660
Ref/Project number	Contract No. HY/2012/07 Tuen Mun - Chek Lap Kok Link - Southern Connection Viaduct Section	E-mail: jasmine.ng@erm.com
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	
Date	12 September 2018	ERM

Environmental Resources

Management

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_10 September 2018_ Bottom-depth DO_E_Station IS(Mf)16
0215660_10 September 2018_ Bottom-depth DO_E_Station SR4a
0215660_10 September 2018_ Surface and Middle-depth DO_E_SR4(N)
0215660_10 September 2018_ Bottom-depth DO_E_Station SR4(N)
0215660_10 September 2018_ Surface and Middle-depth DO_E_Station IS8
0215660_10 September 2018_ Surface and Middle-depth DO_E_Station IS(Mf)9
0215660_10 September 2018_ Surface and Middle-depth DO_F_Station IS(Mf)16
0215660_10 September 2018_ Bottom-depth DO_F_Station IS(Mf)16
0215660_10 September 2018_ Bottom-depth DO_F_Station SR4a
0215660_10 September 2018_ Surface and Middle-depth DO_F_SR4(N)
0215660_10 September 2018_ Bottom-depth DO_F_Station SR4(N)
0215660_10 September 2018_ Surface and Middle-depth DO_F_Station IS8
0215660_10 September 2018_ Bottom-depth DO_F_Station IS8
0215660_10 September 2018_ Surface and Middle-depth DO_F_Station IS(Mf)9
0215660_10 September 2018_ Bottom-depth DO_F_Station IS(Mf)9
,

Limit Level Exceedance 0215660_10 September 2018_ Surface and Middle-depth DO_E_Station IS(Mf)16 0215660_10 September 2018_ Surface and Middle-depth DO_E_Station SR4a 0215660_10 September 2018_ Surface and Middle-depth DO_F_Station SR4a

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

Email message

A total of eighteen exceedances were recorded on 10 September 2018.

Regards,

Jamin

Dr Jasmine Ng Environmental Team Leader

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_10 Septe 0215660_10 Septen 0215660_10 Septen 0215660_10 September 0215660_10 September 0215660_10 September 0215660_10 Septen 0215660_10 Septen 0215660_10 September 0215660_10 September 0215660_10 September 0215660_10 September 0215660_10 September 0215660_10 September	<u>Action Level Exceedance</u> ember 2018_Bottom-depth DO_E_Station IS(Mf)16 otember 2018_Bottom-depth DO_E_Station SR4a aber 2018_Surface and Middle-depth DO_E_SR4(N) ember 2018_Bottom-depth DO_E_Station SR4(N) oer 2018_Surface and Middle-depth DO_E_Station IS8 2018_Surface and Middle-depth DO_E_Station IS(Mf)9 2018_Surface and Middle-depth DO_F_Station IS(Mf)16 ember 2018_Bottom-depth DO_F_Station IS(Mf)16 otember 2018_Bottom-depth DO_F_Station SR4a aber 2018_Surface and Middle-depth DO_F_Station SR4(N) tember 2018_Bottom-depth DO_F_Station SR4(N) tember 2018_Bottom-depth DO_F_Station IS8 2018_Surface and Middle-depth DO_F_Station IS(Mf)9 ember 2018_Bottom-depth DO_F_Station IS(Mf)9 [<u>Limit Level Exceedance</u> 2018_Surface and Middle-depth DO_F_Station IS(Mf)16 er 2018_Surface and Middle-depth DO_F_Station SR4a er 2018_Surface and Middle-depth DO_F_Station SR4a er 2018_Surface and Middle-depth DO_F_Station SR4a er 2018_Surface and Middle-depth DO_F_Station SR4a										
Date		10 September 2018 (Measured)										
	11 Septe	mber 2018 (<i>In situ</i> results received by ERM)										
	20 Septeml	per 2018 (Laboratory results received by ERM)										
Monitoring Station	CS(Mf)5, SF	R4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)										
Parameter(s) with												
Exceedance(s)	Surf	tace and Middle-depth DO, Bottom DO										
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/L										
	Bottom-depth DO	4.7 mg/L										
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/L										
	Bottom-depth DO 3.6 mg/L											
Measured Levels	Refer to the attached data.											
Works Undertaken (at	Demolition of marine platform w	ras undertaken at Viaduct E under this Contract on 10 September										
the time of monitoring	2018.											
event)												

Possible Reason for	The exceedances of DO are unlikely to be due to the Project, in view of the following
Action or Limit Level	• All monitored parameters, except DO, at all monitoring stations were in compliance with the
Exceedance(s)	Action and Limit Levels during both mid-ebb and mid-flood tides on the same day.
	• Bottom-depth DO levels at IS(Mf)16, SR4a and SR4(N) were similar to the corresponding control
	station, CS(Mf)3(N), during mid-ebb tide, in which the recorded Bottom-depth DO levels at the
	corresponding control station were below Action Level.
	• Bottom-depth DO levels at IS(Mf)16, SR4a, SR4(N), IS8 and IS(Mf)9 were similar to the
	corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Bottom-
	depth DO levels at the corresponding control station were below Action Level.
	• Surface and Middle-depth DO levels at IS(Mf)16, SR4a, SR4(N), IS8 and IS(Mf)9 were
	comparable with the corresponding control stations, CS(Mf)3(N) and CS(Mf)5, during mid-ebb
	and mid-flood tides where the surface and middle-depth DO was below Action Level.
	No particular observation was reported at all monitoring stations.
Actions Taken / To Be	No immediate action is considered necessary. The ET will monitor for future trends in
Taken	exceedances.
Remarks	The monitoring results on 10 September 2018 and locations of water quality monitoring stations are
	attached. Site photo record on 10 September 2018 is attached.

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)5	12:51	Surface	1	26.2	8.1	27.0	3.8		7.2		7.8	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)5	12:51	Surface	2	26.2	8.0	27.0	3.8	27	7.4		8.3	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)5	12:51	Middle	1	25.8	8.1	28.1	3.6	5.7	7.4	7 4	8.0	0.2
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)5	12:51	Middle	2	25.7	8.0	28.2	3.6		7.5	7.4	8.2	0.3
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)5	12:51	Bottom	1	25.9	8.1	28.0	3.7	27	7.3		8.7	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)5	12:51	Bottom	2	25.8	8.0	28.0	3.7	5.7	7.4		8.8	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)3(N)	12:16	Surface	1	27.0	7.9	23.3	4.3		6.2		8.0	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)3(N)	12:16	Surface	2	27.0	8.0	23.0	4.3	4.2	6.7		8.1	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)3(N)	12:16	Middle	1	26.8	7.9	24.5	4.0	4.2	8.3	9.6	9.3	0.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)3(N)	12:16	Middle	2	26.8	8.0	24.3	4.1		8.8	5.0	8.9	5.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)3(N)	12:16	Bottom	1	26.2	7.9	25.8	3.9	3.9	14.0		9.9	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	CS(Mf)3(N)	12:16	Bottom	2	26.2	8.0	25.6	3.9	5.5	13.8		10.2	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)16	12:29	Surface	1	26.4	8.1	26.5	4.1		4.8		7.0	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)16	12:29	Surface	2	26.4	8.0	26.6	4.1	4.1	4.9		6.8	_
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)16	12:29	Middle	1							ΔΔ		7.4
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)16	12:29	Middle	2							7.7		,.+
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)16	12:29	Bottom	1	25.9	8.1	27.8	3.9	4.0	3.8		7.8	_
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)16	12:29	Bottom	2	25.9	8.0	27.8	4.0	4.0	3.9		8.0	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4a	12:20	Surface	1	26.6	8.0	25.4	3.9		9.6		11.0	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4a	12:20	Surface	2	26.6	8.0	25.5	3.9	3.9	9.7		11.3	_
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4a	12:20	Middle	1					5.5		10 5		13.2
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4a	12:20	Middle	2							10.5		13.2
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4a	12:20	Bottom	1	26.6	8.0	25.7	3.9	4.0	11.3		15.2	_
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4a	12:20	Bottom	2	26.5	8.0	25.7	4.0		11.4		15.2	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4(N)	12:17	Surface	1	26.9	8.1	24.4	4.4		7.6		9.0	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4(N)	12:17	Surface	2	26.9	8.0	24.5	4.4	4.4	7.7		9.4	_
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4(N)	12:17	Middle	1							77		9.8
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4(N)	12:17	Middle	2							/./		5.0
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4(N)	12:17	Bottom	1	26.9	8.1	24.5	4.4	4.4	7.7		10.1	_
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	SR4(N)	12:17	Bottom	2	26.9	8.0	24.5	4.4		7.9		10.7	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS8	12:12	Surface	1	27.2	8.1	24.9	4.6		4.4		7.6	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS8	12:12	Surface	2	27.2	8.0	24.9	4.6	4.6	4.5		7.2	_
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS8	12:12	Middle	1							44		83
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS8	12:12	Middle	2							7.7		0.5
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS8	12:12	Bottom	1	27.2	8.1	24.8	4.7	4.7	4.2		9.4	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS8	12:12	Bottom	2	27.2	8.0	24.9	4.7	۰.۲	4.3		9.1	
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)9	12:05	Surface	1	27.2	8.1	24.8	4.7		4.1		8.9	1
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)9	12:05	Surface	2	27.2	8.0	24.9	4.7	4.7	4.2		9.5	1
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)9	12:05	Middle	1					4.7		4 2		10.3
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)9	12:05	Middle	2							⊤،∠		10.5
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)9	12:05	Bottom	1	27.3	8.1	24.8	4.7	4.7	4.2		11.4	1
TMCLKL	HY/2012/07	2018-09-10	Mid-Ebb	IS(Mf)9	12:05	Bottom	2	27.3	8.0	24.8	4.7	/	4.4		11.2	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)5	6:02	Surface	1	26.4	8.1	25.7	4.2		4.7		8.3	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)5	6:02	Surface	2	26.4	8.0	25.8	4.2	1.0	4.8		8.0	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)5	6:02	Middle	1	25.7	8.1	27.5	3.8	4.0	8.4	C 0	9.1	0.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)5	6:02	Middle	2	25.6	8.0	27.7	3.7		8.5	0.9	9.5	9.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)5	6:02	Bottom	1	26.0	8.1	28.8	3.7	27	7.3		10.1	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)5	6:02	Bottom	2	26.0	8.0	29.0	3.7	3.7	7.4		9.6	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)3(N)	7:20	Surface	1	26.9	7.9	22.2	4.5		15.2		30.9	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)3(N)	7:20	Surface	2	26.9	7.9	22.4	4.5	4 5	15.8		30.7	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)3(N)	7:20	Middle	1	26.9	7.9	22.3	4.4	4.5	16.6	171	25.4	27.0
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)3(N)	7:20	Middle	2	26.9	7.9	22.5	4.4		16.0	1/.1	25.8	27.9
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)3(N)	7:20	Bottom	1	26.9	7.9	22.3	4.4		19.5		27.1	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	CS(Mf)3(N)	7:20	Bottom	2	26.9	7.9	22.5	4.4	4.4	19.4		27.6	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)16	6:27	Surface	1	26.6	8.1	24.8	4.3		4.5		7.7	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)16	6:27	Surface	2	26.6	8.0	24.8	4.3	13	4.6		7.2	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)16	6:27	Middle	1					4.3				0.2
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)16	6:27	Middle	2							5.5		8.3
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)16	6:27	Bottom	1	26.5	8.1	25.5	4.2	4.2	6.4		9.1	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)16	6:27	Bottom	2	26.5	8.0	25.6	4.2	4.2	6.5		9.3	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4a	6:36	Surface	1	26.6	8.0	24.9	4.1		7.1		9.8	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4a	6:36	Surface	2	26.6	8.0	24.9	4.1		7.2		10.0	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4a	6:36	Middle	1					4.1		7 4		10.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4a	6:36	Middle	2							/.4		10.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4a	6:36	Bottom	1	26.6	8.0	24.9	4.2	4.2	7.6		10.2	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4a	6:36	Bottom	2	26.6	8.0	24.9	4.1	4.2	7.8		10.5	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4(N)	6:43	Surface	1	26.6	8.1	24.8	4.2		6.2		9.2	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4(N)	6:43	Surface	2	26.6	8.0	24.9	4.2	13	6.3		9.1	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4(N)	6:43	Middle	1					4.2		6.2		0.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4(N)	6:43	Middle	2							0.3		9.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4(N)	6:43	Bottom	1	26.6	8.1	24.8	4.3	4.2	6.2		8.9	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	SR4(N)	6:43	Bottom	2	26.6	8.0	24.8	4.2	4.5	6.3		9.3	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS8	6:49	Surface	1	26.6	8.1	24.9	4.2		6.2		8.1	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS8	6:49	Surface	2	26.6	8.0	25.0	4.2	4.2	6.3		8.5	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS8	6:49	Middle	1					4.2		67		0.0
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS8	6:49	Middle	2							0.7		9.9
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS8	6:49	Bottom	1	26.6	8.1	25.2	4.2	4.2	7.1		11.3	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS8	6:49	Bottom	2	26.5	8.0	25.3	4.2	4.2	7.2		11.7]
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)9	6:57	Surface	1	26.5	8.1	25.2	4.2		5.1		7.3	
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)9	6:57	Surface	2	26.5	8.0	25.3	4.2	4.2	5.2		7.2]
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)9	6:57	Middle	1					4.2		F 1		
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)9	6:57	Middle	2							5.1		9.1
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)9	6:57	Bottom	1	26.6	8.1	25.1	4.2	4.2	5.0		10.8]
TMCLKL	HY/2012/07	2018-09-10	Mid-Flood	IS(Mf)9	6:57	Bottom	2	26.5	8.0	25.2	4.2	4.2	5.1		11.2	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Ebb at IS(Mf)16 on 10 September 2018

Photo 2 - Mid-Ebb at SR4a on 10 September 2018

Photo 3 - Mid-Ebb at SR4(N) on 10 September 2018

Photo 4 - Mid-Ebb at IS8 on 10 September 2018

Photo 5 - Mid-Ebb at IS(Mf)9 on 10 September 2018

Photo 6 - Mid-Flood at IS(Mf)16 on 10 September 2018

Photo 7 - Mid-Flood at SR4a on 10 September 2018

Photo 8 - Mid-Flood at SR4(N) on 10 September 2018

Photo 9 - Mid-Flood at IS8 on 10 September 2018

Photo 10 - Mid-Flood at IS(Mf)9 on 10 September 2018

Email message

То	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660
Ref/Project number	Contract No. HY/2012/07	E-mail: jasmine.ng@erm.com
	Tuen Mun - Chek Lap Kok Link - Southern	
	Connection Viaduct Section	
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	
Date	14 September 2018	ERM

Environmental

Management

Resources

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_12 September 2018_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_12 September 2018_ Bottom-depth DO_F_Station IS(Mf)16 0215660_12 September 2018_ Surface and Middle-depth DO_F_Station SR4a 0215660_12 September 2018_ Surface and Middle-depth DO_F_SR4(N) 0215660_12 September 2018_ Bottom-depth DO_F_Station SR4(N) 0215660_12 September 2018_ Surface and Middle-depth DO_F_Station IS8 0215660_12 September 2018_ Surface and Middle-depth DO_F_Station IS8 0215660_12 September 2018_ Bottom-depth DO_F_Station IS8 0215660_12 September 2018_ Bottom-depth DO_F_Station IS8 0215660_12 September 2018_ Surface and Middle-depth DO_F_Station IS8 0215660_12 September 2018_ Surface and Middle-depth DO_F_Station IS(Mf)9 0215660_12 September 2018_ Bottom-depth DO_F_Station IS(Mf)9

A total of nine exceedances were recorded on 12 September 2018.

Regards,

amin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	0215660_12 September 0215660_12 Sept 0215660_12 Septemb 0215660_12 Septer 0215660_12 Septer 0215660_12 Septeml 0215660_12 September 0215660_12 September 0215660_12 September	Action Level Exceedance 2018_ Surface and Middle-depth DO_F_Station IS(Mf)16 ember 2018_ Bottom-depth DO_F_Station IS(Mf)16 er 2018_ Surface and Middle-depth DO_F_Station SR4a nber 2018_ Surface and Middle-depth DO_F_SR4(N) tember 2018_ Bottom-depth DO_F_Station SR4(N) ber 2018_ Surface and Middle-depth DO_F_Station IS8 eptember 2018_ Bottom-depth DO_F_Station IS8 r 2018_ Surface and Middle-depth DO_F_Station IS(Mf)9 tember 2018_ Bottom-depth DO_F_Station IS(Mf)9 tember 2018_ Bottom-depth DO_F_Station IS(Mf)9 [Total No. of Exceedance = 9]												
Date	12 September 2018 (Measured)													
	13 September 2018 (<i>In situ</i> results received by ERM)													
	20 September 2018 (Laboratory results received by ERM)													
Monitoring Station	CS(Mf)5, SI	R4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)												
Parameter(s) with	CS(Mf)5, SR4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N) Surface and Middle-depth DO, Bottom DO Surface and Middle-depth DO 5.0 mg/L													
Action Levels for DO														
Action Levels for DO	Surface and Middle-depth DO5.0 mg/LBottom-depth DO4.7 mg/LSurface and Middle-depth DO4.2 mg/L													
Limit Levels for DO														
	Surface and Middle-depth DO 4.2 mg/L Bottom-depth DO 3.6 mg/L													
Measured Levels	Refer to the attached data.													
Works Undertaken (at	No marine works was undertake	en under this Contract on 12 September 2018.												
the time of monitoring event)														
Possible Reason for	The exceedances of DO are unlik	kely to be due to the Project, in view of the following												
Action or Limit Level	No marine works was carried	d out on 12 September 2018.												
Exceedance(s)	All monitored parameters, ex	ccept DO, at all monitoring stations were in compliance with the												
	Action and Limit Levels duri	ing mid-flood tides on the same day.												
	Bottom-depth DO levels at IS	6(Mf)16, SR4(N), IS8 and IS(Mf)9 were similar to the corresponding												
	control stations, CS(Mf)5, du	ring the same tide, in which the recorded Bottom-depth DO level at												
	Action and Limit Levels during mid-flood tides on the same day. Bottom-depth DO levels at IS(Mf)16, SR4(N), IS8 and IS(Mf)9 were similar to the corresponding control stations, CS(Mf)5, during the same tide, in which the recorded Bottom-depth DO level at the corresponding control station was below Action Level.													
	• Surface and Midule-deput D	ations CS(Mf)5 during the same tide in which the recorded Surface												
	and Middle-depth DO level a	at the corresponding control station was below Action Level												
	No particular observation was	as reported at IS(Mf)16, SR4a, SR4(N), IS8 and IS(Mf)9.												
Actions Taken / To Be	No immediate action is consider	ed necessary. The ET will monitor for future trends in												
Taken	exceedances.													
Remarks	The monitoring results on 12 Sep	otember 2018 and locations of water quality monitoring stations are												
	attached. Site photo record on	12 September 2018 is attached.												

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)5	7:46	Surface	1	26.7	8.0	24.7	4.1		13.2		7.9	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)5	7:46	Surface	2	26.8	8.1	24.6	4.3	4.1	13.1		6.5	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)5	7:46	Middle	1	26.3	8.0	27.1	3.9	4.1	11.5	12.2	6.0	6.2
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)5	7:46	Middle	2	26.3	8.1	27.0	3.9		11.4	12.3	5.2	0.3
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)5	7:46	Bottom	1	26.4	8.0	27.2	3.9	3.0	12.3		5.9	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)5	7:46	Bottom	2	26.4	8.1	27.2	3.9	3.9	12.2		6.3	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)3(N)	8:39	Surface	1	27.2	7.9	21.0	4.5		13.8		20.9	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)3(N)	8:39	Surface	2	27.2	7.8	21.2	4.5	4 5	13.5		19.2	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)3(N)	8:39	Middle	1	27.2	7.9	21.0	4.5	4.5	16.5	10.0	19.1	20.2
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)3(N)	8:39	Middle	2	27.2	7.8	21.2	4.5		16.5	16.9	22.7	20.2
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)3(N)	8:39	Bottom	1	27.2	7.9	21.0	4.5	4 5	20.4		19.7	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	CS(Mf)3(N)	8:39	Bottom	2	27.2	7.8	21.2	4.4	4.5	20.6		19.5	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)16	8:10	Surface	1	27.0	8.0	24.0	4.2		12.6		7.4	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)16	8:10	Surface	2	27.1	8.0	23.9	4.2	13	12.4		7.2	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)16	8:10	Middle	1					4.2		12.0		7.0
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)16	8:10	Middle	2							12.0		7.0
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)16	8:10	Bottom	1	27.0	8.0	24.3	4.2	12	11.6		6.9	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)16	8:10	Bottom	2	27.0	8.0	24.2	4.2	4.2	11.5		6.4	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4a	8:19	Surface	1	27.1	8.0	23.8	4.5		10.1		9.3	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4a	8:19	Surface	2	27.1	8.0	23.7	4.5	4.5	10.0		11.8	1
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4a	8:19	Middle	1					4.5		10.2		10.2
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4a	8:19	Middle	2							10.3		10.3
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4a	8:19	Bottom	1	26.9	8.0	23.9	4.7	4.7	10.5		9.9	1
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4a	8:19	Bottom	2	27.0	8.0	23.8	4.6	4.7	10.4		10.0	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4(N)	8:24	Surface	1	27.1	8.0	23.8	4.3		12.2		7.4	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4(N)	8:24	Surface	2	27.1	8.0	23.8	4.4		12.1		8.6	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4(N)	8:24	Middle	1					4.4		12.1		0.2
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4(N)	8:24	Middle	2							12.1		8.2
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4(N)	8:24	Bottom	1	27.1	8.0	23.9	4.4		12.0		9.0	1
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	SR4(N)	8:24	Bottom	2	27.1	8.0	23.8	4.4	4.4	11.9		7.7	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS8	8:30	Surface	1	27.1	8.0	23.8	4.3		11.2		7.8	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS8	8:30	Surface	2	27.1	8.0	23.7	4.3	13	11.1		7.9	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS8	8:30	Middle	1					4.3		11.2		7 6
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS8	8:30	Middle	2							11.2		7.5
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS8	8:30	Bottom	1	27.1	8.0	23.8	4.3	1.2	11.2		6.1	1
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS8	8:30	Bottom	2	27.1	8.0	23.7	4.3	4.3	11.1		8.0	1
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)9	8:38	Surface	1	27.0	8.0	24.5	4.2		10.2		8.0	
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)9	8:38	Surface	2	27.0	8.0	24.5	4.2	12	10.1		9.5	1
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)9	8:38	Middle	1					4.2		0.0		
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)9	8:38	Middle	2							9.8		/./
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)9	8:38	Bottom	1	27.0	8.0	24.6	4.3	10	9.4		6.3	1
TMCLKL	HY/2012/07	2018-09-12	Mid-Flood	IS(Mf)9	8:38	Bottom	2	27.0	8.0	24.6	4.3	4.3	9.3		7.0	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Flood at IS(Mf)16 on 12 September 2018

Photo 2 - Mid-Flood at SR4a on 12 September 2018

Photo 3 - Mid-Flood at SR4(N) on 12 September 2018

Photo 4 - Mid-Flood at IS8 on 12 September 2018

Photo 5 - Mid- Flood at IS(Mf)9 on 12 September 2018

Email message

To From Ref/Project number	Ramboll Hong Kong Limited (ENPO) ERM- Hong Kong, Limited Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section	2507, 25/F One Harbourfront, 18 Tak Fung Street, Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jasmine.ng@erm.com
Subject	Notification of Exceedance for Marine Water Quality Impact Monitoring	
Date	17 September 2018	ERM

Environmental Resources

Management

Dear Sir/ Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

Action Level Exceedance

0215660_14 September 2018_ Surface and Middle-depth DO_E_Station IS(Mf)16 0215660_14 September 2018_ Surface and Middle -depth DO_F_Station IS(Mf)16 0215660_14 September 2018_ Surface and Middle-depth DO_F_SR4(N) 0215660_14 September 2018_ Surface and Middle-depth DO_F_Station IS8 0215660_14 September 2018_ Surface and Middle-depth DO_F_Station IS8

A total of five exceedances were recorded on 14 September 2018.

Regards,

amin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us immediately.

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/07 TUEN MUN – CHEK LAP KOK LINK – SOUTHERN CONNECTION VIADUCT SECTION

Marine Water Quality Impact Monitoring

Notification of Exceedance

Log No.	<u>Action Level Exceedance</u> 0215660_14 September 2018_ Surface and Middle-depth DO_E_Station IS(Mf)16 0215660_14 September 2018_ Surface and Middle-depth DO_F_Station IS(Mf)16 0215660_14 September 2018_ Surface and Middle-depth DO_F_SR4(N) 0215660_14 September 2018_ Surface and Middle-depth DO_F_Station IS8 0215660_14 September 2018_ Surface and Middle-depth DO_F_Station IS(Mf)9 [Total No. of Exceedance = 5]							
Date		14 September 2018 (Measured)						
	15 Septe	ember 2018 (In situ results received by ERM)						
	27 Septem	ber 2018 (Laboratory results received by ERM)						
Monitoring Station	CS(Mf)5, SI	R4a, SR4(N), IS8, IS(Mf)16, IS(Mf)9, CS(Mf)3(N)						
Parameter(s) with		Surface and Middle-depth DO						
Exceedance(s)								
Action Levels for DO	Surface and Middle-depth DO	5.0 mg/ L						
Limit Levels for DO	Surface and Middle-depth DO	4.2 mg/ L						
Measured Levels	Refer to the attached data.							
Works Undertaken (at	Demolition of marine platform was undertaken at Viaduct E under this Contract on 14 September							
the time of monitoring	2010.							
Possible Reason for	The exceedences of DO are unlik	roly to be due to the Project in view of the following						
Action or Limit Level	All associations is a second by a second b							
Exceedance(s)	• All monitored parameters, except DO, at all monitoring stations were in compliance with the							
Execculare(5)	 Marginal DO exceedances were observed at Surface and Middle-depth at IS(Mf)16, SR4(N), IS8 and IS(Mf)9 during mid-flood tide. The marginal DO exceedances at these stations were similar to the corresponding control stations, CS(Mf)5, in which the recorded Surface and Middle-depth DO level at the corresponding control station was below Action Level. Marginal DO exceedance were only observed at Surface and Middle-depth at IS(Mf)16 during mid-ebb tide. No DO exceedance was observed at IS8 and IS(Mf)9 which are both nearby the works area. No particular observation was reported at IS(Mf)16, SR4(N), IS8 and IS(Mf)9. 							
Actions Taken / To Be	No immediate action is consider	ed necessary. The ET will monitor for future trends in						
Taken	exceedances.							
Remarks	The monitoring results on 14 Sep attached. Site photo record on	otember 2018 and locations of water quality monitoring stations are 14 September 2018 is attached.						

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)5	15:45	Surface	1	27.1	8.0	25.8	4.8		13.9		8.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)5	15:45	Surface	2	27.1	8.0	25.7	4.8	17	13.9		9.0	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)5	15:45	Middle	1	26.8	8.0	26.3	4.6	4.7	13.5	13.3	8.8	0.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)5	15:45	Middle	2	26.8	8.1	26.3	4.5		13.7		8.5	9.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)5	15:45	Bottom	1	26.3	8.0	28.0	4.4	лл	12.1		9.3	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)5	15:45	Bottom	2	26.3	8.1	27.9	4.3	4.4	12.6		9.6	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)3(N)	14:47	Surface	1	27.6	7.8	21.5	5.0		6.4		3.6	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)3(N)	14:47	Surface	2	27.6	7.9	21.4	5.0	5.0	6.7		4.3	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)3(N)	14:47	Middle	1	27.2	7.9	23.1	5.0	5.0	10.9	05	5.5	5.6
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)3(N)	14:47	Middle	2	27.2	8.0	22.9	5.0		10.8	9.5	5.0	5.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)3(N)	14:47	Bottom	1	27.2	7.9	23.7	5.0	5.0	11.3		7.6	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	CS(Mf)3(N)	14:47	Bottom	2	27.3	8.0	23.6	5.0	5.0	11.1		7.7	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)16	15:22	Surface	1	27.2	8.0	25.6	4.9		12.3		3.1	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)16	15:22	Surface	2	27.2	8.0	25.5	4.9	10	12.0		2.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)16	15:22	Middle	1					4.5		13.3		13
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)16	15:22	Middle	2							15.5		4.5
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)16	15:22	Bottom	1	26.8	8.0	26.3	4.7	17	14.6		5.4	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)16	15:22	Bottom	2	26.8	8.0	26.2	4.7	4.7	14.4		5.7	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4a	15:10	Surface	1	28.1	8.0	25.0	5.4	- 5.4	15.4		7.4	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4a	15:10	Surface	2	28.1	8.0	24.9	5.4		15.3		7.3	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4a	15:10	Middle	1							12.6		72
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4a	15:10	Middle	2							15.0		7.5
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4a	15:10	Bottom	1	27.3	8.0	25.2	5.0	5.0	11.7		7.4	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4a	15:10	Bottom	2	27.3	8.0	25.2	5.0	5.0	11.9		7.2	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4(N)	15:06	Surface	1	27.7	8.0	25.0	5.2		13.8		5.9	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4(N)	15:06	Surface	2	27.7	8.0	25.0	5.2	5.2	13.5		6.4	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4(N)	15:06	Middle	1					5.2		12.8		6.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4(N)	15:06	Middle	2							13.8		0.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4(N)	15:06	Bottom	1	27.7	8.0	25.0	5.3	5.2	13.9		6.0	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	SR4(N)	15:06	Bottom	2	27.7	8.1	25.0	5.2	5.5	13.9		5.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS8	15:01	Surface	1	27.6	8.0	25.1	5.4		14.3		5.2	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS8	15:01	Surface	2	27.6	8.1	25.0	5.3	5 /	14.4		5.1	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS8	15:01	Middle	1					5.4		14 5		6.9
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS8	15:01	Middle	2							14.5		0.9
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS8	15:01	Bottom	1	27.5	8.0	25.1	5.4	F /	14.2		8.5	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS8	15:01	Bottom	2	27.6	8.1	25.0	5.3	J.4	15.0		8.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)9	14:52	Surface	1	28.0	8.0	25.2	5.5		15.5		7.1	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)9	14:52	Surface	2	28.1	8.1	25.2	5.5	55	15.0		6.9	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)9	14:52	Middle	1					J.J		1 <i>1 1</i>		Q 1
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)9	14:52	Middle	2							14.4		0.1
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)9	14:52	Bottom	1	27.3	8.0	25.4	5.2	5.2	13.5		9.4	
TMCLKL	HY/2012/07	2018-09-14	Mid-Ebb	IS(Mf)9	14:52	Bottom	2	27.3	8.1	25.3	5.2	J.2	13.5		9.0	

Project	Works	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Replicate	Temperature (°C)	рН	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	Turbidity (NTU)	Depth-Averaged Turbidity	SS (mg/L)	Depth-Averaged SS
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)5	9:18	Surface	1	26.9	8.1	25.6	4.7		14.3		5.5	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)5	9:18	Surface	2	26.9	8.0	25.6	4.7	4.6	14.8		5.9	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)5	9:18	Middle	1	26.7	8.1	26.4	4.5	4.0	13.5	11.4	8.6	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)5	9:18	Middle	2	26.6	8.0	26.5	4.5		13.8	11.4	8.5	/./
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)5	9:18	Bottom	1	26.4	8.1	27.3	4.4		5.8		9.0	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)5	9:18	Bottom	2	26.4	8.0	27.4	4.4	4.4	5.9		8.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)3(N)	10:39	Surface	1	27.6	7.8	20.6	5.1		6.2		8.3	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)3(N)	10:39	Surface	2	27.6	7.9	20.6	5.1	E 1	6.4		9.0	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)3(N)	10:39	Middle	1	27.5	7.8	21.1	5.1	5.1	9.7	10.2	9.6	10.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)3(N)	10:39	Middle	2	27.5	7.9	21.0	5.1		9.7	10.2	10.3	10.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)3(N)	10:39	Bottom	1	27.3	7.8	22.3	5.1	E 1	14.3		11.6	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	CS(Mf)3(N)	10:39	Bottom	2	27.3	7.9	22.2	5.0	5.1	14.6		11.4	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)16	9:44	Surface	1	27.2	8.1	24.8	4.9		14.3		5.6	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)16	9:44	Surface	2	27.2	8.0	24.8	4.9	4.0	14.1		6.5	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)16	9:44	Middle	1					4.9		12.2		7.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)16	9:44	Middle	2							13.3		7.0
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)16	9:44	Bottom	1	27.0	8.0	25.5	4.8	4.9	12.4		7.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)16	9:44	Bottom	2	26.9	8.0	25.5	4.8	4.0	12.5		8.1	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4a	9:53	Surface	1	27.2	8.1	25.1	5.0	5.1	13.5	-	8.1	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4a	9:53	Surface	2	27.2	8.0	25.2	5.1		13.1		7.7	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4a	9:53	Middle	1							12.2		10.4
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4a	9:53	Middle	2							15.5		10.4
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4a	9:53	Bottom	1	27.1	8.1	25.2	5.1	5.2	13.2		12.6	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4a	9:53	Bottom	2	27.1	8.0	25.2	5.2	5.2	13.4		13.0	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4(N)	10:00	Surface	1	27.1	8.0	25.1	4.9		12.8		7.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4(N)	10:00	Surface	2	27.1	8.0	25.1	4.9	4.9	12.6		7.4	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4(N)	10:00	Middle	1					4.9		12 5		0.2
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4(N)	10:00	Middle	2							12.5		0.5
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4(N)	10:00	Bottom	1	27.0	8.0	25.3	4.8	4.9	12.3		9.0	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	SR4(N)	10:00	Bottom	2	27.0	8.0	25.4	4.9	4.9	12.4		8.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS8	10:06	Surface	1	27.1	8.0	25.2	4.9		13.1		6.1	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS8	10:06	Surface	2	27.1	8.0	25.2	4.9	19	12.3		6.8	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS8	10:06	Middle	1					4.9		12.6		7.2
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS8	10:06	Middle	2							12.0		7.2
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS8	10:06	Bottom	1	27.0	8.0	25.4	4.8	19	12.2		7.7	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS8	10:06	Bottom	2	27.0	8.0	25.4	4.9	4.3	12.8		8.0	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)9	10:14	Surface	1	27.1	8.0	25.2	4.9		14.2		5.3	
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)9	10:14	Surface	2	27.1	8.0	25.2	4.9	19	14.8		4.9]
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)9	10:14	Middle	1					4.5		13.6		55
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)9	10:14	Middle	2							13.0		5.5
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)9	10:14	Bottom	1	27.0	8.0	25.5	4.8	18	12.7		5.6	1
TMCLKL	HY/2012/07	2018-09-14	Mid-Flood	IS(Mf)9	10:14	Bottom	2	27.0	8.0	25.5	4.8	ט.ד	12.6		6.0	

Note: Indicates Exceedance of Action Level Indicates Exceedance of Limit Level

Photo 1 - Mid-Ebb at IS(Mf)16 on 14 September 2018

Photo 2 - Mid-Flood at IS(Mf)16 on 14 September 2018

Photo 3 - Mid-Flood at SR4(N) on 14 September 2018

Photo 4 - Mid-Flood at IS8 on 14 September 2018

Photo 5 - Mid-Flood at IS(Mf)9 on 14 September 2018

message		Resources Management
То	Ramboll Hong Kong, Limited (ENPO)	2507 25/F One Harbourfront
From	ERM- Hong Kong, Limited	18 Tak Fung Street Hunghom Kowloon
Ref/Project number	Contract No. HY/2012/07 Tuen Mun-Chek Lap Kok Link-Southern Connection Viaduct Section	Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660 E-mail: jasmine.ng@erm.com
Subject	Notification of Exceedance for Impact Dolphin Monitoring	9
Date	2 January 2019	ERM

Environmental

Dear Sir or Madam,

Please find attached the Notification of Exceedance (NOE) of the following Log no.:

 $0215660_September/November 2018_dolphin_STG\&ANI_NEL\&NWL$

A total of one limit level exceedance was recorded in the quarterly impact dolphin monitoring data between September and November 2018.

Regards,

famin

Dr Jasmine Ng Environmental Team Leader

CONFIDENTIALITY NOTICE

This email transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this email. If you are not the intended recipient, please telephone or fax us.

ERM-Hong Kong, Limited

Contract No. HY/2012/07 Tuen Mun – Chek Lap Kok Link – Southern Connection Viaduct Section

Impact Dolphin Monitoring Notification of Exceedance

Log No.	0215660_Sep/Nov2018_dolphin_STG&ANI_NEL&NWL							
		[Total No. of Exceedance = 1]						
Date	September to November 2018 (monitored)							
	31 December 2018 (results received by ERM)							
Monitoring Area	Northeast	Lantau (NEL) and Northwest Lantau (NWL)						
Parameter(s) with	Quarter	ly encounter rate of dolphin sightings (STG)						
Exceedance(s)	Quarterly er	ncounter rate of total number of dolphins (ANI)						
Action Levels	NEL: STG < 4.2 & ANI < 15.5							
		Or						
Limit Lovala	North Lantau Social cluster	NWL: SIG < 0.9 & ANI < 51.5						
Limit Levels		NEL: 51G < 2.4 & ANI < 8.9 and						
		NWL: STG < 3.9 & ANI < 17.9						
Recorded Levels	NEL	STG = 0 & ANI = 0						
	NWL	STG = 1.51 & ANI = 2.70						
	One Limit Level Exceedance was	recorded in the quarterly impact dolphin monitoring at NEL and						
	NWL between September and N	ovember 2018. The exceedance was reported in the approved						
	sixty-first Monthly EM&A Report	dated 14 December 2018.						
Statistical Analyses	Further to the review of the available and relevant dolphin monitoring data in the EM&A under this							
	Contract, statistical analyses wer	e conducted as follows:						
	• A two-way ANOVA with repeated measures and unequal sample size was conducted using Period (2 levels: baseline vs impact – present impact quarter, September to November 2018) and Location (2 levels: NEL and NWL) as fixed factors to examine whether there were any significant differences in the average encounter rates between the baseline and present impact							
	significant differences in S	TC $(n = 0.0029)$ and ANI $(n = 0.0143)$ were detected between						
	Periods	10 p = 0.0023 marrier mar						
	A two-way ANOVA with:	repeated measures and unequal sample size was conducted using						
	Cumulative Period (2 level	ls: baseline vs impact – cumulative quarters, December 2012 to						
	November 2018) and Locat	tion (2 levels: NEL and NWL) as fixed factors to examine whether						
	there were any significant	differences in the average encounter rates between the baseline and						
	cumulative impact monito	ring quarter. By setting α = 0.00001 as the significance level in the						
	statistical tests, significant	difference in STG ($p = 0.000000$) and in ANI ($p = 0.000000$) between						
	Cumulative Period (baselin	ne and impact phases) and Location (NEL and NWL) were detected.						
	* Note: The commencemer	nt date under <i>Contract No. HY/2012/07</i> is 31 October 2013.						
works Undertaken (in	In the quarter between Septembe	er and November 2018, marine works was undertaken under						
the monitoring	<i>Contract No. HY/2012/0/</i> include	uninstallation of marine piling platform.						
quarter)								

Possible Reason for	The potential factors that may have contributed to the observed exceedance are reviewed below:
Action or Limit Level	Blocking of CWD travelling corridor:
Exceedance(s)	 The Monitoring of Marine Mammals in Hong Kong Waters (2017 - 18) ⁽¹⁾ reported that dolphin usage and traveling activities to the northern side of the airport (dolphin traveling corridor) are affected by frequent high-speed ferry traffic from Sky Pier (not related to this Contract), which is likely one of the factors resulting in the decrease in dolphin abundances in North Lantau. Marine works of the Contract: As per the findings from the EIA report (Section 8.11.9), the major influences on the Chinese White Dolphin (CWD) Sousa chinensis under this Contract are marine traffics and bored piling works. The Monitoring of Marine Mammals in Hong Kong Waters (2017-2018) also reported that CWD decline were likely influenced by reclamation works, bored piling and intensive marine traffic from construction activities. Based on these possible reasons, implementation of mitigation measures are reviewed. This Contract does not have any reclamation works, thus no habitat loss was caused by reclamation. In the reporting period, the Contract is considered minor. All of the warels by CWD. Disturbance from vessels of this Contract is considered minor. All of the marine bored piling works of this Contract was completed in September 2015. Thus, underwater noise emission from this Contract hab been substantially reduced. During dolphin monitoring in this quarter, no unacceptable impact on CWD due to the activities under this Contract was observed. Impact on water quality: According to the findings in the water quality monitoring results at the impact monitoring stations between September 2018, there were forty-eight (48) Action Level and five (5) Limit Level of Dissolved Oxygen (DO) for water quality impact monitoring in the reporting period. The exceedances were considered not related to this Contract upon further investigation and the investigation reports are presented in <i>Appendix L</i> of the 20th Quarterly EM&A Report (September -November 2018).
	implemented, and thus no unacceptable impact on CWD or its habitat was associated with this Contract in this quarter.

Actions Taken / To Be	With reference to the site inspection records in this quarter, the respective marine ecological
Taken	mitigation measures have been implemented properly by the Contractor throughout the marine
	works period, including:
	1. 250m dolphin exclusion zone;
	2. Acoustic decoupling plan;
	3. Training to workers;
	4. Offsite vessel routing control in accordance with Regular Marine Travel Routes Plan, including
	routing control within existing marine park boundaries;
	5. Vessels speed limited at 5 knots and 10 knots within existing marine park boundaries and site
	boundary respectively;
	6. Idling and mooring of working vessels within site boundary
	The existing mitigation measures are recommended to be continuously implemented. Furthermore,
	it is also recommended to reduce the vessels for marine works as much as possible. The ET will
	monitor for future trends in exceedance(s).
	A joint team meeting was held on 4 September 2018 for discussion on CWD trend, with attendance
	of ENPO, Representatives of Resident Site Staff (RSS), Representatives of Environmental Teams
	(ETs) for Contract No. HY/2013/01, HY/2011/03, HY/2012/07 and HY/2012/08. The
	discussion/recommendation as recorded in the minutes of the meeting, which might be relevant to
	this Contract are summarized below. It was concluded that the HZMB works is one of the
	contributing factors affecting the dolphins. It was also concluded the contribution of impacts due
	to the HZMB works as a whole (or individual marine contracts) cannot be quantified or separate
	from the other stress factors. It was reminded that the ETs shall keep reviewing the
	implementation status of the dolphin related mitigation measures and remind the contractors to
	ensure the relevant measures are fully implemented. It was recommended that the marine works
	of HZMB projects should be completed as soon as possible to reduce the overall duration of impacts
	and allow the delphing population to recover as early as possible to reduce the overall duration of impacts
	reminded that the protection measures (e.g. speed limit control) for the BMP shall be implemented
	reminded that the protection measures (e.g. speed mind control) for the birth shar be implemented
	so as to provide a better habitat for dolphin recovery. It is noted that even though marine vessels
	may moor within the mooring site of DMP, commercial activities including loading / unloading /
	transhipment are not allowed except a permit is obtained. The HZMB works vessels were
	recommended to avoid the BMP. It was also recommended that the marine works footprint and
	vessels for the marine works should be reduced as much as possible, and vessels idling / mooring
	in other part of the North Lantau shall be avoided whenever possible.
	Dolphin specialists of the Projects confirmed that the CWD sighting nearby north of Sha Chau and
	Lung Kwu Chau Marine Park has significantly declined. The reason for the decline was likely
	related to the re-routing of high-speed ferry from Skypier.
Remarks	The results of impact water quality and impact dolphin monitoring, the status of implemented
	marine ecological mitigation measures are documented in the approved <i>Fifty-ninth</i> to <i>sixty-first</i>
	Monthly EM&A Reports. Comparison on water guality between impact and baseline periods is
	elaborated in the 20th Quarterly EM&A Report.