Appendix L

> Cumulative Statistics on Exceedances, Complaints, Notifications of Summons and Successful Prosecutions

Table L1 Cumulative Statistics on Exceedances

Parameters	Level of Exceedance	Total No. recorded in this reporting month	Total No. recorded since Contract commencement
1-hr TSP	Action	0	93
	Limit	0	7
$24-h r ~ T S P ~$	Action	0	10
	Limit	0	4
Water Quality	Action	55	128
	Limit	4	19
Impact Dolphin	Action	0	11
Monitoring	Limit	1	16

Table L2 Cumulative Statistics on Complaints, Notifications of Summons and Successful Prosecutions

Reporting Period	Cumulative Statistics		
	Complaints	Notifications of Summons	Successful Prosecutions
This Reporting Month (August 2019)	0	0	0
Total No. received since Contract commencement	17	1	0

Email message	Environmental Resources Management	
To	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbour 18 Tak Fung Stre
From	ERM- Hong Kong, Limited	Helephone: Hong (852) Facsimile: (852) E-mail: jasmine.
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	Notification of Exceedance for Water Quality
Subject	Impact Monitoring	

Dear Sir or Madam,
Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Action Level Exceedance
0212330_7 August 2019_Surface & Middle DO_E_Station IS(Mf)9
0212330_7 August 2019_Surface & Middle DO_E_Station IS17
0212330_7 August 2019_ Bottom DO_E_Station IS17
0212330_7 August 2019_ Bottom DO_F_Station SR4a
0212330_7 August 2019_Surface & Middle DO_F_Station IS(Mf)11
```

A total of five Action Level exceedances were recorded on 7 August 2019.

Dr Jasmine Ng
Environmental Team Leader

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/08
 Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Action Level Exceedance 0212330_7 August 2019_Surface \& Middle DO_E_Station IS(Mf) 9 0212330_7 August 2019_Surface \& Middle DO_E_Station IS17 0212330_7 August 2019_ Bottom DO_E_Station IS17 0212330_7 August 2019_ Bottom DO_F_Station SR4a 0212330_7 August 2019_ Surface \& Middle DO_F_Station IS(Mf)11 [Total No. of Exceedances = 5]
Date	7 August 2019 (Measured) 8 August 2019 (In situ results received by ERM) 16 August 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Action Level Exceedance for DO ($4.6 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)9 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.7 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.5 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.5 \mathrm{mg} / \mathrm{L}$) is observed at SR4a at Bottom Level during mid-flood tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)11 at Surface \& Middle Level during mid-flood tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, no marine works was carried out on 7 August 2019.

Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - No marine works was carried out on 7 August 2019. - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - IS(Mf)9, SR4a and IS(Mf) 11 are far away ($>2 \mathrm{~km}$) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Moreover, IS(Mf) 16 is closer to the works area and no exceedance was recorded. Therefore, the exceedances are unlikely to be related to this Contract. - Surface \& Middle-depth DO levels at IS(Mf)11 was similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Surface \& Middle-depth DO levels at the corresponding control station were below Action Level. - Bottom DO levels at SR4a was similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Bottom DO levels at the corresponding control station were below Action Level. - As reported by the marine mammal observer, no discharge of organic matters into waters from landside works area was recorded. Moreover, no exceedance was recorded at IS(Mf) 16 which is the closest station to the Seawall Modification Works Area during both mid-ebb and mid-flood tide. Therefore, exceedances recorded at IS(Mf) 9 and IS17 during mid-ebb tide and SR4a and IS(Mf) 11 during mid-flood tide are unlikely to be caused by the marine works of this Contract.
Actions Taken/ To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 7 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	D (mg/L)	Average DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mg/L)	DepthAveraged SS
TMCLKL	HY/201208	201908/07	Mid-Ebb	CS(M) 5	18:10	Surface	1	1	28.7	7.8	21.8	5.7	5.3	3.8	3.4	6.1	5.7
TMCLKL	HY/2012/08	2019080107	Mid-Ebb	CS(M)5	18:10	Sufface	1	2	28.7	7.9	21.4	5.7		3.8		5.5	
TMCLKL	HY/2012/08	2019/08/07	Mid-Ebb	CS(Mf) 5	18:10	Middle	2	1	27.9	7.8	24.2	4.9		3.5		5.2	
TMCLKL	HY/2012/08	2019080107	Mid-Ebb	CS(M)5	18:10	Middle	2	2	27.9	7.9	23.7	4.9		3.5		5.9	
TMCLKL	HY/201208	2019080707	Mid-Ebb	CS(M)5	18:10	Botom	3	1	27.7	7.8	25.7	4.8	4.9	2.8		5.6	
TMCLKL	HY/201208	2019080107	Mid-Ebb	CS(Mf) 5	18:10	Botom	3	2	27.7	7.9	25.1	4.9		2.7		6.0	
TMCLKL	HY/201208	2019080107	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:25	Sufface	1	1	28.9	7.7	18.3	5.5	5.2	3.9	7.1	7.8	7.7
TMCLKL	HY/201208	2019080707	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf} 33 \mathrm{~N})$	17:25	Surface	1	2	28.9	7.8	18.0	5.5		3.8		8.1	
TMCLKL	HY/2012/08	201908107	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:25	Middle	2	1	28.0	7.8	21.7	4.8		6.2		8.7	
TMCLKL	HY/2012/08	201908107	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:25	Middle	2	2	28.0	7.8	21.4	4.9		6.2		8.9	
TMCLKL	HY/2012/08	2019080/07	Mid-Ebb	$\mathrm{CS}(\mathrm{Mff} 3) \mathrm{N})$	17:25	Botom	3	1	28.0	7.8	23.3	5.1	52	11.3		6.5	
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:25	Botom	3	2	28.0	7.9	22.9	5.2	5.2	11.3		6.2	
TMCLKL	HY/201208	201908107	Mid-Ebb	IS(Mf)16	16:47	Surface	1	1	28.4	7.8	21.6	5.5	5.5	5.5	6.5	9.8	9.7
TMCLKL	HY/2012/08	2019080/07	Mid-Ebb	IS(Mfl16	16:47	Surface	1	2	28.4	7.9	21.6	5.5		5.5		10.6	
TMCLKL	HY201208	2019080/07	Mid-Ebb	IS(Mf) 16	16:47	Middle	2	1									
TMCLKL	HY/201208	2019080707	Mid-Ebb	IS(Mf)16	16:47	Middle	2	2									
TMCLKL	HY/2012/08	201908107	Mid-Ebb	IS(Mf)16	16:47	Botom		1	28.1	7.8	22.3	5.1	51	7.4		9.7	
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	IS(Mf) 16	16:47	Botom	3	2	28.1	7.8	21.9	5.1	5.1	7.5		8.7	
TMCLKL	HY/2012/08	201908107	Mid-Ebb	SR4a	16:39	Surface	1	1	28.5	7.8	20.8	5.8	5.9	4.5	4.7	11.3	10.7
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	SR4a	16:39	Suface	1	2	28.5	7.9	20.4	5.9		4.6		10.6	
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	SR4a	16:39	Middle	2	1									
TMCLKL	HY/201208	201908/07	Mid-Ebb	SR4a	16:39	Middle	2	2									
TMCLKL	HY/2012/08	2019080/07	Mid-Ebb	SR4a	16:39	Botom	3	1	28.1	7.8	21.6	4.9		4.8		10.2	
TMCLKL	HY/201208	201908/07	Mid-Ebb	SR4a	16:39	Botom	3	2	28.2	7.8	21.2	5.2	5.1	4.9		10.5	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	SR4(N2)	16:35	Sufface	1	1	28.5	7.8	20.9	5.6	5.7	6.5	8.1	9.8	9.1
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	SR4(N2)	16:35	Sufface	1	2	28.5	7.8	20.6	5.7		6.4		10.7	
TMCLKL	HY/201208	201908107	Mid-Ebb	SR4(N2)	16:35	Middle	2	1									
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	SR4(N2)	16:35	Middle	2	2									
TMCLKL	HY2012/08	201908/07	Mid-Ebb	SR4(N2)	16:35	Botom	3	1	28.3	7.8	21.5	5.0	50	9.8		8.5	
TMCLKL	HY/201208	201908/07	Mid-Ebb	SR4(N2)	16:35	Botom	3	2	28.3	7.8	21.1	5.0	5.0	9.7		7.5	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	IS8(N)	16:30	Suface	1	1	28.4	7.8	21.4	5.5	5.5	6.5	7.2	7.1	7.2
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS8(N)	16:30	Surface	1	2	28.4	7.9	21.0	5.5		6.5		6.1	
TMCLKL	HY201208	2019080/07	Mid-Ebb	IS8(N)	16:30	Middle	2	1									
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS8(N)	16:30	Middle	2	2									
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS8(N)	16:30	Bottom	3	1	28.1	7.8	22.2	5.0	5.0	7.9		7.4	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	IS8(N)	16:30	Botom	3	2	28.1	7.9	21.8	5.0	5.0	7.9		8.1	
TMCLKL	HY2012/08	201908107	Mid-Ebb	IS(M)9	16:22	Sufface	1	1	27.6	7.8	25.1	4.5	4.5	3.3	4.3	7.6	6.9
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	IS(M)9	16:22	Sufface	1	2	27.6	7.8	25.1	4.5		3.3		6.7	
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS(MI) 9	16:22	Middle	2	1									
TMCLKL	HY2012/08	2019080707	Mid-Ebb	IS(Mf)	16:22	Middle	2	2									
TMCLKL	HY/2012/08	2019080,07	Mid-Ebb	IS(Mf) 9	16:22	Bottom	3	1	28.0	7.8	21.0	7.0	7.0	5.3		6.7	
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS(M)9	16:22	Botom	3	2	28.0	7.8	21.0	7.0		5.3		6.6	
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS(Mf) 11	17:48	Sufface	1	1	29.1	7.8	18.3	6.0	5.5	4.1	4.9	5.5	9.4
TMCLKL	HY/2012/08	20190807	Mid-Ebb	IS(Mf) 11	17:48	Suface	1	2	29.1	7.8	18.0	5.8		4.1		5.9	
TMCLKL	HY/201208	2019080/07	Mid-Ebb	IS(Mf)11	17:48	Middle	2	1	28.4	7.7	20.6	5.0		5.1		14.4	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	IS(Mf) 11	17:48	Middle		2	28.4	7.8	20.3	5.1		5.1		12.6	
TMCLKL	HY/201208	2019080/07	Mid-Ebb	IS(Mf) 11	17:48	Botom	3	1	27.9	7.8	23.4	4.7	4.8	5.5		8.3	
TMCLKL	HY2012/08	20190807	Mid-Ebb	IS(Mf) 11	17:48	Botom	3	2	27.9	7.8	23.0	4.8	4.8	5.5		9.6	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	SR7	17:54	Sufface	1	1	28.7	7.8	20.5	5.7	5.7	4.1	4.4	5.5	6.7
TMCLKL	HY/2012/08	201908/07	Mid-Ebb	SR7	17:54	Sufface	1	2	28.7	7.9	20.1	5.7		4.2		4.8	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	SR7	17:54	Middle	2	1									
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	SR7	17:54	Middle	2	2									
TMCLKL	HY201208	201908107	Mid-Ebb	SR7	17:54	Botom	3	1	28.5	7.8	21.0	5.4	5.5	4.6		8.4	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	SR7	17:54	Bottom	3	2	28.5	7.9	20.8	5.6		4.6		8.2	
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS17	16:52	Sufface	1	1	28.0	7.8	22.8	4.8	4.7	4.8	8.2	9.3	8.5
TMCLKL	HY201208	2019080707	Mid-Ebb	IS17	16:52	Suface	1	2	28.0	7.8	22.4	4.9		4.9		8.3	
TMCLKL	HY/2012/08	2019080,07	Mid-Ebb	IS17	16:52	Middle	2	1	27.6	7.8	25.1	4.5		8.4		9.6	
TMCLKL	HY/2012/08	2019080707	Mid-Ebb	IS17	16:52	Middle	2	2	27.6	7.8	24.6	4.5		8.4		9.2	

Project	Contract	Date (yyyy- mm-dd)	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	D (mg/L)	Average DO (mg/L)	Turbidity	Depth- Averaged Turbidity	SS (mg/L)	Depth- Averaged SS
TMCLKL	HY/201208	2019080107	Mid-Ebb	IS17	16:52	Bottom	3	1	27.6	7.8	25.2	4.5	4.5	11.4		6.9	
TMCLKL	HY/201208	201908/07	Mid-Ebb	IS17	16:52	Botom	3	2	27.6	7.8	24.7	4.5		11.4		7.9	
TMCLKL	HY/201208	201908/07	Mid-flood	CS(M)5	10:29	Sufface	1	1	28.0	7.8	21.3	4.6	4.6	4.0	6.2	6.5	6.8
TMCLKL	HY/201208	201908/07	Mid-flood	CS(M) 5	10:29	Sufface	1	2	27.6	7.8	21.3	4.6		4.0		5.8	
TMCLKL	HY/201208	201908107	Mid-flood	CS(M) 5	10:29	Middle	2	1	27.6	7.8	24.6	4.6		4.0		6.7	
TMCLKL	HY/201208	201908/07	Mid-flood	CS(M) 5	10:29	Middle	2	2	27.6	7.8	24.2	4.6		4.0		6.8	
TMCLKL	HY/2012/08	201908/07	Mid-flood	CS(M) 5	10:29	Botom	3	1	27.5	7.8	26.5	4.5		10.6		7.0	
TMCLKL	HY/201208	201908/07	Mid-flood	CS(Mf) 5	10:29	Botom	3	2	27.4	7.8	26.0	4.5	4.5	10.6		7.9	
TMCLKL	HY/201208	201908/07	Mid-flood	CS(Mf)3(N)	11:19	Sufface	1	1	28.2	7.7	19.8	5.0	5.1	5.1	5.8	9.1	9.7
TMCLKL	HY/2012/08	201908/07	Mid-flood	CS(Mf)3(N)	11:19	Sufface	1	2	28.4	7.8	19.2	5.3		5.2		8.1	
TMCLKL	HY/201208	201908/07	Mid-flood	CS(Mf)3(N)	11:19	Middle	2	1	28.2	7.7	19.9	5.0		6.0		10.5	
TMCLKL	HY/201208	201908/07	Mid-flood	CS(Mf)3(N)	11:19	Middle	2	2	28.2	7.8	19.5	5.0		6.1		9.9	
TMCLKL	HY/201208	201908/07	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	11:19	Bottom	3	1	28.3	7.7	20.1	5.2		6.2		10.7	
TMCLKL	HY/201208	201908/07	Mid-flood	CS(Mf)3(N)	11:19	Botom	3	2	28.2	7.8	19.6	5.1	5.2	6.2		9.8	
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 16	12:23	Sufface	1	1	28.5	7.8	20.7	5.6	5.6	5.9	8.1	8.7	7.9
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 16	12:23	Surface	1	2	28.5	7.9	20.3	5.6		5.9		7.7	
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 16	12:23	Middle	2	1									
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 16	12:23	Middle	2	2									
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 16	12:23	Bottom	3	1	28.0	7.8	21.6	5.0		10.4		7.1	
TMCLKL	HY/2012/08	201908/07	Mid-flood	IS(Mf) 16	12:23	Botom	3	2	28.0	7.8	21.2	5.0		10.3		8.0	
TMCLKL	HY/2012/08	201908/07	Mid-flood	SR4a	12:32	Sufface	1	1	28.6	7.7	20.4	5.5	5.6	3.6	5.2	9.2	9.2
TMCLKL	HY/201208	201908/07	Mid-flood	SR4a	12:32	Surface	1	2	28.6	7.8	20.1	5.6		3.6		8.2	
TMCLKL	HY/201208	201908/07	Mid-flood	SR4a	12:32	Middle	2	1									
TMCLKL	HY/2012/08	201908/07	Mid-flood	SR4a	12:32	Middle	2	2									
TMCLKL	HY/2012/08	201908/07	Mid-flood	SR4a	12:32	Bottom	3	1	28.0	7.7	21.7	4.5		6.7		9.6	
TMCLKL	HY/201208	201908/07	Mid-flood	SR4a	12:32	Botom	3	2	28.0	7.8	21.3	4.5	4.5	6.7		9.9	
TMCLKL	HY/201208	201908/07	Mid-flood	SR4(N2)	12:36	Suface	1	1	28.5	7.7	20.4	5.5	5.6	3.6	3.9	10.2	9.3
TMCLKL	HY/2012/08	201908/07	Mid-flood	SR4(N2)	12:36	Suface	1	2	28.4	7.8	20.0	5.6		3.6		9.2	
TMCLKL	HY/201208	201908/07	Mid-flood	SR4(N2)	12:36	Middle	2	1									
TMCLKL	HY/201208	201908/07	Mid-flood	SR4(N2)	12:36	Middle	2	2									
TMCLKL	HY/2012/08	201908/07	Mid-flood	SR4(N2)	12:36	Bottom	3	1	28.2	7.7	20.7	5.3		4.1		8.4	
TMCLKL	HY/2012/08	201908/07	Mid-flood	SR4(N2)	12:36	Botom	3	2	28.3	7.8	20.3	5.4	5.4	4.1		9.3	
TMCLKL	HY/201208	201908/07	Mid-flood	IS8(N)	12:41	Suface	1	1	28.3	7.7	20.8	5.2	5.2	5.6	7.6	9.7	9.1
TMCLKL	HY/201208	201908/07	Mid-flood	IS8(N)	12:41	Sufface	1	2	28.3	7.8	20.4	5.2		5.6		9.3	
TMCLKL	HY/201208	201908/07	Mid-flood	IS8(N)	12:41	Middle	2	1									
TMCLKL	HYY201208	201908007	Mid-flood	IS8(N)	12:41	Middle	2	2									
TMCLKL	HY/201208	201908/07	Mid-flood	IS8(N)	12:41	Botom	3	1	28.3	7.7	21.0	5.1	5.2	9.5		8.4	
TMCLKL	HY/201208	201908/07	Mid-flood	IS8(N)	12:41	Bottom	3	2	28.2	7.8	20.5	5.2		9.5		8.8	
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 9	12:49	Suface	1	1	28.4	7.7	20.7	5.7	5.7	7.0	8.1	8.6	8.5
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 9	12:49	Surface	1	2	28.4	7.8	20.3	5.7		7.0		8.3	
TMCLKL	HY/201208	201908007	Mid-flood	IS(Mf)9	12:49	Middle	2	2									
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 9	12:49	Middle	2	2									
TMCLKL	HYY201208	2019080807	Mid-flood	IS(Mf)9	12:49	Botom	3	1	28.3	7.7	20.8	5.3	5.4	9.3		8.6	
TMCLKL	HY/201208	2019080/07	Mid-flood	IS(Mf)	12:49	Bottom	3	2	28.3	7.8	20.5	5.4		9.2		8.6	
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf)11	10:55	Sufface	1	1	28.0	7.8	21.9	4.8	4.8	8.0	9.1	8.6	13.7
TMCLKL	HY/2012/08	201908/07	Mid-flood	IS(Mf) 11	10:55	Surface	1	2	27.9	7.8	21.7	4.8		8.0		8.6	
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf) 11	10:55	Middle		1	27.9	7.8	22.0	4.8		7.3		9.4	
TMCLKL	HY/2012/08	201908/07	Mid-flood	IS(Mf) 11	10:55	Middle	2	2	27.9	7.8	21.7	4.8		7.3		10.3	
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf)11	10:55	Bottom	3	1	27.7	7.8	23.9	4.7	4.7	11.9		24.3	
TMCLKL	HY/201208	201908/07	Mid-flood	IS(Mf)11	10:55	Botom	3	2	27.7	7.8	23.5	4.7		11.9		21.0	
TMCLKL	HY/201208	201908/07	Mid-flood	SR7	10:48	Sufface	1	1	28.2	7.8	21.2	5.0	5.0	4.5	7.3	4.0	6.5
TMCLKL	HY/2012/08	201908/07	Mid-flood	SR7	10:48	Suface	1	2	28.1	7.8	20.9	5.0		4.5		5.0	
TMCLKL	HY/201208	2019080/07	Mid-flood	SR7	10:48	Middle	2										
TMCLKL	HY/201208	201908/07	Mid-flood	SR7	10:48	Middle	2	2									
TMCLKL	HY/201208	201908/07	Mid-flood	SR7	10:48	Bottom		1	27.9	7.8	22.7	4.8	4.8	10.1		8.1	
TMCLKL	HYY201208	201908/07	Mid-flood	SR7	10:48	Bottom	3	2	27.9	7.8	22.3	4.8		10.1		9.0	
TMCLKL	HY/2012/08	201908/07	Mid-flood	IS17	12:01	Suface	1	1	28.3	7.8	21.3	5.3	5.1	2.5	3.2	7.9	8.1
TMCLKL	HY/2012/08	201908/07	Mid-flood	IS17	12:01	Suface	1	2	28.3	7.8	21.0	5.3		2.6		8.8	
TMCLKL	HY/201208	201908/07	Mid-flood	IS17	12:01	Middle	2	1	28.0	7.8	22.3	4.9		3.5		8.5	
TMCLKL	HY/201208	2019080/07	Mid-flood	IS17	12:01	Middle		2	28.0	7.8	22.0	4.9		3.5		7.6	
TMCLKL	HY/201208	2019080707	Mid-flood	IS17	12:01	Bottom	3	1	27.9	7.8	22.8	4.9	4.9	3.7		8.3	
TMCLKL	HY/201208	201908/07	Mid-flood	IS17	12:01	Botom	3	2	27.9	7.8	22.4	4.9		3.6		7.3	

Figure 1

Email message		Environmental Resources Management
To	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harb 18 Tak Fung Str
From	ERM- Hong Kong, Limited	Hung Hom, Ho Telephone: (852) Facsimile: (852)
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	E-mail: jasmine.
Subject	Notification of Exceedance for Water Quality Impact Monitoring	
Date	16 August 2019	ERM

Dear Sir or Madam,
Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Action Level Exceedance
0212330_12 August 2019_ Bottom DO_E_Station IS(Mf)11
0212330_12 August 2019_ Bottom DO_F_Station IS(Mf)11
```

A total of two Action Level exceedances were recorded on 12 August 2019.
Regards,

Dr Jasmine Ng
Environmental Team Leader

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/08
 Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Action Level Exceedance 0212330_12 August 2019_ Bottom DO_E_Station IS(Mf)11 0212330_12 August 2019_ Bottom DO_F_Station IS(Mf)11 [Total No. of Exceedances = 2]
Date	12 August 2019 (Measured) 15 August 2019 (In situ results received by ERM) 21 August 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Action Level Exceedance for DO ($3.9 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)11 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.3 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Bottom Level during mid-flood tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 12 August 2019.
Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - No discharge of organic matters into waters from landside works area was recorded. - IS(Mf)11 is far away ($>2 \mathrm{~km}$) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Moreover, IS(Mf)16 is closer to the works area and no exceedance was recorded. Therefore, the exceedance is unlikely to be related to this Contract. - Bottom-depth DO levels at IS(Mf)11 was similar to the corresponding control stations, CS(Mf)5, during both mid-ebb and mid-flood tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Action Level.
Actions Taken/ To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 12 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	D (mg/L)	Average DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mg/L)	DepthAveraged SS
TMCLKL	HY/2012/08	2019/08/12	Mid-Ebb	CS(M)5	11:20	Sufface	1	1	29.9	8.0	16.6	6.7	5.9	5.2	7.3	5.5	5.9
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	CS(MA) 5	11:20	Sufface	1	2	29.9	7.9	16.9	6.6		5.3		5.5	
TMCLKL	HY201208	201908/12	Mid-Ebb	CS(M)5	11:20	Middle	2	1	28.6	7.9	20.7	5.2		6.1		6.0	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	CS(Mf) 5	11:20	Middle	2	2	28.6	7.8	21.1	5.2		6.2		5.0	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	CS(M)5	11:20	Bottom	3	1	27.9	7.9	27.4	4.3	4.2	10.5		6.5	
TMCLKL	HY/201208	201908/12	Mid-Ebb	CS(M)5	11:20	Botom	3	2	27.9	7.8	28.4	4.1		10.5		7.1	
TMCLKL	HY/201208	201908/12	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:36	Surface		1	29.8	8.0	15.2	6.3	5.7	5.8	5.9	5.1	4.7
TMCLKL	HY201208	201908/12	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:36	Sufface	1	2	29.8	7.9	15.4	6.3		5.5		5.2	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:36	Middle	2	1	29.1	7.9	19.6	5.1		5.7		4.6	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:36	Middle	2	2	29.1	7.8	20.0	5.0		5.7		3.7	
TMCLKL	HY201208	201908/12	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:36	Botom	3	1	28.7	7.9	23.3	4.5		6.5		4.5	
TMCLKL	HY201208	201908/12	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:36	Botom	3	2	28.7	7.8	23.7	4.4	4.5	6.3		5.1	
TMCLKL	HY/2012/08	2019088/12	Mid-Ebb	IS(Mf)16	9:57	Suface	1	1	30.0	8.1	17.5	7.0	7.0	6.7	5.2	10.4	9.3
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS(Mf)16	9:57	Suface	I	2	30.0	8.0	17.8	7.0		6.9		11.2	
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS(Mf) 16	9:57	Middle	2	1									
TMCLKL	HY201208	201908/12	Mid-Ebb	IS(Mf) 16	9:57	Middle	2	2									
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS(Mf)16	9:57	Botom	3	1	29.7	8.0	19.1	6.4		3.7		7.8	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(Mfl16	9:57	Botom		2	29.7	7.9	19.5	6.4	6.4	3.5		7.7	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4a	9:47	Sufface	1	1	30.1	8.1	16.1	7.4	7.4	3.2	4.8	5.1	5.4
TMCLKL	HY201208	201908/12	Mid-Ebb	SR4a	9:47	Sufface	1	2	30.1	8.0	16.4	7.3		3.4		5.3	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4a	9:47	Middle	2	1									
TMCLKL	HY/201208	201908/12	Mid-Ebb	SR4a	9:47	Middle	2	2									
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4a	9:47	Bottom	3	1	30.0	8.1	16.9	6.8	6.8	6.3		6.2	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4a	9:47	Bottom	3	2	30.0	8.0	17.2	6.7	7.0	6.3		5.1	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4(N2)	9:42	Suface	1	1	30.2	8.1	16.5	7.0		11.0	11.5	6.6	6.1
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4(N2)	9:42	Sufface	1	2	30.2	8.0	16.8	7.0		10.2		6.3	
TMCLKL	HY2012/08	201908/12	Mid-Ebb	SR4(N2)	9:42	Middle	2	1									
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4(N2)	9:42	Middle	2	2									
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR4(N2)	9:42	Botom	3	1	30.2	8.1	16.6	6.8	68	12.1		6.4	
TMCLKL	HY/201208	201908/12	Mid-Ebb	SR4(N2)	9:42	Botom	3	2	30.2	8.0	16.9	6.8		12.7		4.9	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS8(N)	9:37	Suface	1	1	30.2	8.1	16.6	7.6	7.6	5.7	5.5	9.4	7.4
TMCLKL	HY201208	201908/12	Mid-Ebb	IS8(N)	9:37	Sufface	1	2	30.2	8.1	16.9	7.6		5.7		8.4	
TMCLKL	HY/201208	2019088/12	Mid-Ebb	IS8(N)	9:37	Middle	2	1									
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS8(N)	9:37	Middle	2	2									
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS8(N)	9:37	Botom	3	1	30.2	8.1	16.6	7.6	76	5.3		6.0	
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS8(N)	9:37	Botom	3	2	30.2	8.1	16.9	7.6	7.6	5.2		5.8	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(M)9	9:28	Suface		1	30.2	8.1	16.8	7.5	7.5	4.2	5.6	5.5	5.0
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(M)9	9:28	Sufface	1	2	30.2	8.1	17.1	7.4		4.4		6.2	
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS(M)9	9:28	Middle	2	1									
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(M)9	9:28	Middle	2	2									
TMCLKL	HY/2012/08	2019088/12	Mid-Ebb	IS(Mf) 9	9:28	Bottom	3	1	30.2	8.1	16.7	7.5	7.5	6.9		3.8	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(M)9	9:28	Botom		2	30.2	8.1	17.1	7.5	7.5	6.9		4.5	
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS(Mf) 11	10:57	Sufface	1	1	30.1	8.0	15.0	6.9	6.5	4.7	6.3	4.2	5.1
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS(Mf)11	10:57	Surface	1	2	30.1	7.9	15.3	6.8		4.7		4.8	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(Mf)11	10:57	Middle	2	1	29.9	8.0	15.7	6.1		5.8		5.9	
TMCLKL	HY/2012/08	2019088/12	Mid-Ebb	IS(Mf) 11	10:57	Middle	2	2	29.9	7.9	16.0	6.1		5.9		4.7	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(Mf)11	10:57	Botom	3	1	28.0	7.9	27.0	3.9	3.9	8.4		5.1	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS(Mf) 11	10:57	Botom	3	2	28.0	7.8	27.6	3.8		8.4		5.7	
TMCLKL	HY/201208	201908/12	Mid-Ebb	SR7	11:03	Suface	1	1	30.1	8.0	15.1	7.0	7.0	4.4	4.7	3.5	4.4
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR7	11:03	Suface	1	2	30.1	7.9	15.3	7.0		4.5		4.7	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR7	11:03	Middle	2	1									
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR7	11:03	Middle	2	2									
TMCLKL	HY/201208	201908/12	Mid-Ebb	SR7	11:03	Bottom		1	30.0	8.0	15.2	6.9	6.9	4.8		4.5	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	SR7	11:03	Botom	3	2	30.0	7.9	15.5	6.9		4.9		5.0	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS17	10:03	Suface	1	1	29.9	8.0	16.6	6.7	6.7	4.2	3.8	6.2	5.9
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS17	10:03	Suface	1	2	29.9	7.9	16.9	6.7		4.9		6.1	
TMCLKL	HY/2012/08	201908/12	Mid-Ebb	IS17	10:03	Middle	2	1	29.6	8.0	16.9	6.6		3.3		5.5	
TMCLKL	HY/201208	201908/12	Mid-Ebb	IS17	10:03	Middle	2	2	29.6	7.9	17.2	6.6		3.9		5.8	

Figure 1

Email message		Environmental Resources Management
To	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harb 18 Tak Fung Str
From	ERM- Hong Kong, Limited	Hung Hom, Ho Telephone: (852) Facsimile: (852)
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	E-mail: jasmine
Subject	Notification of Exceedance for Water Quality Impact Monitoring	
Date	20 August 2019	ERM

Dear Sir or Madam,

Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Action Level Exceedance
0212330_14 August 2019_ Bottom DO_E_Station IS(Mf)16
0212330_14 August 2019_ Bottom DO_E_Station IS17
0212330_14 August 2019_ Bottom DO_F_Station IS(Mf)11
```

A total of three Action Level exceedances were recorded on 14 August 2019.

Dr Jasmine Ng
Environmental Team Leader

ERM-Hong Kong, Limited
 \title{
CONTRACT NO. HY/2012/08
 \title{
CONTRACT NO. HY/2012/08
 Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section
}

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Action Level Exceedance 0212330_14 August 2019_ Bottom DO_E_Station IS(Mf)16 0212330_14 August 2019_Bottom DO_E_Station IS17 0212330_14 August 2019_ Bottom DO_F_Station IS(Mf)11 [Total No. of Exceedances = 3]
Date	14 August 2019 (Measured) 16 August 2019 (In situ results received by ERM) 23 August 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Action Level Exceedance for DO ($4.6 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)16 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO $(4.4 \mathrm{mg} / \mathrm{L})$ is observed at IS17 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.6 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)11 at Bottom Level during mid-flood tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 14 August 2019.
Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - No discharge of organic matters into waters from landside works area was recorded. - IS(Mf) 11 is far away ($>2 \mathrm{~km}$) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Therefore, the exceedance is unlikely to be related to this Contract. - The DO pattern at IS(Mf)16 and IS17 during mid-ebb tide and IS(Mf) 11 during mid-flood tide were similar to the their corresponding control station where the bottom-depth DO levels were generally lower. Lower bottom-depth DO levels may be possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level.
Actions Taken/ To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 14 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	D (mg/L)	Average DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	DepthAveraged Turbidity	SS (mg/L)	DepthAveraged SS
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	CS(Mf)	12:46	Suface	1	1	30.1	8.0	18.4	6.1	5.6	3.0	5.1	4.2	6.1
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	CS(M)5	12:46	Sufface	1	2	30.0	8.0	18.4	6.1		3.0		4.1	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	CS(Mf) 5	12:46	Middle	2	1	29.3	7.9	21.1	5.0		4.5		4.5	
TMCLKL	HY/201208	201908/14	Mid-Ebb	CS(M)5	12:46	Middle	2	2	29.3	7.9	21.2	5.0		4.6		5.7	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	CS(M)5	12:46	Botom	3	1	28.0	7.9	26.6	3.8	3.8	7.7		8.8	
TMCLKL	HY/201208	201908/14	Mid-Ebb	CS(Mf) 5	12:46	Botom	3	2	28.0	7.9	26.6	3.8		7.6		9.2	
TMCLKL	HY/201208	201908/14	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:03	Sufface	1	1	30.6	7.9	16.4	6.1	5.8	2.9	3.8	7.0	8.3
TMCLKL	HY/201208	201908/14	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf} 33 \mathrm{~N})$	12:03	Surface	1	2	30.6	7.9	16.5	6.1		2.9		6.8	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:03	Middle	2	1	29.7	7.9	18.9	5.4		3.9		6.9	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:03	Middle	2	2	29.7	7.9	18.9	5.4		3.8		8.4	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	$\mathrm{CS}(\mathrm{Mff} 3) \mathrm{N})$	12:03	Botom	3	1	29.6	7.9	19.7	5.3		4.5		10.5	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:03	Botom	3	2	29.7	7.9	19.6	5.3	5.3	4.5		10.1	
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS(Mf)16	11:16	Surface	1	1	30.1	8.0	18.5	6.2	6.2	4.8	7.4	5.1	6.6
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(Mfl16	11:16	Surface	1	2	30.2	8.0	18.5	6.2		4.8		5.4	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(Mf)16	11:16	Middle	2	1									
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS(Mf)16	11:16	Middle	2	2									
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(Mf)16	11:16	Botom		1	28.6	7.9	24.5	4.6	46	9.9		7.8	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(Mf) 16	11:16	Botom	3	2	28.6	7.9	24.4	4.6	4.6	9.9		8.2	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR4a	11:05	Surface	1	1	30.4	8.0	17.4	6.4	6.4	3.2	4.1	6.6	7.6
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR4a	11:05	Sufface	1	2	30.4	8.0	17.3	6.4		3.2		7.3	
TMCLKL	HY/201208	201908/14	Mid-Ebb	SR4a	11:05	Middle	2	1									
TMCLKL	HY/201208	201908/14	Mid-Ebb	SR4a	11:05	Middle	2	2									
TMCLKL	HY/2012/08	2019/08/14	Mid-Ebb	SR4a	11:05	Botom	3	1	30.0	7.9	18.6	5.6		4.9		8.3	
TMCLKL	HY/201208	201908/14	Mid-Ebb	SR4a	11:05	Botom	3	2	30.0	7.9	18.6	5.6	5.6	4.9		8.2	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR4(N2)	11:00	Sufface	1	1	30.5	8.0	17.4	6.3	6.3	3.3	5.8	5.1	6.4
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR4(N2)	11:00	Sufface	1	2	30.5	8.0	17.4	6.3		3.3		6.3	
TMCLKL	HY/201208	201908/14	Mid-Ebb	SR4(N2)	11:00	Middle	2	1									
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR4(N2)	11:00	Middle	2	2									
TMCLKL	HY2012/08	201908/14	Mid-Ebb	SR4(N2)	11:00	Botom	3	1	30.0	7.9	18.8	5.6		8.2		7.2	
TMCLKL	HY/201208	201908/14	Mid-Ebb	SR4(N2)	11:00	Botom	3	2	30.0	7.9	18.8	5.6	5.6	8.2		6.9	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS8(N)	10:55	Suface	1	1	30.4	8.0	18.2	6.1	6.1	9.9	11.0	4.3	6.0
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS8(N)	10:55	Surface	1	2	30.4	8.0	18.2	6.1		9.9		4.1	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS8(N)	10:55	Middle	2	1									
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS8(N)	10:55	Middle	2	2									
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS8(N)	10:55	Bottom	3	1	29.9	8.0	19.0	5.6	5.6	12.2		7.2	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS8(N)	10:55	Botom	3	2	29.9	8.0	19.0	5.6	5.6	12.1		8.4	
TMCLKL	HY2012/08	201908/14	Mid-Ebb	IS(M)9	10:48	Sufface	1	1	30.6	8.1	17.7	6.6	6.6	3.3	3.5	7.5	8.0
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(M)9	10:48	Sufface	1	2	30.6	8.1	17.7	6.6		3.3		7.5	
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS(MI) 9	10:48	Middle	2	1									
TMCLKL	HY2012/08	201908/14	Mid-Ebb	IS(Mf)	10:48	Middle	2	2									
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(Mf) 9	10:48	Bottom		1	30.4	8.1	17.8	6.5	65	3.6		7.9	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(M)9	10:48	Botom	3	2	30.4	8.1	17.8	6.4		3.6		9.0	
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS(Mf) 11	11:31	Sufface	1	1	30.2	8.0	16.9	6.3	6.0	2.7	3.4	4.6	7.6
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(Mf) 11	11:31	Suface	1	2	30.2	8.0	17.0	6.3		2.6		5.1	
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS(Mf)11	11:31	Middle	2	1	29.7	7.9	18.4	5.6		3.3		7.2	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS(Mf) 11	11:31	Middle	2	2	29.7	7.9	18.4	5.6		3.2		8.3	
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS(Mf) 11	11:31	Botom	3	1	29.6	7.9	19.0	5.5	5.5	4.2		10.2	
TMCLKL	HY2012/08	201908/14	Mid-Ebb	IS(Mf) 11	11:31	Botom	3	2	29.6	7.9	19.0	5.5	5.5	4.2		10.4	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR7	12:26	Sufface	1	1	30.2	7.9	16.8	6.3	6.3	2.2	2.9	5.4	5.7
TMCLKL	HY/201208	201908/14	Mid-Ebb	SR7	12:26	Surface	1	2	30.2	8.0	16.8	6.3		2.2		5.6	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR7	12:26	Middle	2	1									
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR7	12:26	Middle	2	2									
TMCLKL	HY201208	201908/14	Mid-Ebb	SR7	12:26	Botom	3	1	29.8	7.9	18.7	5.7	57	3.6		5.8	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	SR7	12:26	Bottom	3	2	29.8	7.9	18.6	5.7		3.5		6.1	
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS17	11:22	Suface	1	1	30.3	8.0	18.5	6.3	6.1	4.9	5.2	5.0	5.9
TMCLKL	HY201208	201908/14	Mid-Ebb	IS17	11:22	Suface	1	2	30.3	8.0	18.5	6.3		4.9		4.3	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS17	11:22	Middle	2	1	29.9	8.0	19.1	5.9		3.8		4.7	
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS17	11:22	Middle	2	2	29.9	8.0	19.0	5.9		3.8		5.6	

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	D (mgL)	Average DO DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mg/L)	$\begin{array}{\|c} \hline \text { Depth- } \\ \text { Averaged } \\ \text { SS } \end{array}$
TMCLKL	HY/2012/08	201908/14	Mid-Ebb	IS17	11:22	Bottom	3	1	28.5	7.9	25.0	4.4	4.4	6.8		7.7	
TMCLKL	HY/201208	201908/14	Mid-Ebb	IS17	11:22	Botom	3	2	28.5	7.9	25.0	4.4		6.8		7.9	
TMCLKL	HY/201208	201908/14	Mid-flood	CS(Mf) 5	4:38	Sufface	1	1	30.1	7.9	16.8	6.2	6.1	3.2	2.4	6.3	7.9
TMCLKL	HY/2012/08	201908/14	Mid-flood	CS(Mf) 5	4:38	Sufface	1	2	30.1	7.9	16.8	6.2		3.2		7.3	
TMCLKL	HY/201208	201908/14	Mid-flood	CS(Mf) 5	4:38	Middle	2	1	29.9	7.9	19.2	6.0		2.0		8.1	
TMCLKL	HY/201208	201908/14	Mid-flood	CS(Mf) 5	4:38	Middle	2	2	29.9	7.9	19.2	6.0		2.0		7.5	
TMCLKL	HY/2012108	201908/14	Mid-flood	CS(M) 5	4:38	Botom	3	1	28.5	7.9	25.3	4.7	4.7	2.0		9.7	
TMCLKL	HY/2012108	201908/14	Mid-flood	CS(M) 5	4:38	Botom	3	2	28.5	7.9	25.3	4.7	4.7	2.0		8.3	
TMCLKL	HY/201208	201908/14	Mid-flood	CS(Mf)3(N)	5:56	Sufface	1	1	29.9	7.9	16.6	6.0	6.0	4.2	5.9	4.3	6.2
TMCLKL	HY/201208	201908/14	Mid-flood	CS(Mf)3(N)	5:56	Sufface	1	2	29.9	7.9	16.6	6.0		4.2		5.1	
TMCLKL	HY/2012108	201908/14	Mid-flood	CS(MP)3(N)	5:56	Middle	2	1	29.9	7.9	17.1	5.9		4.0		6.6	
TMCLKL	HY/2012/08	201908/14	Mid-flood	CS(Mf)3(N)	5:56	Middle	2	2	29.9	7.9	17.1	5.9		4.0		6.1	
TMCLKL	HY/201208	201908/14	Mid-flood	CS(Mf3(${ }^{\text {(}}$)	5:56	Botom	3	1	29.7	7.9	18.9	5.5		9.4		7.5	
TMCLKL	HY/201208	201908/14	Mid-flood	CS(Mf)3(N)	5:56	Botom	3	2	29.7	7.9	18.9	5.4		9.3		7.6	
TMCLKL	HY/2012/08	201908/14	Mid-flood	IS(Mf) 16	6:18	Sufface	1	1	30.0	8.0	18.0	6.2	6.2	3.5	3.5	6.9	7.9
TMCLKL	HY/201208	201908/14	Mid-flood	IS(Mf) 16	6:18	Sufface	1	2	30.0	8.0	18.1	6.2		3.5		7.5	
TMCLKL	HY/201208	2019/08/14	Mid-flood	IS(Mf) 16	6:18	Middle	2	1									
TMCLKL	HY/2012/08	201908/14	Mid-flood	IS(Mf) 16	6:18	Middle	2	2									
TMCLKL	HY/201208	201908/14	Mid-flood	IS(Mf) 16	6:18	Botom	3	1	30.0	8.0	18.0	6.2		3.6		8.0	
TMCLKL	HY/201208	201908/14	Mid-flood	IS(Mf) 16	6:18	Botom	3	2	30.0	8.0	18.0	6.2	6.2	3.5		9.0	
TMCLKL	HY/2012108	201908/14	Mid-flood	SR4a	6:27	Suface	1	1	30.2	8.0	17.5	5.9	6.0	4.1	5.6	5.5	6.4
TMCLKL	HY/201208	2019/08/14	Mid-flood	SR4a	6:27	Sufface	1	2	30.2	8.0	17.5	6.0		4.1		6.0	
TMCLKL	HY/2012108	201908/14	Mid-flood	SR4a	$6: 27$	Middle	2	1									
TMCLKL	HY/2012108	201908/14	Mid-flood	SR4a	6:27	Middle	2	2									
TMCLKL	HY/201208	201908/14	Mid-flood	SR4a	$6: 27$	Botom	3	1	29.9	7.9	18.7	5.3		7.1		6.2	
TMCLKL	HY/2012/08	201908/14	Mid-flood	SR4a	6:27	Botom	3	2	29.9	7.9	18.7	5.3	5.3	7.1		7.7	
TMCLKL	HY/2012/08	201908/14	Mid-flood	SR4(N2)	6:32	Sufface	1	1	30.1	8.0	17.2	6.1	6.1	3.5	4.4	6.4	5.8
TMCLKL	HY/201208	201908/14	Mid-flood	SR4(N2)	6:32	Sufface	1	2	30.1	8.0	17.2	6.1		3.4		5.6	
TMCLKL	HY/2012108	201908/14	Mid-flood	SR4(N2)	6:32	Middle	2	1									
TMCLKL	HY/201208	201908/14	Mid-flood	SR4(N2)	6:32	Middle	2	2									
TMCLKL	HY/2012108	201908/14	Mid-flood	SR4(N2)	6:32	Bottom	3		30.0	8.0	18.0	5.9		5.4		6.0	
TMCLKL	HY/201208	201908/14	Mid-flood	SR4(N2)	6:32	Botom	3	2	30.0	8.0	18.0	5.9	5.9	5.3		5.2	
TMCLKL	HY/201208	201908/14	Mid-flood	IS8(N)	6:38	Sufface	1	1	30.0	8.0	17.3	6.1	6.1	4.1	4.7	10.0	13.6
TMCLKL	HY/201208	2019/08/14	Mid-flood	IS8(N)	6:38	Sufface	1	2	30.0	8.0	17.3	6.1		4.2		10.2	
TMCLKL	HY/201208	2019/08/14	Mid-flood	IS8(N)	6:38	Middle	2										
TMCLKL	HY/201208	201908/14	Mid-flood	IS8(N)	6:38	Middle	2	2									
TMCLKL	HY/201208	201908/14	Mid-flood	IS8(N)	6:38	Bottom	3	1	30.0	8.0	17.5	6.0	6.0	5.3		17.1	
TMCLKL	HY/201208	201908/14	Mid-flood	IS8(N)	6:38	Bottom	3	2	30.0	8.0	17.5	6.0		5.3		16.9	
TMCLKL	HY/2012/08	201908/14	Mid-flood	IS(M)9	6:45	Suface	1	1	29.9	8.0	17.3	6.1	6.1	4.8	5.9	6.3	8.9
TMCLKL	HY/2012108	201908/14	Mid-flood	IS(Mf)	6:45	Suface	1	2	29.9	8.0	17.3	6.1		4.9		6.1	
TMCLKL	HY/2012/08	201908/14	Mid-flood	IS(Mf) 9	6:45	Middle	2	1									
TMCLKL	HY/201208	2019/08/14	Mid-flood	IS(M) ${ }^{\text {a }}$	6:45	Middle	2	2									
TMCLKL	HY/201208	201908/14	Mid-flood	IS(Mf) 9	6:45	Botom	3	1	29.9	8.0	17.8	6.1	6.1	6.9		11.9	
TMCLKL	HY/2012108	201908/14	Mid-flood	IS(M)9	6:45	Botom	3	2	29.9	8.0	17.8	6.1		7.0		11.1	
TMCLKL	HY/201208	201908/14	Mid-flood	IS(Mf) 11	6:00	Sufface		1	30.1	8.0	17.2	6.2	5.8	3.6	8.0	4.4	6.4
TMCLKL	HY/2012/08	201908/14	Mid-flood	IS(Mf) 11	6:00	Sufface	1	2	30.1	8.0	17.2	6.2		3.6		4.2	
TMCLKL	HY/2012/08	201908/14	Mid-flood	IS(Mf) 11	6:00	Middle	2	1	29.5	8.0	20.6	5.3		4.8		7.3	
TMCLKL	HY/201208	201908/14	Mid-flood	IS(Mf)11	6:00	Middle	2	2	29.5	8.0	20.7	5.3		4.8		6.5	
TMCLKL	HY/201208	201908/14	Mid-flood	IS(Mf)11	6:00	Bottom	3	1	28.7	7.9	24.5	4.6	4.6	15.7		8.4	
TMCLKL	HY/2012/08	201908/14	Mid-flood	IS(Mf) 11	6:00	Bottom	3	2	28.7	7.9	24.5	4.6		15.7		7.3	
TMCLKL	HY/2012108	201908/14	Mid-flood	SR7	4:58	Suface	1	1	30.0	7.9	17.1	5.9	5.9	3.6	3.6	5.8	6.4
TMCLKL	HY/2012108	201908/14	Mid-flood	SR7	4:58	Sufface	1	2	30.0	7.9	17.1	5.9		3.6		5.4	
TMCLKL	HY/201208	201908/14	Mid-flood	SR7	4:58	Middle											
TMCLKL	HY/201208	201908/14	Mid-flood	SR7	4:58	Middle	2	2									
TMCLKL	HY/2012/08	201908/14	Mid-flood	SR7	4:58	Bottom	3	1	29.9	7.9	17.4	6.0	6.0	3.6		6.9	
TMCLKL	HY/2012/08	201908/14	Mid-flood	SR7	4:58	Bottom	3	2	29.9	7.9	17.4	6.0		3.6		7.4	
TMCLKL	HY/201208	201908/14	Mid-flood	IS17	6:11	Sufface	1	1	30.0	8.0	18.0	6.2	6.2	3.4	3.3	7.1	7.3
TMCLKL	HY/201208	201908/14	Mid-flood	IS17	6:11	Sufface	I	2	30.0	8.0	18.0	6.2		3.4		6.4	
TMCLKL	HY/2012108	201908/14	Mid-flood	IS17	6:11	Middle	,	1	30.0	8.0	18.1	6.1		3.4		6.2	
TMCLKL	HY/201208	201908/14	Mid-flood	IS17	6:11	Middle	2	2	30.0	8.0	18.2	$\frac{6.1}{59}$		3.4		6.7	
TMCLKL	HY/201208	201908/14	Mid-flood	IS17	6:11	${ }_{\text {Bottom }}$	3	1	$\frac{29.8}{29.8}$	8.0 8.0	18.9	5.9	5.9	$\frac{.1}{3.1}$		$\frac{8.1}{9.2}$	
	H12008	2	mar	S													

Figure 1

Email message		Environmental Resources Management
To	Ramboll Hong Kong Limited (ENPO)	$\begin{aligned} & \text { 2507, } \\ & \text { 25/F One Harbo } \\ & 18 \text { Tak Fung Stre } \end{aligned}$
From	ERM- Hong Kong, Limited	Hung Hom, Ho Telephone: (852) Facsimile: (852)
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	E-mail: jasmine.
Subject	Notification of Exceedance for Water Quality Impact Monitoring	
Date	30 August 2019	ERM

Dear Sir or Madam,
Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Action Level Exceedance
0212330_19 August 2019_Surface & Middle DO_E_Station IS(Mf)16
0212330_19 August 2019_ Bottom DO_E_Station IS(Mf)16
0212330_19 August 2019_Surface & Middle DO_E_Station SR4a
0212330_19 August 2019_ Bottom DO_E_Station SR4a
0212330_19 August 2019_Surface & Middle DO_E_Station SR4(N2)
0212330_19 August 2019_Bottom DO_E_Station SR4(N2)
0212330_19 August 2019_ Bottom DO_E_Station IS8(N)
0212330_19 August 2019_ Bottom DO_E_Station IS(Mf)11
0212330_19 August 2019_ Bottom DO_E_Station IS17
0212330_19 August 2019_Surface & Middle DO_F_Station IS(Mf)11
0212330_19 August 2019_ Bottom DO_F_Station IS(Mf)11
```

A total of eleven Action Level exceedances were recorded on 19 August 2019.

Regards,

Dr Jasmine Ng
Environmental Team Leader

CONTRACT NO. HY/2012/08

Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Action Level Exceedance 0212330_19 August 2019_ Surface \& Middle DO_E_Station IS(Mf)16 0212330_19 August 2019_Bottom DO_E_Station IS(Mf)16 0212330_19 August 2019_ Surface \& Middle DO_E_Station SR4a 0212330_19 August 2019_ Bottom DO_E_Station SR4a 0212330_19 August 2019_Surface \& Middle DO_E_Station SR4(N2) 0212330_19 August 2019_ Bottom DO_E_Station SR4(N2) 0212330_19 August 2019_ Bottom DO_E_Station IS8(N) 0212330_19 August 2019_ Bottom DO_E_Station IS(Mf)11 0212330_19 August 2019_ Bottom DO_E_Station IS17 0212330_19 August 2019_ Surface \& Middle DO_F_Station IS(Mf)11 0212330_19 August 2019_ Bottom DO_F_Station IS(Mf)11 [Total No. of Exceedances $=11]$
Date	19 August 2019 (Measured) 21 August 2019 (In situ results received by ERM) 28 August 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)16 at Surface \& Middle Level during midebb tide. Action Level Exceedance for DO ($4.3 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 16 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.7 \mathrm{mg} / \mathrm{L}$) is observed at SR4a at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.5 \mathrm{mg} / \mathrm{L}$) is observed at SR4a at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at SR4(N2) at Surface \& Middle Level during midebb tide. Action Level Exceedance for DO ($4.6 \mathrm{mg} / \mathrm{L}$) is observed at SR4(N2) at Bottom Level during mid-ebb tide. Action Level Exceedance for DO $(4.6 \mathrm{mg} / \mathrm{L})$ is observed at IS8(N) at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.2 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.2 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.7 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Surface \& Middle Level during midflood tide. Action Level Exceedance for DO ($4.3 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Bottom Level during mid-flood tide..
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 19 August 2019.

Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - No discharge of organic matters into waters from landside works area was recorded. - IS(Mf)11, SR4a, SR4(N2) and IS8(N) are far away (>1.5 km) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Therefore, the exceedance is unlikely to be related to this Contract. - The DO pattern at IS(Mf)16, SR4a, SR4(N2), IS8(N), IS(Mf)11 and IS17 during mid-ebb tide and IS(Mf)11 during mid-flood tide were similar to the their corresponding control station where the bottom-depth DO levels were generally lower. Lower bottom-depth DO levels may be possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level. - Bottom-depth DO levels at IS(Mf)11 was similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Action Level. - Surface \& Middle-depth DO levels at IS(Mf)11 were similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Surface \& Middle-depth DO levels at the corresponding control station were below Action Level. - As reported by the marine mammal observer, no discharge of organic matters into waters from landside works area was recorded. Therefore, the exceedance recorded at IS(Mf) 16 during mid-ebb tide is likely to be due to natural fluctuation of water quality and is unlikely to be related to this Contract. Exceedances recorded at SR4a, SR4(N2), IS8(N), IS(Mf)11 and IS17 during mid-ebb tide and IS(Mf)11 during mid-flood tide are unlikely to be related to this Contract as these stations are further than IS(Mf)16.
Actions Taken / To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 19 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	D (mg/L)	Average DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mg/L)	DepthAveraged SS
TMCLKL	HY/2012/08	2019/08/19	Mid-Ebb	CS(M)5	15:37	Sufface	1	1	28.2	8.0	22.2	5.0	4.6	3.8	8.9	3.8	4.0
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	CS(M)5	15:37	Sufface	1	2	28.9	7.9	21.8	5.0		4.1		3.6	
TMCLKL	HY201208	201908/19	Mid-Ebb	CS(M)5	15:37	Middle	2	1	26.6	8.0	26.8	4.1		8.2		3.6	
TMCLKL	HY/201208	201908/19	Mid-Ebb	CS(MA)	15:37	Middle	2	2	27.3	7.9	26.4	4.1		8.0		3.7	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	CS(M)5	15:37	Bottom	3	1	25.8	8.1	30.1	3.8	3.8	14.4		4.7	
TMCLKL	HY/201208	201908/19	Mid-Ebb	CS(M)5	15:37	Botom	3	2	26.5	7.9	29.7	3.7		14.6		4.7	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	$\mathrm{CS}(\mathrm{Mfl3} 3 \mathrm{~N})$	14:43	Suface	1	1	28.9	8.0	19.6	5.6	5.3	3.0	4.9	1.9	2.1
TMCLKL	HY201208	201908/19	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	14:43	Sufface	1	2	29.7	7.9	19.2	5.5		3.1		1.9	
TMCLKL	HY/201208	201908/19	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	14:43	Middle	2	1	28.0	8.0	22.9	5.1		4.8		2.1	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	14:43	Middle	2	2	28.8	7.9	22.4	5.1		4.9		2.1	
TMCLKL	HY201208	201908/19	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	14:43	Botom	3	1	27.5	8.0	24.5	4.9		6.5		2.4	
TMCLKL	HY201208	201908/19	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	14:43	Botom	3	2	28.3	7.9	24.0	4.7	4.8	6.9		2.4	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(Mf) 16	13:56	Sufface	1	1	27.8	8.1	23.3	4.8	4.8	7.8	6.4	9.2	8.7
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(Mf)16	13:56	Suface	1	2	28.6	7.9	22.9	4.8		7.2		8.8	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(Mf) 16	13:56	Middle	2	1									
TMCLKL	HY201208	201908/19	Mid-Ebb	IS(Mf) 16	13:56	Middle	2	2									
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(Mf16	13:56	Bottom	3	1	26.2	8.0	28.5	4.4	43	5.2		8.5	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS(Mf) 16	13:56	Bottom		2	27.0	7.9	28.1	4.2		5.4		8.2	
TMCLKL	HY/201208	201908/19	Mid-Ebb	SR4a	13:47	Suface	1	1	27.8	8.0	22.9	4.6	4.7	8.6	10.1	8.9	6.1
TMCLKL	HY201208	2019/08/19	Mid-Ebb	SR4a	13:47	Sufface	1	2	28.5	7.9	22.6	4.7		8.2		8.3	
TMCLKL	HY/2012/08	2019/08/19	Mid-Ebb	SR4a	13:47	Middle	2	1									
TMCLKL	HY/201208	201908/19	Mid-Ebb	SR4a	13:47	Middle	2	2									
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR4a	13:47	Bottom	3	1	27.6	8.0	23.7	4.5	45	11.9		3.4	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR4a	13:47	Bottom	3	2	28.4	7.9	23.3	4.5	4.8	11.8		3.7	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR4(N2)	13:42	Suface	1	1	28.0	8.0	22.3	4.7		10.0	10.8	8.4	9.0
TMCLKL	HY/201208	201908/19	Mid-Ebb	SR4(N2)	13:42	Surface	1	2	28.7	7.9	22.0	4.8		10.0		8.1	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR4(N2)	13:42	Middle	2	1									
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR4(N2)	13:42	Middle		2									
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR4(N2)	13:42	Botom	3	1	27.8	8.0	22.8	4.6		11.7		9.7	
TMCLKL	HY201208	201908/19	Mid-Ebb	SR4(N2)	13:42	Botom	3	2	28.6	7.9	22.5	4.6		11.6		9.6	
TMCLKL	HY/2012/08	2019/08/19	Mid-Ebb	IS8(N)	13:36	Suface	1	1	27.9	8.1	22.9	5.1	5.1	10.6	10.7	14.4	12.1
TMCLKL	HY201208	201908/19	Mid-Ebb	IS8(N)	13:36	Sufface	1	2	28.6	7.9	22.7	5.1		10.4		13.4	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS8(N)	13:36	Middle	2	1									
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS8(N)	13:36	Middle	2	2									
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS8(N)	13:36	Botom	3	1	27.6	8.1	23.8	4.6		10.9		10.6	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS8(N)	13:36	Botom	3	2	28.3	7.9	23.5	4.5	4.6	10.9		9.9	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS(M)9	13:30	Suface		1	28.7	8.0	21.4	5.6	5.6	3.9	4.6	8.1	6.1
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS(M) ${ }^{\text {a }}$	13:30	Sufface	1	2	29.5	8.0	21.1	5.6		4.1		7.8	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(M)9	13:30	Middle	2	1									
TMCLKL	HY/2012/08	2019/08/19	Mid-Ebb	IS(M)9	13:30	Middle	2	2									
TMCLKL	HY/2012/08	2019/08/19	Mid-Ebb	IS(Mf) 9	13:30	Bottom	3	1	28.4	8.0	21.6	5.5	5.5	5.2		4.5	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS(M)9	13:30	Bottom	3	2	29.1	8.0	21.3	5.5		5.1		4.0	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(Mf) 11	15:07	Sufface	1	1	29.3	8.1	19.7	5.7	5.4	2.3	4.1	2.4	1.8
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(Mf)11	15:07	Surface	1	2	30.1	7.9	19.4	5.6		2.4		2.7	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS(Mf)11	15:07	Middle	2	1	28.6	8.1	20.5	5.2		3.3		1.6	
TMCLKL	HY/2012/08	2019/08/19	Mid-Ebb	IS(Mf) 11	15:07	Middle	2	2	29.4	7.9	20.1	5.2		3.4		1.5	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS(Mf) 11	15:07	Botom		,	26.3	8.1	28.6	4.2		6.4		1.5	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS(Mf)11	15:07	Botom	3	2	27.1	7.9	28.0	4.1	4.2	6.9		1.3	
TMCLKL	HY/201208	201908/19	Mid-Ebb	SR7	15:16	Suface	1	1	28.5	8.1	20.9	5.4	5.4	2.9	3.5	1.9	2.2
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR7	15:16	Suface	1	2	29.3	7.9	20.5	5.4		3.0		1.6	
TMCLKL	HY/201208	201908/19	Mid-Ebb	SR7	15:16	Middle	2	1									
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	SR7	15:16	Middle	2	2									
TMCLKL	HY/201208	201908/19	Mid-Ebb	SR7	15:16	Botom		1	28.2	8.1	21.5	5.4	5.4	4.0		2.4	
TMCLKL	HY/2012/08	2019/08/19	Mid-Ebb	SR7	15:16	Botom	3	2	29.0	7.9	21.2	5.3		4.0		2.9	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS17	14:03	Suface	1	1	28.8	8.0	20.2	5.3	5.1	3.8	6.3	2.7	5.0
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS17	14:03	Suface	1	2	29.6	7.9	20.0	5.3		3.9		3.1	
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS17	14:03	Middle	2	1	27.8	8.0	22.4	5.0		6.2		4.7	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS17	14:03	Middle	2	2	28.4	7.9	22.3	4.9		6.5		4.2	

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	D (mgL)	Average DO DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mg/L)	$\begin{array}{\|c} \hline \text { Depth- } \\ \text { Averaged } \\ \text { SS } \end{array}$
TMCLKL	HY/2012/08	201908/19	Mid-Ebb	IS17	14:03	Bottom	3	1	27.0	8.1	26.8	4.2	4.2	8.9		7.6	
TMCLKL	HY/201208	201908/19	Mid-Ebb	IS17	14:03	Botom	3	2	27.9	7.9	26.6	4.1		8.3		7.8	
TMCLKL	HY/201208	201908/19	Mid-flood	CS(Mf) 5	7:56	Sufface	1	1	28.8	7.8	20.1	5.0	4.6	3.3	6.6	3.1	3.6
TMCLKL	HY/2012/08	201908/19	Mid-flood	CS(Mf) 5	7:56	Sufface	1	2	28.0	8.0	20.4	5.0		3.3		2.7	
TMCLKL	HY/201208	201908/19	Mid-flood	CS(Mf) 5	7:56	Middle	2	1	27.6	7.8	25.7	4.2		4.9		3.6	
TMCLKL	HY/201208	201908/19	Mid-flood	CS(Mf) 5	7.:56	Middle	2	2	26.8	8.0	26.2	4.2		4.9		3.7	
TMCLKL	HY/2012108	201908/19	Mid-flood	CS(M) 5	7.56	Botom	3	1	26.7	7.8	29.5	3.7	3.8	11.5		4.1	
TMCLKL	HY/2012108	201908/19	Mid-flood	CS(M) 5	7.56	Botom	3	2	25.9	8.0	29.9	3.8	3.8	11.5		4.1	
TMCLKL	HY/201208	201908/19	Mid-flood	CS(Mf)3(N)	8:44	Sufface	1	1	28.4	8.0	17.0	5.5	5.4	3.7	4.3	5.5	4.7
TMCLKL	HY/201208	201908/19	Mid-flood	CS(Mf)3(N)	8:44	Sufface	1	2	29.2	7.9	16.7	5.5		3.7		5.2	
TMCLKL	HY/2012108	201908/19	Mid-flood	CS(MP)3(N)	8:44	Middle	2	1	28.2	8.0	19.2	5.4		4.6		4.2	
TMCLKL	HY/2012/08	201908/19	Mid-flood	CS(Mf)3(N)	8:44	Middle	2	2	29.0	7.8	18.9	5.3		4.7		4.7	
TMCLKL	HY/2012108	201908/19	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3(\mathrm{~N})$	8:44	Botom	3	1	28.2	8.0	19.4	5.4	54	4.6		4.4	
TMCLKL	HY/201208	201908/19	Mid-flood	CS(Mf)3(N)	8:44	Botom	3	2	29.0	7.9	19.1	5.3		4.7		4.4	
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS(Mf) 16	9:28	Sufface	1	1	28.0	8.1	21.6	5.2	5.2	4.5	6.0	2.6	3.6
TMCLKL	HY/201208	201908/19	Mid-flood	IS(Mf) 16	9:28	Sufface	1	2	28.7	7.9	21.3	5.2		4.9		2.7	
TMCLKL	HY/201208	2019/08/19	Mid-flood	IS(Mf) 16	9:28	Middle	2	1									
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS(Mf) 16	9:28	Middle	2	2									
TMCLKL	HY/201208	201908/19	Mid-flood	IS(Mf) 16	9:28	Botom	3	1	27.8	8.1	22.2	5.3		7.4		4.4	
TMCLKL	HY/201208	201908/19	Mid-flood	IS(Mf) 16	9:28	Botom	3	2	28.6	8.0	21.8	5.1	5.2	7.3		4.8	
TMCLKL	HY/2012108	201908/19	Mid-flood	SR4a	9:37	Suface	1	1	28.0	8.1	21.2	5.2	5.2	4.7	6.6	5.2	5.4
TMCLKL	HY/201208	201908/19	Mid-flood	SR4a	9:37	Sufface	1	2	28.7	7.9	20.9	5.2		4.8		4.8	
TMCLKL	HY/2012108	201908/19	Mid-flood	SR4a	9:37	Middle	2	1									
TMCLKL	HY/2012108	201908/19	Mid-flood	SR4a	9:37	Middle	2	2									
TMCLKL	HY/201208	201908/19	Mid-flood	SR4a	9:37	Botom	3	1	27.9	8.1	21.9	4.9		8.2		5.8	
TMCLKL	HY/2012/08	2019/08/19	Mid-flood	SR4a	9:37	Botom	3	2	28.6	8.0	21.6	4.9	4.9	8.8		5.8	
TMCLKL	HY/2012/08	201908/19	Mid-flood	SR4(N2)	9:42	Sufface	1	1	28.0	8.1	21.1	5.4	5.4	4.4	4.9	8.6	6.6
TMCLKL	HY/201208	201908/19	Mid-flood	SR4(N2)	9:42	Sufface	1	2	28.8	7.9	20.7	5.3		4.4		8.7	
TMCLKL	HY/2012108	201908/19	Mid-flood	SR4(N2)	9:42	Middle	2	1									
TMCLKL	HY/201208	201908/19	Mid-flood	SR4(N2)	9:42	Middle	2	2									
TMCLKL	HY/201208	2019/08/19	Mid-flood	SR4(N2)	9:42	Botom	3		28.0	8.1	21.2	5.5		5.9		4.3	
TMCLKL	HY/201208	2019/08/19	Mid-flood	SR4(N2)	9:42	Botom	3	2	28.7	7.9	20.8	5.5	5.5	5.0		4.8	
TMCLKL	HY/201208	201908/19	Mid-flood	IS8(N)	9:49	Sufface	1	1	28.0	8.1	21.1	5.2	5.2	5.3	7.0	5.0	6.1
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS8(N)	9:49	Sufface	1	2	28.8	7.9	20.7	5.1		5.9		4.7	
TMCLKL	HY/201208	2019/08/19	Mid-flood	IS8(N)	9:49	Middle	2										
TMCLKL	HY/201208	201908/19	Mid-flood	IS8(N)	9:49	Middle	2	2									
TMCLKL	HY/201208	201908/19	Mid-flood	IS8(N)	9:49	Bottom	3	1	27.8	8.1	22.0	5.1	5.1	8.5		7.4	
TMCLKL	HY/201208	201908/19	Mid-flood	IS8(N)	9:49	Bottom	3	2	28.6	7.9	21.6	5.0		8.2		7.2	
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS(M)9	9:56	Suface	1	1	28.1	8.1	21.3	5.4	5.4	4.4	6.3	5.5	5.5
TMCLKL	HY/2012108	201908/19	Mid-flood	IS(Mf)	9:56	Suface	1	2	28.9	7.9	20.9	5.4		4.7		5.3	
TMCLKL	HY/2012108	201908/19	Mid-flood	IS(Mf) 9	9:56	Middle	2	1									
TMCLKL	HY/201208	2019/08/19	Mid-flood	IS(M) ${ }^{\text {a }}$	9:56	Middle	2	2									
TMCLKL	HY/201208	201908/19	Mid-flood	IS(Mf) 9	9:56	Botom	3	1	28.0	8.1	21.6	5.5	5.5	8.0		5.7	
TMCLKL	HY/201208	201908/19	Mid-flood	IS(M) 9	9:56	Bottom	3	2	28.7	7.9	21.3	5.5		8.1		5.4	
TMCLKL	HY/201208	201908/19	Mid-flood	IS(Mf) 11	8:20	Sufface		1	28.7	7.9	20.5	5.1	4.7	4.5	10.4	4.9	4.7
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS(Mf) 11	8:20	Sufface	1	2	28.7	7.9	20.5	5.1		4.5		4.9	
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS(Mf) 11	8:20	Middle	2	1	28.0	7.9	24.6	4.3		13.5		4.9	
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS(Mf) 11	8:20	Middle	2	2	28.0	7.9	24.6	4.3		13.5		4.9	
TMCLKL	HY/2012108	201908/19	Mid-flood	IS(Mf) 11	8:20	Bottom	3		27.9	7.9	24.9	4.3	4.3	13.2		4.3	
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS(Mf) 11	8:20	Bottom	3	2	27.9	7.9	24.9	4.3		13.2		4.2	
TMCLKL	HY/2012108	201908/19	Mid-flood	SR7	8:13	Suface	1	1	28.6	7.9	19.8	5.2	5.2	5.3	6.9	4.8	5.1
TMCLKL	HY/2012108	201908/19	Mid-flood	SR7	8:13	Sufface	1	2	27.8	8.0	20.2	5.1		5.0		4.1	
TMCLKL	HY/201208	201908/19	Mid-flood	SR7	8:13	Middle		1									
TMCLKL	HY/201208	201908/19	Mid-flood	SR7	8:13	Middle	2	2									
TMCLKL	HY/2012/08	201908/19	Mid-flood	SR7	8:13	Bottom	3	1	28.2	7.9	23.0	4.6	4.7	8.5		5.7	
TMCLKL	HY/2012/08	201908/19	Mid-flood	SR7	8:13	Bottom		2	27.4	8.0	23.5	4.7		8.9		5.7	
TMCLKL	HY/201208	201908/19	Mid-flood	IS17	9:21	Sufface	1		28.0	8.1	21.7	5.2	5.0	3.6	3.6	3.2	4.3
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS17	9:21	Surface	I	2	28.7	7.9	21.3	5.1		3.6		3.5	
TMCLKL	HY/2012/08	201908/19	Mid-flood	IS17	9:21	Middle	2	1	27.7	8.1	22.7	4.9		3.5		4.2	
TMCLKL	HY/201208	201908/19	Mid-flood	IS17	9:21	Middle	2	2	28.4	7.9	22.6	4.8		3.7		4.6	
TMCLKL	HY/201208	201908/19	Mid-flood	IS17	9:21	${ }_{\text {Bottom }}$	3	1	27.4 28.2	8.1	23.8 23.4	4.9	4.9	$\frac{3.5}{3.5}$		$\frac{5.1}{5.3}$	
	H12008	2	mar	S		Botom											

Figure 1

Email message		Environmental Resources Management
To	Ramboll Hong Kong Limited (ENPO)	$\begin{aligned} & \text { 2507, } \\ & \text { 25/F One Harb } \\ & 18 \text { Tak Fung Str } \end{aligned}$
From	ERM- Hong Kong, Limited	Hung Hom, Ho Telephone: (852) Facsimile: (852)
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	E-mail: jasmine.
Subject	Notification of Exceedance for Water Quality Impact Monitoring	
Date	30 August 2019	ERM

Dear Sir or Madam,
Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Action Level Exceedance
0212330_21 August 2019_Surface & Middle DO_E_Station IS17
0212330_21 August 2019_ Bottom DO_E_Station IS17
0212330_21 August 2019_Surface & Middle DO_F_Station IS(Mf)11
0212330_21 August 2019_ Bottom DO_F_Station SR7
0212330_21 August 2019_Surface & Middle DO_F_Station IS17
```

A total of five Action Level exceedances were recorded on 21 August 2019.

Dr Jasmine Ng
Environmental Team Leader

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/08
 Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Action Level Exceedance 0212330_21 August 2019_Surface \& Middle DO_E_Station IS17 0212330_21 August 2019_ Bottom DO_E_Station IS17 0212330_21 August 2019_Surface \& Middle DO_F_Station IS(Mf)11 0212330_21 August 2019_ Bottom DO_F_Station SR7 0212330_21 August 2019_Surface \& Middle DO_F_Station IS17 [Total No. of Exceedances = 5]
Date	21 August 2019 (Measured) 23 August 2019 (In situ results received by ERM) 30 August 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Action Level Exceedance for DO ($4.9 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.5 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.6 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)11 at Surface \& Middle Level during midflood tide. Action Level Exceedance for DO ($4.3 \mathrm{mg} / \mathrm{L}$) is observed at SR7 at Bottom Level during mid-flood tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Surface \& Middle Level during mid-flood tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 21 August 2019.

Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - IS(Mf)11, IS17 and SR7 are far away ($>1.5 \mathrm{~km}$) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Moreover, IS(Mf)16 is closer to the works area and no exceedance was recorded. Therefore, the exceedance is unlikely to be related to this Contract. - Bottom-depth DO levels at SR7 was similar to the corresponding control stations, CS(Mf)5, during midflood tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Action Level. - Surface \& Middle-depth DO levels at IS17 and IS(Mf)11 were similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Surface \& Middle-depth DO levels at the corresponding control station were below Action Level. - As reported by the marine mammal observer, no discharge of organic matters into waters from landside works area was recorded. Moreover, no exceedance was recorded at IS(Mf)16 which is the closest station to the Seawall Modification Works Area during mid-ebb tide. Therefore, exceedances recorded at IS17 during mid-ebb tide are unlikely to be caused by the marine works of this Contract.
Actions Taken/To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 21 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	DO (mg/L)	Average DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mgL)	DepthAveraged SS
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	CS(M)5	16:28	Sufface	1	1	29.4	8.0	21.7	5.5	5.4	1.6	2.0	8.8	6.4
TMCLKL	HY201208	201908/21	Mid-Ebb	CS(M)5	$16: 28$	Suface	1	2	29.4	8.0	21.7	5.5		1.3		8.1	
TMCLKL	HY/201208	201908/21	Mid-Ebb	CS(M)5	16:28	Middle	2	1	28.7	8.0	23.1	5.2		1.4		6.2	
TMCLKL	HY/201208	201908821	Mid-Ebb	CS(Mf) 5	$16: 28$	Middle	2	2	28.7	8.0	23.1	5.2		1.6		6.7	
TMCLKL	HY/201208	201908/21	Mid-Ebb	CS(M)5	16:28	Botiom	3	1	28.6	8.0	23.5	5.3	5.3	2.9		4.6	
TMCLKL	HY/201208	201908/21	Mid-Ebb	CS(M)5	$16: 28$	Botom	3	2	28.6	8.0	23.5	5.3		2.9		4.2	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	15:44	Suface	1	1	29.6	8.0	21.0	5.6	5.4	3.5	3.8	9.9	11.0
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	15:44	Sufface	1	2	29.6	8.0	21.0	5.6		3.5		9.4	
TMCLKL	HY/2012/08	201908821	Mid-Ebb	$\mathrm{CS}(\mathrm{Mff} 3$ (N$)$	15:44	Middle	2	1	28.7	8.0	23.0	5.2		3.2		9.6	
TMCLKL	HY/201208	201908/21	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf} 33 \mathrm{~N})$	15:44	Middle	2	2	28.7	8.0	23.1	5.2		3.2		10.4	
TMCLKL	HY/201208	201908/21	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	15:44	Botom	3	1	28.6	8.0	23.6	5.3		4.8		13.7	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	15:44	Bottom	3	2	28.6	8.0	23.5	5.3		4.8		12.9	
TMCLKL	HY/201208	201908/21	Mid-Ebb	IS(Mf) 16	14:58	Sufface	1	1	28.5	8.0	24.2	5.3	5.3	1.5	2.2	12.0	13.4
TMCLKL	HY/2012/08	201908821	Mid-Ebb	IS(Mfl16	14:58	Surface	I	2	28.5	8.0	24.2	5.3		1.5		11.8	
TMCLKL	HY/201208	201908/21	Mid-Ebb	IS(Mf)16	$14: 58$	Middle	2	1									
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS(Mf)16	$14: 58$	Middle	2	2									
TMCLKL	HY/2012/08	201908821	Mid-Ebb	IS(Mfl16	14:58	Bottom		1	28.1	8.0	24.7	5.6	5.6	3.0		14.9	
TMCLKL	HY/201208	201908/21	Mid-Ebb	IS(Mf)16	14:58	Botom	3	2	28.1	8.0	24.7	5.6		2.9		14.7	
TMCLKL	HY/201208	201908/21	Mid-Ebb	SR4a	14:49	Suface	1	1	29.1	8.0	23.1	5.8	5.8	1.5	2.8	17.1	13.4
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	SR4a	14:49	Sufface	1	2	29.1	8.0	23.1	5.8		1.5		17.8	
TMCLKL	HY/201208	201908/21	Mid-Ebb	SR4a	14:49	Middle	2	1									
TMCLKL	HY/2012/08	201908821	Mid-Ebb	SR4a	14:49	Middle	2	2									
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	SR4a	14:49	Botom	3	1	28.2	7.9	24.4	4.7	4.7	4.1		9.6	
TMCLKL	HY/2012/08	2019/08/21	Mid-Ebb	SR 4a	14:49	Botom	3	2	28.2	7.9	24.4	4.7		4.2		9.1	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	SR4(N2)	14:45	Surface	1	1	29.4	7.9	22.7	5.7	5.7	2.9	3.6	6.1	7.7
TMCLKL	HY/201208	201908/21	Mid-Ebb	SR4(N2)	14:45	Sufface	1	2	29.4	7.9	22.7	5.7		2.9		5.5	
TMCLKL	HY/201208	201908/21	Mid-Ebb	SR4(N2)	14:45	Middle	2	1									
TMCLKL	HY/201208	201908/21	Mid-Ebb	SR4(N2)	14:45	Middle		2									
TMCLKL	HY/201208	201908/21	Mid-Ebb	SR4(N2)	14:45	Botom	3	1	28.2	7.9	24.3	4.7		4.2		9.4	
TMCLKL	HY/201208	201908/21	Mid-Ebb	SR4(N2)	14:45	Botom	3	2	28.2	7.9	24.3	4.7	4.7	4.2		9.8	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS8(N)	14:39	Suface	1	1	29.1	7.9	23.2	5.5	5.6	4.3	5.0	11.7	10.3
TMCLKL	HY/201208	201908/21	Mid-Ebb	IS8(N)	14:39	Surface	1	2	29.1	7.9	23.2	5.6		4.2		11.3	
TMCLKL	HY/201208	2019088/21	Mid-Ebb	IS8(N)	14:39	Middle	2	1									
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS8(N)	14:39	Middle	2	2									
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS8(N)	14:39	Botom	3	1	28.9	7.9	23.5	5.4	5.4	5.8		8.9	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS8(N)	14:39	Botom	3	2	28.9	7.9	23.5	5.4		5.8		9.1	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS(Mf)	14:33	Suface	1	1	29.3	8.1	23.0	6.0	6.0	2.3	2.1	9.6	9.2
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS(M)9	14:33	Sufface	1	2	29.3	8.1	23.0	6.0		2.4		8.9	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS(M)9	14:33	Middle	2	1									
TMCLKL	HY/2012/08	2019/08/21	Mid-Ebb	IS(M)9	14:33	Middle		2									
TMCLKL	HY/201208	201908/21	Mid-Ebb	IS(M) 9	14:33	Botom	3	1	28.9	8.2	23.3	5.8	5.8	1.8		9.8	
TMCLKL	HY/201208	201908/21	Mid-Ebb	IS(M)9	14:33	Botom	3	2	28.9	8.1	23.3	5.7		1.9		8.5	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS(Mf)11	15:12	Sufface	1	1	29.9	8.0	20.7	5.6	5.3	1.2	2.4	4.4	6.5
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS(Mf) 11	15:12	Surface	1	2	29.9	8.0	20.7	5.6		1.2		4.7	
TMCLKL	HY/2012/08	2019088/21	Mid-Ebb	IS(Mfl11	15:12	Middle	2	1	28.7	7.9	23.3	5.0		2.8		5.5	
TMCLKL	HY/2012/08	201908821	Mid-Ebb	IS(Mf) 11	15:12	Middle	2	2	28.7	7.9	23.3	5.0		2.8		5.6	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS(Mf)11	15:12	Botiom	3	1	27.7	7.9	25.6	4.7	47	3.2		9.2	
TMCLKL	HY201208	201908/21	Mid-Ebb	IS(Mf) 11	15:12	Botom	3	2	27.7	7.9	25.6	4.7	4.7	3.2		9.8	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	SR7	16:08	Surface	1	1	29.2	8.1	22.0	5.4	5.4	1.3	2.1	4.8	5.4
TMCLKL	HY/201208	2019088/21	Mid-Ebb	SR7	16:08	Sufface	1	2	29.2	8.1	22.0	5.4		1.3		4.9	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	SR7	16:08	Middle	2	1									
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	SR7	16:08	Middle	2	2									
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	SR7	16:08	Bottom	3	1	28.4	8.1	23.8	5.4	5.4	2.8		5.6	
TMCLKL	HY/2012/08	201908821	Mid-Ebb	SR7	16:08	Botom	3	2	28.4	8.1	23.8	5.3		2.8		6.2	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS17	15:04	Sufface	1	1	28.9	8.0	23.8	5.2	4.9	2.9	4.5	10.5	11.5
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS17	15:04	Sufface	1	2	28.9	8.0	23.7	5.2		2.8		9.7	
TMCLKL	HY/201208	201908/21	Mid-Ebb	IS17	15:04	Middle	2	1	28.0	8.0	25.4	4.5		4.7		11.8	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS17	15:04	Middle	2	2	28.0	8.0	25.4	4.5		4.7		11.0	

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	D (mgL)	$\begin{array}{\|c} \text { Average } \\ \text { DO }(\mathrm{mg} / \mathrm{L}) \end{array}$	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mgL)	Depth- Averaged SS
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS17	15:04	Botom	3	1	27.1	7.9	27.1	4.5		5.9		13.3	
TMCLKL	HY/2012/08	201908/21	Mid-Ebb	IS17	15:04	Botom	3	2	27.1	7.9	27.2	4.5	4.5	6.0		12.7	
TMCLKL	HY/2012/08	201908/21	Mid-fllood	CS(M) 5	9:19	Surface	1	1	28.4	8.0	23.2	4.9		1.1		3.6	
TMCLKL	HY/201208	201908/21	Mid-flood	CS(M) 5	9:19	Surface	1	2	28.4	8.0	23.2	4.9		1.1		3.4	
TMCLKL	HY/201208	201908/21	Mid-flood	CS(M) 5	9:19	Middle	2	1	27.9	8.0	24.6	4.6	4.8	1.3		5.9	
TMCLKL	HY/2012/08	201908/21	Mid-flood	CS(M) 5	9:19	Middle	2	2	27.9	8.0	24.6	4.6		1.3	1.5	6.2	5.8
TMCLKL	HY/201208	201908/21	Mid-flood	CS(M) 5	9:19	Botom	3	1	27.4	8.0	25.9	4.6		2.1		8.3	
TMCLKL	HY/2012/08	201908/21	Mid-flood	CS(M) ${ }^{\text {a }}$	9:19	Botom	3	2	27.4	8.0	25.9	4.6	4.6	2.1		7.6	
TMCLKL	HY/201208	201908/21	Mid-fllood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:07	Surface	1	1	29.2	8.0	20.5	5.1		1.6		2.6	
TMCLKL	HY/2012/08	201908/21	Mid-flood	CS(Mf) ${ }^{(N)}$	10:07	Surface	1	2	29.2	8.0	20.5	5.1		1.5		2.2	
TMCLKL	HY/201208	201908/21	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:07	Middle	2	1	28.5	8.0	22.6	4.9	5.0	4.3		3.7	
TMCLKL	HY/201208	201908/21	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	10:07	Middle	2	2	28.5	8.0	22.6	4.9		4.3	3.4	3.7	3.4
TMCLKL	HY/201208	$201908 / 21$	Mid-flood	$\mathrm{CS}(\mathrm{M}+3 \mathrm{~S}(\mathrm{~N})$	10:07	Botom	3	1	28.5	8.0	22.7	5.0		4.4		4.1	
TMCLKL	HY/201208	$201908 / 21$	Mid-flood	$\mathrm{CS}(\mathrm{M}) 3 \mathrm{3}(\mathrm{N})$	10:07	Botom	3	2	28.5	8.0	22.7	5.0		4.4		3.9	
TMCLKL	HY/201208	201908/21	Mid-flood	IS(Mf) 16	10:54	Sufface	1	1	28.5	8.0	23.2	5.1		2.1		13.1	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf) 16	10:54	Sufface	1	2	28.5	8.0	23.2	5.1	5.1	2.1		12.6	
TMCLKL	HY/201208	201908/21	Mid-fllood	IS(Mf) 16	10:54	Middle	2	1							3.2		
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf) 16	10:54	Middle	2	2									
TMCLKL	HY/2012/08	201908/21	Mid-fllood	IS(Mf) 16	10:54	Botom	3	1	28.0	8.0	24.0	4.8	48	4.3		7.6	
TMCLKL	HY/201208	201908/21	Mid-flood	IS(Mf) 16	10:54	Botom	3	2	28.0	8.0	24.1	4.8		4.3		7.7	
TMCLKL	HY/201208	201908/21	Mid-flood	SR4a	11:04	Surface	1	1	29.0	8.0	22.6	5.2		1.2		4.7	
TMCLKL	HY/201208	201908/21	Mid-fllood	SR4a	11:04	Surface	1	2	29.0	8.0	22.6	5.2	5.2	1.2		4.7	
TMCLKL	HY/2012/08	201908/21	Mid-flood	SR4a	11:04	Middle	2	1							2.0		4.7
TMCLKL	HY/2012/08	201908/21	Mid-flood	SR4a	11:04	Middle	2	2							2.0		
TMCLKL	HY/201208	201908/21	Mid-fllood	SR4a	11:04	Botiom	3	1	28.4	8.0	23.4	4.7	4.7	2.7		4.8	
TMCLKL	HY/2012/08	201908/21	Mid-flood	SR4a	11:04	Botom	3	2	28.4	8.0	23.4	4.7	4.7	2.7		4.6	
TMCLKL	HY/2012/08	201908/21	Mid-fllood	SR4(N2)	11:08	Surface	1	1	29.4	8.0	22.6	5.4		2.6		4.0	
TMCLKL	HY/201208	201908/21	Mid-flood	SR4(N2)	11:08	Sufface	1	2	29.4	8.0	22.6	5.4	54	2.5		4.5	
TMCLKL	HY/201208	201908/21	Mid-flood	SR4(N2)	11:08	Middle	2	1							3.1		5.7
TMCLKL	HY/201208	201908/21	Mid-fllood	SR4(N2)	11:08	Middle	2	2									
TMCLKL	HY/201208	201908/21	Mid-flood	SR4(N2)	11:08	Botom	3	1	28.4	8.0	23.5	4.8		3.6		6.7	
TMCLKL	HY/2012/08	201908/21	Mid-flood	SR4(N2)	11:08	Botom	3	2	28.4	8.0	23.5	4.8		3.5		7.5	
TMCLKL	HY/2012/08	201908/21	Mid-fllood	IS8(N)	11:13	Surface	1	1	29.1	8.0	22.8	5.1		2.8		5.4	
TMCLKL	HY/201208	201908/21	Mid-flood	IS8(N)	11:13	Surface	1	2	29.1	8.0	22.8	5.1		2.8		5.1	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS8(N)	11:13	Middle	2	1					5.1		3.5		4.5
TMCLKL	HY/201208	201908/21	Mid-flood	IS8(N)	11:13	Middle	2	2							3.5		4.5
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS8(N)	11:13	Botiom	3	1	28.2	8.0	23.7	5.2		4.2		4.1	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS8(N)	11:13	Botom	3	2	28.2	8.0	23.7	5.2	5.2	4.2		3.5	
TMCLKL	HY/201208	201908/21	Mid-flood	IS(Mf) 9	11:20	Surface	1	1	28.4	8.1	23.1	5.3		1.7		5.7	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf)	11:20	Surface	1	2	28.4	8.1	23.1	5.3	5.3	1.7		5.8	
TMCLKL	HY/201208	201908/21	Mid-flood	IS(Mf)	11:20	Middle	2	1							1.9		6.6
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf) 9	11:20	Middle	2	2									
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf) 9	11:20	Botom	3	1	28.4	8.1	23.2	5.4	54	2.1		7.1	
TMCLKL	HY/201208	201908/21	Mid-flood	IS(Mf) 9	11:20	Botom	3	2	28.4	8.1	23.3	5.4		2.1		7.8	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf) 11	10:40	Surface	1	1	28.3	8.1	23.6	4.8		2.0		4.6	
TMCLKL	HY/201208	201908/21	Mid-flood	IS(Mf) 11	10:40	Surface	1	2	28.3	8.1	23.6	4.8		2.0		4.1	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf)11	10:40	Middle	2	1	27.7	8.2	25.0	4.4		4.1	3.5	5.7	6.3
TMCLKL	HY/201208	201908/21	Mid-flood	IS(Mf) 11	10:40	Middle	2	2	27.7	8.2	25.0	4.4		4.1		5.4	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf) 11	10:40	Botiom	3	1	27.6	8.3	25.3	5.0	5.0	4.5		9.2	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS(Mf) 11	10:40	Botom	3	2	27.7	8.2	25.1	5.0		4.4		8.5	
TMCLKL	HY/2012/08	201908/21	Mid-flood	SR7	9:39	Surface	1	1	28.7	8.0	21.9	5.3		2.3		6.2	
TMCLKL	HY/201208	201908/21	Mid-flood	SR7	9:39	Sufface	1	2	28.7	8.0	21.9	5.3	53	2.3		6.3	
TMCLKL	HY/2012/08	201908821	Mid-flood	SR7	9:39	Middle	2								3.3		8.0
TMCLKL	HY/2012/08	201908/21	Mid-flood	SR7	9:39	Middle	2	2									
TMCLKL	HY/2012/08	201908/21	Mid-flood	SR7	9:39	Botiom	3	1	27.5	8.1	25.9	4.3	4.3	4.2		10.1	
TMCLKL	HY/2012/08	201908/21	Mid-fllood	SR7	9:39	Botom	3	2	27.5	8.1	25.9	4.3		4.2		9.3	
TMCLKL	HY/201208	201908/21	Mid-flood	IS17	10:47	Surface	I	1	28.0	8.1	24.3	4.8		3.6		7.6	
TMCLKL	HY/201208	201908/21	Mid-flood	IS17	10:47	Surface		2	28.0	8.1	24.3	4.8		3.6		7.9	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS17	10:47	Middle	2	1	28.0	8.1	24.3	4.8		3.2	33	10.9	
TMCLKL	HY/201208	201908/21	Mididflood	IS17	10:47	Middle	2	2	28.0	8.1	24.3	4.8		3.2		10.6	
TMCLKL	HY/201208	201908821	Mid-flood	IS17	10:47	Botom	3	1	28.0	8.1	24.4	5	5.0	3.0		14.0	
TMCLKL	HY/2012/08	201908/21	Mid-flood	IS17	10:47	Botom	3	2	28.0	8.1	24.4	5.0		3.1		13.0	

Figure 1

Email message		Environmental Resources Management
To	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harb 18 Tak Fung Str
From	ERM- Hong Kong, Limited	Hung Hom, Ho Telephone: (852) Facsimile: (852)
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	E-mail: jasmine
Subject	Notification of Exceedance for Water Quality Impact Monitoring	
Date	30 August 2019	ERM

Dear Sir or Madam,

Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Action Level Exceedance
0212330_23 August 2019_ Bottom DO_E_Station IS17
```

A total of one Action Level exceedance was recorded on 23 August 2019.

Dr Jasmine Ng
Environmental Team Leader

ERM-Hong Kong, Limited

CONTRACT NO. HY/2012/08
 Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Action Level Exceedance 0212330_23 August 2019_Bottom DO_E_Station IS17 [Total No. of Exceedances = 1]
Date	23 August 2019 (Measured) 26 August 2019 (In situ results received by ERM) 3 September 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Action Level Exceedance for DO (4.2 mg/L) is observed at IS17 at Bottom Level during mid-ebb tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 23 August 2019.
Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - No discharge of organic matters into waters from landside works area was recorded. - Bottom-depth DO levels at IS17 was similar to the corresponding control stations, CS(Mf)3(N), during mid-ebb tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Action Level.
Actions Taken/ To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 23 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	D (mgL)	$\begin{array}{\|c} \text { Average } \\ \text { DO }(\mathrm{mg} / \mathrm{L}) \end{array}$	Turbidity	Depth- Averaged Turbidity	SS (mgL)	DepthAveraged SS
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	CS(Mf) 5	17:57	Sufface	1	1	29.0	8.4	20.1	7.1	6.6	1.5	1.5	5.6	4.5
TMCLKL	HY/201208	201908/23	Mid-Ebb	CS(M) ${ }^{\text {a }}$	17:57	Surface	1	2	29.0	8.4	20.1	7.1		1.5		5.5	
TMCLKL	HY/201208	201908/23	Mid-Ebb	CS(M) 5	17:57	Middle	2	1	27.8	8.4	23.5	6.1		1.3		4.5	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	CS(Mf) 5	17:57	Middle	2	2	27.9	8.4	23.4	6.1		1.3		4.2	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	CS(M) 5	17:57	Botom	3	1	27.1	8.4	26.5	5.7	5.7	1.7		3.4	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	CS(M)5	17:57	Botom	3	2	27.1	8.4	26.5	5.7		1.6		3.9	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	$\mathrm{CS}(\mathrm{Mff} 3(\mathrm{~N})$	17:12	Suface	1	1	29.4	8.4	16.4	6.3	5.2	3.2	4.3	6.5	7.9
TMCLKL	HY/201208	201908/23	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:12	Suface	1	2	29.4	8.4	16.3	6.3		3.2		6.1	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	CS(Mf)3(N$)$	17:12	Middle	2	1	27.4	8.4	25.6	4.1		4.2		7.8	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	CS(Mf) 3 (${ }^{\text {a }}$	17:12	Middle	2	2	27.4	8.4	25.4	4.1		4.1		7.6	
TMCLKL	HY/201208	201908/23	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:12	Botom	3	1	27.2	8.4	26.5	4.1		5.5		9.3	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3(\mathrm{~N})$	17:12	Botom	3	2	27.2	8.4	26.5	4.1	4.1	5.5		9.8	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS(Mf) 16	$16: 28$	Suface	1	1	28.4	8.5	23.5	5.9	5.9	8.7	8.9	10.4	13.0
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS(Mf) 16	16:28	Suface	1	2	28.4	8.5	23.4	5.9		8.7		10.0	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS(Mf) 16	16:28	Middle	2	1									
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS(Mf) 16	16:28	Middle	2	2									
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS(Mf) 16	$16: 28$	Botom	3	1	28.1	8.5	24.0	5.4		9.1		15.2	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS(Mf) 16	16:28	Botom	3	2	28.0	8.5	24.1	5.3	5.4	9.1		16.4	
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR4a	16:18	Surface	1	1	29.3	8.5	20.3	7.3	7.3	2.1	3.3	6.3	8.7
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	SR4a	16:18	Surface	1	2	29.3	8.5	20.3	7.3		2.2		6.2	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	SR4a	16:18	Middle	2										
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	SR4a	16:18	Middle	2	2									
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR4a	16:18	Bottom	3	1	28.3	8.4	23.1	5.5	55	4.4		11.1	
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR4a	16:18	Botiom	3	2	28.3	8.4	23.2	5.5	6.3	4.4		11.3	
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR4(N2)	16:15	Sufface	1	1	29.0	8.5	21.6	6.3		5.2	7.3	7.9	12.7
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR4(N2)	16:15	Surface	1	2	29.0	8.5	21.7	6.3		5.2		8.5	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	SR4(N2)	16:15	Middle	2	1									
TMCLKL	HY/2012108	201908/23	Mid-Ebb	SR4(N2)	16:15	Middle	2	2									
TMCLKL	HY/2012108	201908/23	Mid-Ebb	SR4(N2)	16:15	Botom	3	1	28.2	8.4	23.5	5.2	52	9.3		17.0	
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR4(N2)	16:15	Botom	3	2	28.2	8.4	23.5	5.2		9.3		17.2	
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS8(N)	16:09	Surface	1	1	29.1	8.6	21.8	6.9	6.9	5.8	7.3	8.7	10.7
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS8(N)	16:09	Sufface	1	2	29.1	8.6	21.8	6.9		5.8		8.4	
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS8(N)	16:09	Middle	2										
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS8(N)	16:09	Middle	2	2									
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS8(N)	16:09	Botom	3	1	28.3	8.5	23.4	5.8		8.8		12.3	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS8(N)	16:09	Botom	3	2	28.3	8.5	23.4	5.8	5.8	8.7		13.2	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS(M)9	16:01	Sufface	1		29.0	8.7	22.2	7.3	7.3	3.2	4.5	9.2	10.2
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS(M)9	16:01	Sufface	1	2	29.0	8.7	22.2	7.3		3.1		9.9	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS(Mf) 9	16:01	Middle	2	1									
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS(MI) 9	16:01	Middle	2	2									
TMCLKL	HY/2012108	201908823	Mid-Ebb	IS(Mf) 9	16:01	Bottom	3	1	28.8	8.6	22.6	7.0	7.0	5.9		10.5	
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS(Mf) 9	16:01	Botom	3		28.8	8.6	22.6	7.0		5.9		11.0	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS(Mf) 11	16:42	Sufface	1	1	29.2	8.5	17.9	7.4	7.0	2.3	2.9	5.4	6.8
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS(Mf)11	16:42	Surface	1	2	29.2	8.5	17.9	7.4		2.4		5.2	
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS(Mf) 11	16:42	Middle	2	1	28.6	8.5	20.4	6.6		1.3		7.1	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS(Mf) 11	16:42	Middle	2	2	28.6	8.5	20.4	6.6		1.3		6.9	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS(Mf) 11	16:42	Botom	3		26.5	8.4	28.6	4.7		5.0		8.2	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS(Mf) 11	16:42	Botom	3	2	26.5	8.4	28.6	4.6	4.7	5.0		7.9	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	SR7	17:38	Sufface	1	1	29.4	8.5	16.1	7.3	7.3	2.9	4.3	5.7	6.1
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR7	17:38	Surface	1	2	29.4	8.5	16.1	7.3		2.9		5.6	
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR7	17:38	Middle	2	1									
TMCLKL	HY/2012108	201908/23	Mid-Ebb	SR7	17:38	Middle	2	2									
TMCLKL	HY/201208	201908/23	Mid-Ebb	SR7	17:38	Botiom			28.9	8.4	19.0	7.1	7.1	5.7		6.5	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	SR7	17:38	Botom	3	2	28.9	8.4	19.1	7.1		5.7		6.7	
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS17	16:34	Surface	1	1	28.3	8.5	21.7	6.0	5.7	2.1	4.0	4.5	6.0
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS17	16:34	Suface	1	2	28.4	8.5	21.7	6.0		2.1		4.8	
TMCLKL	HY/2012108	201908/23	Mid-Ebb	IS17	16:34	Middle	2	1	28.0	8.5	23.3	5.4		3.3		5.5	
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS17	16:34	Middle	2	2	27.9	8.5	23.4	5.4		3.3		5.1	

Project	Contract	$\begin{aligned} & \text { Date (yyyy- } \\ & \text { mm-dd) } \end{aligned}$	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	DO (mg/L)	$\begin{gathered} \text { Average } \\ \text { DO }(\mathrm{mg} \mathrm{~L}) \end{gathered}$	Turbidity (NTU)	Depth- Averaged Turbidity	SS (mg/L)	$\begin{array}{\|c} \hline \text { Depth- } \\ \text { Averaged } \\ \text { SS } \end{array}$
TMCLKL	HY/2012/08	201908/23	Mid-Ebb	IS17	16:34	Bottom	3	1	26.3	8.4	28.9	4.2		6.5		7.8	
TMCLKL	HY/201208	201908/23	Mid-Ebb	IS17	16:34	Botom	3	2	26.3	8.5	28.9	4.2	4.2	6.4		8.5	
TMCLKL	HY/201208	201908/23	Mid-flood	CS(M) 5	11:03	Suface	1	1	28.6	8.1	15.4	6.1		2.9		5.3	
TMCLKL	HY/2012/08	201908/23	Mid-flood	CS(M)5	11:03	Sufface	1	2	28.6	8.1	15.4	6.1		2.9		5.8	
TMCLKL	HY/201208	201908/23	Mid-flood	CS(Mf) 5	11:03	Midde	2	1	28.3	8.1	20.3	5.3	5.7	3.3		6.5	
TMCLKL	HY/201208	201908/23	Mid-flood	CS(Mf)	11:03	Middle	2	2	28.4	8.1	20.3	5.4		3.3	3.6	6.1	7.0
TMCLKL	HY/201208	201908/23	Mid-flood	CS(M) 5	11:03	Botom	3	1	28.0	8.1	23.0	5.2	5.2	4.7		8.9	
TMCLKL	HY201208	201908/23	Mid-flood	CS(M) 5	11:03	Botom	3	2	28.0	8.1	23.0	5.2	5.2	4.7		9.1	
TMCLKL	HY/201208	201908/23	Mid-flood	CS(Mf)3(N)	11:52	Sufface	1	1	29.1	8.2	13.0	6.4		2.3		5.7	
TMCLKL	HY/201208	201908/23	Mid-flood	CS(Mf)3(N)	11:52	Sufface	1	2	29.1	8.2	13.0	6.5		2.3		5.5	
TMCLKL	HY/201208	201908/23	Mid-flood	CS(Mf)3(${ }^{\text {(}}$)	11:52	Middle	2	1	28.6	8.1	17.0	5.8	6.1	4.0		6.5	
TMCLKL	HY/2012/08	201908/23	Mid-flood	CS(Mf)3(N)	$11: 52$	Middle	2	2	28.7	8.2	17.0	5.8		3.9	4.1	6.2	6.8
TMCLKL	HY/201208	201908/23	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	$11: 52$	Botom	3	1	27.9	8.1	23.8	5.0	50	6.1		8.7	
TMCLKL	HY/201208	201908/23	Mid-flood	CS(Mf)3(N)	11:52	Botom	3	2	27.9	8.1	23.8	5.0		6.2		8.1	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 16	12:35	Sufface	1	1	28.4	8.3	21.7	5.7		3.6		14.2	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 16	12:35	Suface	1	2	28.4	8.3	21.7	5.7		3.6		13.9	
TMCLKL	HY/2012/08	201908/23	Mid-flood	IS(Mf) 16	12:35	Middle	2	1					5.7		4.5		20.0
TMCLKL	HY/2012/08	201908/23	Mid-flood	IS(Mf) 16	12:35	Middle	2	2							4.5		20.0
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 16	12:35	Botom	3	1	28.1	8.3	23.4	5.4		5.4		25.0	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 16	12:35	Botom	3	2	28.1	8.3	23.4	5.3	5.4	5.3		26.8	
TMCLKL	HY/201208	201908/23	Mid-flood	SR4a	12:44	Suface	1	1	28.7	8.3	20.2	6.2		2.2		7.7	
TMCLKL	HY/201208	201908/23	Mid-flood	SR4a	12:44	Sufface	1	2	28.7	8.3	20.2	6.2		2.1		7.9	
TMCLKL	HY/201208	201908/23	Mid-flood	SR4a	12:44	Middle	2	1					6.2		31		79
TMCLKL	HY/201208	201908/23	Mid-flood	SR4a	12:44	Middle	2	2									
TMCLKL	HY/201208	201908/23	Mid-flood	SR4a	12:44	Botom	3	1	28.4	8.3	21.8	5.8		4.1		8.1	
TMCLKL	HY/2012/08	201908/23	Mid-flood	SR4a	12:44	Botom	3	2	28.3	8.3	21.8	5.8	5.8	4.0		8.0	
TMCLKL	HY/2012/08	201908/23	Mid-flood	SR4(N2)	12:49	Sufface	1	1	28.8	8.3	20.2	6.3		2.8		5.4	
TMCLKL	HY/201208	201908/23	Mid-flood	SR4(N2)	12:49	Sufface	1	2	28.8	8.3	20.2	6.3		2.8		5.7	
TMCLKL	HY/201208	201908/23	Mid-flood	SR4(N2)	12:49	Middle	2	1					6.3		3.3		7.0
TMCLKL	HY/201208	201908/23	Mid-flood	SR4(N2)	12:49	Middle	2	2							3.3		7.0
TMCLKL	HY/201208	201908/23	Mid-flood	SR4(N2)	12:49	Botom	3	,	28.4	8.3	21.3	5.8		3.7		8.2	
TMCLKL	HY/201208	201908/23	Mid-flood	SR4(N2)	12:49	Botom	3	2	28.4	8.3	21.3	5.8	5.8	3.7		8.7	
TMCLKL	HY/201208	201908/23	Mid-flood	IS8(N)	12:54	Sufface	1	1	28.8	8.3	20.0	6.4		2.2		3.7	
TMCLKL	HY/201208	201908/23	Mid-flood	IS8(N)	12:54	Sufface	1	2	28.8	8.3	20.0	6.4	64	2.2		4.3	
TMCLKL	HY/201208	2019/08/23	Mid-flood	IS8(N)	12:54	Middle	2								3.9		6.8
TMCLKL	HY/201208	201908/23	Mid-flood	IS8(N)	12:54	Middle	2	2									
TMCLKL	HY/201208	201908/23	Mid-flood	IS8(N)	12:54	Bottom	3	1	28.6	8.4	22.7	6.3	6.3	5.7		9.9	
TMCLKL	HY/2012/08	201908/23	Mid-flood	IS8(N)	12:54	Bottom	3	2	28.6	8.4	22.7	6.3		5.6		9.3	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 9	13:01	Suface	1	1	28.6	8.3	21.5	5.8		4.4		9.1	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 9	13:01	Suface	1	2	28.7	8.3	21.5	5.8	5.8	4.4		8.8	
TMCLKL	HY/2012/08	201908/23	Mid-flood	IS(Mf) 9	13:01	Middle	2	1							5.4		10.8
TMCLKL	HY/2012/08	201908/23	Mid-flood	IS(Mf) 9	13:01	Middle	2	2							5.4		10.8
TMCLKL	HY/201208	2019088/23	Mid-flood	IS(Mf) 9	13:01	Bottom	3	1	28.4	8.3	23.3	5.2	5.2	6.3		12.8	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 9	13:01	Botom	3	2	28.4	8.3	23.4	5.1		6.3		12.3	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 11	12:20	Sufface		1	28.8	8.3	16.9	6.5		2.9		5.3	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 11	12:20	Sufface	1	2	28.8	8.3	16.9	6.5	62	2.9		5.5	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf)11	12:20	Middle	2	1	28.3	8.3	20.4	5.8		3.5	3.8	6.3	7.1
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf)11	12:20	Middle	2	2	28.4	8.3	20.3	5.8		3.4		6.3	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 11	12:20	Bottom	3		28.0	8.3	22.4	5.4	5.4	5.0		9.8	
TMCLKL	HY/201208	201908/23	Mid-flood	IS(Mf) 11	12:20	Bottom	3	2	28.0	8.3	22.3	5.4		5.0		9.2	
TMCLKL	HY/201208	201908/23	Mid-flood	SR7	11:24	Suface	1	1	28.5	8.1	18.4	5.8		2.8		7.7	
TMCLKL	HY/2012/08	201908/23	Mid-flood	SR7	11:24	Sufface	1	2	28.5	8.1	18.4	5.8	5.8	2.8		7.0	
TMCLKL	HY/201208	201908/23	Mid-flood	SR7	11:24	Middle									3.0		9.4
TMCLKL	HY/201208	2019088/23	Mid-flood	SR7	11:24	Middle	2	2							3.0		
TMCLKL	HY/201208	201908/23	Mid-fllood	SR7	11:24	Bottom	3	1	28.4	8.1	21.0	5.5	5.5	3.2		11.8	
TMCLKL	HY/201208	201908/23	Mid-flood	SR7	11:24	Bottom	3	2	28.3	8.1	21.2	5.4	5.5	3.2		10.9	
TMCLKL	HY/201208	201908/23	Mid-flood	IS17	12:27	Sufface	1		28.1	8.3	23.4	5.4		2.8		15.6	
TMCLKL	HY/201208	201908/23	Mid-flood	IS17	12:27	Surface	1	2	28.1	8.3	23.4	5.4	53	2.8		14.8	
TMCLKL	HY/2012/08	2019/08/23	Mid-flood	IS17	12:27	Middle		1	27.7	8.3	24.4	5.2		3.1	2.8	11.2	12.1
TMCLKL	HY/201208	2019/08/23	Mid-flood	IS17	12:27	Middle	2	2	27.7	8.3	24.4	5.2		3.1		11.4	
TMCLKL	HY/201208	201908823	Mid-flood	IS17	$\frac{12: 27}{12: 27}$	${ }_{\text {Bottom }}$	3	1	27.6	8.3 8.3	25.2	$\frac{5.2}{5.2}$	5.2	$\frac{2.5}{2.5}$		9.6 9.7	

Figure 1

Email message		Environmental Resources Management
To	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harb 18 Tak Fung Str
From	ERM- Hong Kong, Limited	Hung Hom, Ho Telephone: (852) Facsimile: (852)
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	E-mail: jasmine
Subject	Notification of Exceedance for Water Quality Impact Monitoring	
Date	30 August 2019	ERM

Dear Sir or Madam,

Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Limit Level Exceedance
0212330_26 August 2019_ Bottom DO_E_Station IS(Mf)11
0212330_26 August 2019_ Bottom DO_F_Station IS(Mf)11
```

A total of two Limit Level exceedances were recorded on 26 August 2019.

Dr Jasmine Ng
Environmental Team Leader

ERM-Hong Kong, Limited
 \title{
Contract No. HY/2012/08
 \title{
Contract No. HY/2012/08
 Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section
}

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Limit Level Exceedance 0212330_26 August 2019_ Bottom DO_E_Station IS(Mf)11 0212330_26 August 2019_ Bottom DO_F_Station IS(Mf)11 [Total No. of Exceedances $=2$ 2]
Date	26 August 2019 (Measured) 28 August 2019 (In situ results received by ERM) 4 September 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Limit Level Exceedance for $\mathrm{DO}(3.2 \mathrm{mg} / \mathrm{L})$ is observed at IS(Mf)11 at Bottom Level during mid-ebb tide. Limit Level Exceedance for DO ($2.9 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Bottom Level during mid-flood tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 26 August 2019.
Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - IS(Mf) 11 is far away ($>2 \mathrm{~km}$) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Therefore, the exceedance is unlikely to be related to this Contract. - Bottom-depth DO levels at IS(Mf)11 were similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Limit Level. - The DO pattern at IS(Mf)11 was similar to the control station where the bottom-depth DO levels were generally lower. Lower bottom-depth DO levels may be possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level. - As reported by the marine mammal observer, no discharge of organic matters into waters from landside works area was recorded. Moreover, no exceedance was recorded at IS(Mf)16 which is the closest station to the Seawall Modification Works Area during both mid-ebb and mid-flood tide. Therefore, exceedances recorded at IS(Mf)11 during both mid-ebb and mid-flood tide are unlikely to be caused by the marine works of this Contract.

Actions Taken/ To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 26 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	DO (mg/L)	$\begin{array}{\|c} \text { Average } \\ \text { DO (mg/L) } \end{array}$	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mgL)	Depth- Averaged SS
TMCLKL	HY/2012/08	2019088/26	Mid-Ebb	CS(Mf) 5	8:10	Sufface	1	1	28.3	7.9	19.8	6.0	6.0	1.6	2.2	3.6	3.2
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	CS(M) 5	8:10	Suface	1	2	28.3	7.9	20.2	6.0		1.7		3.7	
TMCLKL	HY201208	201908226	Mid-Ebb	CS(M) 5	8:10	Middle	2	1	28.3	7.9	20.3	5.9		1.6		4.0	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	CS(M) 5	8:10	Middle	2	2	28.3	7.9	20.7	5.9		1.6		3.9	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	CS(M) 5	8:10	Bottom	3	1	27.0	7.8	27.6	4.2	4.3	3.2		2.2	
TMCLKL	HY/201208	201908/26	Mid-Ebb	CS(M)5	8:10	Botom	3	2	27.0	7.8	28.3	4.3		3.3		1.8	
TMCLKL	HY/201208	201908/26	Mid-Ebb	CS(Mf) ${ }^{\text {(N) }}$	9:13	Suface	1	1	28.5	7.9	14.2	6.3	6.1	2.6	2.7	4.8	4.4
TMCLKL	HY201208	201908226	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	9:13	Suface	1	2	28.5	7.8	14.5	6.4		2.5		4.5	
TMCLKL	HY/201208	$201908 / 26$	Mid-Ebb	CS(Mf)3(N$)$	9:13	Middle	2	1	28.4	7.9	16.6	5.8		2.5		3.9	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	9:13	Middle	2	2	28.5	7.8	16.8	5.8		2.5		4.7	
TMCLKL	HY201208	201908226	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	9:13	Botom	3	1	27.8	7.9	22.8	5.1		2.9		4.7	
TMCLKL	HY201208	201908/26	Mid-Ebb	CS(Mf)3(N)	9:13	Botom	3	2	27.8	7.8	23.6	5.2	5.2	3.0		3.7	
TMCLKL	HY/2012/08	$201908 / 26$	Mid-Ebb	IS(Mf) 16	9:47	Suface	1	1	28.3	8.0	19.9	6.2	6.2	7.7	8.7	9.0	8.3
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS(Mf) 16	9:47	Suface	1	2	28.3	7.9	20.3	6.2		7.5		8.2	
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS(Mf) 16	9:47	Middle	2	1									
TMCLKL	HY201208	201908/26	Mid-Ebb	IS(Mf) 16	9:47	Middle	2	2									
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS(Mf)16	9:47	Botom	3	1	28.3	8.0	22.3	5.6		9.5		8.4	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS(Mf) 16	9:47	Bottom	3	2	28.3	7.9	23.0	5.6		10.0		7.4	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4a	9:58	Sufface	1	1	28.2	8.0	18.2	5.9	6.0	5.1	5.6	13.6	11.6
TMCLKL	HY201208	201908/26	Mid-Ebb	SR4a	9:58	Suface	1	2	28.2	7.9	18.6	6.0		5.2		12.4	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4a	9:58	Middle	2	1									
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4a	9:58	Middle	2	2									
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4a	9:58	Bottom	3	1	28.3	7.9	22.5	5.1	51	5.9		10.6	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4a	9:58	Botom	3	2	28.3	7.8	23.0	5.1	5.1	6.0		9.6	
TMCLKL	HY/201208	201908/26	Mid-Ebb	SR4(N2)	10:04	Suface	1	1	28.4	7.9	16.3	5.2	5.2	11.1	9.9	7.0	8.5
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4(N2)	10:04	Suface	1	2	28.4	7.8	16.6	5.2		11.1		8.0	
TMCLKL	HY2012/08	201908/26	Mid-Ebb	SR4(N2)	10:04	Middle	2	1									
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4(N2)	10:04	Middle	2	2									
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR4(N2)	10:04	Botom	3	1	28.7	7.9	21.2	5.1	51	8.5		9.1	
TMCLKL	HY/201208	201908/26	Mid-Ebb	SR4(N2)	10:04	Botom	3	2	28.8	7.8	21.5	5.1		8.7		10.0	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS8(N)	10:09	Surface	1	1	28.1	8.0	18.3	6.4	6.4	5.6	7.8	7.6	7.6
TMCLKL	HY201208	201908/26	Mid-Ebb	IS8(N)	10:09	Suface	1	2	28.1	7.9	18.7	6.4		5.5		7.2	
TMCLKL	HY/201208	$201908 / 26$	Mid-Ebb	IS8(N)	10:09	Middle	2	1									
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS8(N)	10:09	Midde	2	2									
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS8(N)	10:09	Botom	3	1	28.4	8.0	20.8	6.1	61	10.1		8.2	
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS8(N)	10:09	Botom	3	2	28.4	7.9	21.2	6.0	6.1	10.1		7.2	
TMCLKL	HY/2012/08	201908126	Mid-Ebb	IS(Mf) 9	10:17	Suface	1	1					5.9		4.1		8.3
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS(M)9	10:17	Sufface	1	2									
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS(M)9	10:17	Middle	2	1	28.5	7.9	19.7	5.9		4.1		8.8	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS(Mf)	10:17	Middle	2	2	28.5	7.8	19.9	5.9		4.0		7.8	
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS(Mf)	10:17	Bottom	3	1					\#DIV/0!				
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS(Mf)	10:17	Bottom	3	2									
TMCLKL	HY/201208	$201908 / 26$	Mid-Ebb	IS(Mf) 11	8:42	Surface	1	1	28.3	7.9	17.1	6.2	5.8	1.9	2.6	3.8	3.9
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS(Mf)11	8:42	Suface	1	2	28.3	7.9	17.4	6.2		1.9		4.8	
TMCLKL	HY/2012/08	201908126	Mid-Ebb	IS(Mf) 11	8:42	Middle		1	28.3	7.9	22.7	5.3		2.3		4.4	
TMCLKL	HY/201208	2019/08/26	Mid-Ebb	IS(Mf) 11	8:42	Middle	,	2	28.3	7.8	23.7	5.3		2.1		4.3	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS(Mf) 11	8:42	Botom	3	1	25.9	7.8	30.1	3.2		3.9		3.6	
TMCLKL	HY/2012/08	$201908 / 26$	Mid-Ebb	IS(Mf) 11	8:42	Botom	3	2	25.9	7.8	30.7	3.2		3.6		2.6	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR7	8:34	Suface	1	1	28.4	7.9	17.1	6.1	6.1	2.2	2.7	2.9	3.6
TMCLKL	HY/201208	201908/26	Mid-Ebb	SR7	8:34	Sufface	1	2	28.4	7.8	17.4	6.1		2.0		3.8	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR7	8:34	Middle	2	1									
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR7	8:34	Middle	2	2									
TMCLKL	HY/201208	201908/26	Mid-Ebb	SR7	8:34	Bottom		1	28.4	7.9	18.2	6.1	6.1	3.3		4.3	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	SR7	8:34	Botom	3	2	28.4	7.8	19.1	6.1		3.1		3.3	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS17	9:41	Surface	1		28.3	8.0	18.5	6.1	6.0	2.9	3.3	5.2	4.4
TMCLKL	HYY201208	2019088/26	Mid-Ebb	IS17	9:41	Surface	1	2	28.3	7.9	18.9	6.1		3.0		4.3	
TMCLKL	HY/2012/08	201908/26	Mid-Ebb	IS17	9:41	Middle	2	1	28.3	7.9	19.6	5.9		3.2		5.0	
TMCLKL	HY/201208	201908/26	Mid-Ebb	IS17	9:41	Middle	2	2	28.3	7.9	20.0	6.0		3.3		5.7	

Project	Contract	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	D (mg / L)	Average DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mg/L)	DepthAveraged SS
TMCLKL	HY/2012/08	201908826	Mid-Ebb	IS17	9:41	Botom	3	1	28.2	7.9	24.7	5.1		3.8		3.7	
TMCLKL	HY2012008	20190826	Mid-Ebb	IS17	9:41	Botom	3	2	28.2	7.9	24.2	4.9	5.0	3.7		2.7	
TMCLKL	HY201208	201908/26	Mid-flood	CS(Mf) 5	17:22	Sufface	I	1	28.5	8.0	16.4	6.7		2.0		6.2	
TMCLKL	HY/2012/08	201908/26	Mid-flood	CS(Mf) 5	17:22	Surface	1	2	28.5	7.8	16.7	6.7		2.1		5.3	
TMCLKL	HY/201208	201908126	Mid-flood	CS(M) 5	17:22	Middle	2	1	26.2	7.8	28.9	3.9		3.3	4.8	3.9	4.8
TMCLKL	HY/201208	201908126	Mid-flood	CS(M) 5	17:22	Middle	2	2	26.1	7.7	29.6	3.8		3.0		4.6	
TMCLKL	HY/2012/08	201908126	Mid-flood	$\mathrm{CS}(\mathrm{M}) 5$	17:22	Botom	3	1	25.0	7.8	31.4	3.4		9.3		3.8	
TMCLKL	HY201208	201908/26	Mid-flood	CS(Mf) 5	17:22	Botom	3	2	25.0	7.7	32.0	3.4	3.4	9.2		4.8	
TMCLKL	HY/2012/08	201908126	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	16:29	Sufface	1	1	28.7	7.8	14.9	6.2		3.2		6.2	
TMCLKL	HY2012/08	$201908 / 26$	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	16:29	Sufface	1	2	28.7	7.8	15.2	6.2		3.1		6.4	
TMCLKL	HY/201208	201908126	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	16:29	Middle	2	1	28.6	7.8	16.1	6.0	6.1	5.2		6.0	
TMCLKL	HY2012/08	201908/26	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	16:29	Middle	2	2	28.6	7.8	16.4	6.0		5.2	6.8	5.8	5.6
TMCLKL	HY/201208	201908126	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	16:29	Botom	3	1	28.2	7.7	18.8	5.1		12.1		5.2	
TMCLKL	HY201208	201908/26	Mid-flood	$\mathrm{CS}(\mathrm{Mf} 33 \mathrm{~N})$	16:29	Botom	3	2	28.2	7.7	19.1	5.2		12.0		4.2	
TMCLKL	HY/2012/08	201908126	Mid-flood	IS(Mf)16	15:53	Suface	1	1	28.5	7.9	17.2	6.7		3.4		8.9	
TMCLKL	HY/201208	201908126	Mid-flood	IS(Mf) 16	15:53	Sufface	1	2	28.5	7.9	17.5	6.7	6.7	3.2		8.7	
TMCLKL	HY/2012/08	201908/26	Mid-flood	IS(Mf) 16	15:53	Middle	2	1							64		83
TMCLKL	HY/2012/08	201908126	Mid-flood	IS(Mf)16	15:53	Middle	2	2									
TMCLKL	HY/2012/08	201908/26	Mid-flood	IS(Mf)16	15:53	Botom	3	1	28.4	7.8	18.5	6.7	6.	9.4		8.1	
TMCLKL	HY/201208	201908226	Mid-flood	IS(Mf) 16	15:53	Botom		2	28.4	7.8	18.8	6.7		9.7		7.4	
TMCLKL	HY2012/08	201908126	Mid-flood	SR 4a	15:42	Suface	1	1	28.2	8.0	15.9	6.5		5.7		10.4	
TMCLKL	HY/201208	201908126	Mid-flood	SR4a	15:42	Surface	1	2	28.2	7.9	16.6	6.5	6.5	5.6		11.5	
TMCLKL	HY/201208	201908/26	Mid-flood	SR4a	15:42	Middle	2	1							6.6		10.9
TMCLKL	HY/2012/08	201908126	Mid-flood	SR4a	15:42	Middle	2	2							6.6		10.9
TMCLKL	HY 2012108	201908126	Mid-flood	SR 4a	15:42	Botom	3	1	28.4	7.9	19.3	6.0	6.1	7.4		11.0	
TMCLKL	HY/2012/08	201908126	Mid-flood	SR4a	15:42	Botom	3	2	28.5	7.9	19.5	6.1		7.6		10.7	
TMCLKL	HY/201208	201908/26	Mid-flood	SR4(N2)	15:37	Surface	1	1	28.3	8.0	16.8	6.5		4.7		11.0	
TMCLKL	HY/201208	201908/26	Mid-flood	SR4(N2)	15:37	Suface	1	2	28.3	7.9	17.2	6.5	65	4.6		10.0	
TMCLKL	HY2012/08	$201908 / 26$	Mid-flood	SR4(N2)	15:37	Middle	2	1					6.5		5.1		11.2
TMCLKL	HY201208	201908/26	Mid-flood	SR4(N2)	15:37	Middle	2	2									
TMCLKL	HY/2012/08	201908126	Mid-flood	SR4(N2)	15:37	Botom	3	1	28.4	7.9	18.5	6.6		5.6		12.3	
TMCLKL	HY/201208	201908126	Mid-flood	SR4(N2)	15:37	Botom	3	2	28.0	7.9	19.1	6.6		5.3		11.4	
TMCLKL	HY201208	201908/26	Mid-flood	IS8(N)	15:31	Surface	1	1	28.5	8.0	16.8	6.8		8.6		9.2	
TMCLKL	HY/201208	$201908 / 26$	Mid-flood	IS8(N)	15:31	Surface	1	2	28.5	7.9	17.1	6.8	68	8.8		10.1	
TMCLKL	HY/2012/08	201908126	Mid-flood	IS8(N)	15:31	Middle		1					${ }^{6.8}$		6.4		10.2
TMCLKL	HY/201208	201908126	Mid-flood	IS8(N)	15:31	Middle	2	2							6.4		10.2
TMCLKL	HY/201208	201908/26	Mid-flood	IS8(N)	15:31	Botom	3	1	28.5	8.0	16.9	6.8	6.8	4.1		10.3	
TMCLKL	HY/2012/08	201908126	Mid-flood	IS8(N)	15:31	Botom	3	2	28.5	7.9	17.3	6.8		4.1		11.3	
TMCLKL	HY/201208	201908/26	Mid-flood	IS(Mf)	$15: 21$	Suface	1	1									
TMCLKL	HY/201208	201908/26	Mid-flood	IS(M) 9	15:21	Surface	1	2					6.9				
TMCLKL	HY/201208	201908126	Mid-flood	IS(Mf) ${ }^{\text {a }}$	15:21	Middle	2	1	28.5	7.8	18.1	6.9		5.0	5.1	9.8	9.3
TMCLKL	HY/201208	$201908 / 26$	Mid-flood	IS(M)9	15:21	Middle	2	2	28.5	7.9	18.4	6.8		5.2	5.1	8.8	9.3
TMCLKL	HY/201208	201908/26	Mid-flood	IS(Mf)	15:21	Botom	3	1					\#DIV/0!				
TMCLKL	HYY201208	201908/26	Mid-flood	IS(M)9	15:21	Botom	3	2									
TMCLKL	HY/201208	201908/26	Mid-flood	IS(Mf)11	$16: 54$	Sufface	1	1	28.5	7.9	17.4	6.2		3.2		3.2	
TMCLKL	HY/2012/08	201908/26	Mid-flood	IS(Mf) 11	16:54	Surface		2	28.5	7.8	17.8	6.3		3.1		4.2	
TMCLKL	HY/201208	201908126	Mid-flood	IS(Mf)11	16:54	Middle	2	1	28.1	7.9	22.0	5.2		3.9	6.0	3.9	4.0
TMCLKL	HY/201208	201908/26	Mid-flood	IS(Mf)11	16:54	Middle	2	2	28.1	7.8	22.4	5.1		3.6		4.9	
TMCLKL	HY/2012/08	201908/26	Mid-flood	IS(Mf) 11	16:54	Botom	3	1	26.2	7.8	29.1	2.9	29	11.1		3.8	
TMCLKL	HY/201208	201908/26	Mid-flood	IS(Mf)11	16:54	Botom	3	2	26.2	7.7	29.8	2.8		11.0		3.8	
TMCLKL	HY/201208	201908126	Mid-flood	SR7	17:00	Surface	1	1	28.4	7.9	16.9	6.2		5.8		3.5	
TMCLKL	HY/201208	201908826	Mid-flood	SR7	17:00	Suface		2	28.4	7.8	17.2	6.2	62	5.8		4.3	
TMCLKL	HY/201208	201908/26	Mid-flood	SR7	17:00	Middle	2	1							6.9		4.6
TMCLKL	HY/201208	201908126	Mid-flood	SR7	17:00	Middle	2										
TMCLKL	HY/201208	201908126	Mid-flood	SR7	17:00	Botom	3	1	28.3	7.9	19.4	5.9	5.8	8.0		5.8	
TMCLKL	HY/201208	201908126	Mid-flood	SR7	17:00	Botom		2	28.3	7.8	20.0	5.7		7.8		4.8	
TMCLKL	HY/201208	201908126	Mid-flood	IS17	15:59	Surface	1	1	28.4	7.9	17.9	6.3		3.2		4.1	
TMCLKL	HY/201208	201908/26	Mid-flood	IS17	15:59	Sufface	1	2	28.4	7.8	18.2	6.3	6.1	2.9		3.3	
TMCLKL	HY/201208	201908126	Mid-flood	IS17	15:59	Middle	2	1	28.2	7.9	19.9	5.8		3.7	3.5	3.8	4.4
TMCLKL	HY/201208	201908126	Mid-flood	IS17	15:59	Middle	2	2	28.2	7.8	20.3	5.8		3.7		3.3	
TMCLKL	HY/201208	201908/26	Mid-flood	IS17	15:59	Botom	3	1	28.1	7.9	20.3	5.9	5.9	3.6		6.4	
TMCLKL	HY/201208	201908126	Mid-flood	IS17	15:59	Botom	3	2	28.2	7.8	20.8	5.9		3.6		5.6	

Figure 1

Email message		Environmental Resources Management
To	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 22713113 Facsimile: (852) 27235660
Ref/Project number	Contract No. HY/2012/08 Tuen Mun-Chek Lap Kok Link-Northern Connection Sub-sea Tunnel Section	E-mail: jasmine.ng@erm.com
Subject	Notification of Exceedance for Water Quality Impact Monitoring	
Date	3 September 2019	ERM

Dear Sir or Madam,
Please find the Notification of Exceedance (NOE) of the following Log no.:
Action Level Exceedance
0212330_28 August 2019_Surface \& Middle DO_E_Station IS(Mf)16
0212330_28 August 2019_Surface \& Middle DO_E_Station SR4a
0212330_28 August 2019_ Bottom DO_E_Station SR4a
0212330_28 August 2019_Surface \& Middle DO_E_Station SR4(N2)
0212330_28 August 2019_ Surface \& Middle DO_E_Station IS8(N)
0212330_28 August 2019_ Bottom DO_E_Station IS8(N)
0212330_28 August 2019_Surface \& Middle DO_E_Station IS(Mf)11
0212330_28 August 2019_Surface \& Middle DO_E_Station IS17
0212330_28 August 2019_ Bottom DO_E_Station IS17
0212330_28 August 2019_ Bottom DO_F_Station SR4a
0212330_28 August 2019_ Surface \& Middle DO_F_Station IS(Mf)11
0212330_28 August 2019_ Bottom DO_F_Station IS(Mf)11
0212330_28 August 2019_ Bottom DO_F_Station SR7
0212330_28 August 2019_Surface \& Middle DO_F_Station IS17
0212330_28 August 2019_ Bottom DO_F_Station IS17
0212330_28 August 2019_ Depth-averaged SS_F_Station SR7

Limit Level Exceedance
0212330_28 August 2019_ Bottom DO_E_Station SR4(N2)
0212330_28 August 2019_Bottom DO_E_Station IS(Mf)11
A total of sixteen Action Level and two Limit Level exceedances were recorded on 28 August 2019.

Email
message

Regards,

Dr Jasmine Ng
Environmental Team Leader

ERM-Hong Kong, Limited

Contract No. HY/2012/08

Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Marine Water Quality Impact Monitoring Notification of Exceedance

Measured Levels	Action Level Exceedance for DO ($4.9 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 16 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at SR4a at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO $(4.0 \mathrm{mg} / \mathrm{L})$ is observed at SR4a at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.3 \mathrm{mg} / \mathrm{L}$) is observed at SR4(N2) at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.7 \mathrm{mg} / \mathrm{L}$) is observed at IS8(N) at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO $(4.4 \mathrm{mg} / \mathrm{L})$ is observed at IS8(N) at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.9 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO $(4.6 \mathrm{mg} / \mathrm{L})$ is observed at IS17 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO $(4.2 \mathrm{mg} / \mathrm{L})$ is observed at SR4a at Bottom Level during mid-flood tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)11at Surface \& Middle Level during midflood tide. Action Level Exceedance for DO ($3.8 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Bottom Level during mid-flood tide. Action Level Exceedance for DO $(4.3 \mathrm{mg} / \mathrm{L})$ is observed at SR7 at Bottom Level during mid-flood tide. Action Level Exceedance for DO $(4.8 \mathrm{mg} / \mathrm{L})$ is observed at IS17 at Surface \& Middle Level during mid-flood tide. Action Level Exceedance for DO ($4.3 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Bottom Level during mid-flood tide. Action Level Exceedance for Depth-averaged SS $(26.8 \mathrm{mg} / \mathrm{L})$ is observed at SR7 during mid-flood tide. Limit Level Exceedance for DO $(3.5 \mathrm{mg} / \mathrm{L})$ is observed at SR4(N2) at Bottom Level during mid-ebb tide. Limit Level Exceedance for DO ($3.5 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)11 at Bottom Level during mid-ebb tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 28 August 2019.

Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - SR4a, SR4(N2), IS8(N), IS(Mf)11 and SR7 is far away (>2 km) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Therefore, the exceedance is unlikely to be related to this Contract. - Bottom-depth DO levels at SR4a, IS8(N) and IS17 was similar to the corresponding control stations, $\mathrm{CS}(\mathrm{Mf}) 3(\mathrm{~N})$, during mid-ebb tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Action Level. - Surface \& Middle-depth DO levels at IS(Mf)16, SR4a, SR4(N2), IS8(N), IS(Mf)11 and IS17 was similar to the corresponding control stations, $\mathrm{CS}(\mathrm{Mf}) 3(\mathrm{~N})$, during mid-ebb tide, in which the recorded Surface \& Middle-depth DO levels at the corresponding control station were below Action Level. - The DO pattern at SR4(N2) and IS(Mf) 11 during mid-ebb tide were similar to the their corresponding control station where the bottom-depth DO levels were generally lower. Lower bottom-depth DO levels may be possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level. - Bottom-depth DO levels at SR4a, IS(Mf)11, SR7 and IS17 was similar to the corresponding control stations, $\mathrm{CS}(\mathrm{Mf}) 5$, during mid-flood tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Action Level. - Surface \& Middle-depth DO levels at IS(Mf)11 and IS17 was similar to the corresponding control stations, $\mathrm{CS}(\mathrm{Mf}) 5$, during mid-flood tide, in which the recorded Surface \& Middle-depth DO levels at the corresponding control station were below Action Level. - For the exceedance of SS level at SR7 during mid-flood tide, SR7 is far away ($>2 \mathrm{~km}$) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Moreover, no exceedance of SS was recoded at IS(Mf)16 and IS17 during mid-flood tide, which are closer to the Seawall Modification Works Area than SR7. Therefore, the exceedance is unlikely to be related to this Contract. - As reported by the marine mammal observer, no discharge of organic matters into waters from landside works area was recorded. Therefore, the exceedance recorded at IS(Mf) 16 is likely to be due to natural fluctuation of water quality and is unlikely to be related to this Contract. Exceedances recorded at IS(Mf)16, SR4a, SR4(N2), IS8(N), IS(Mf)11 and IS17 during mid-ebb tide and SR4a, IS(Mf)11, SR7 and IS17 during mid-flood tide are unlikely to be related to this Contract as these stations are further than IS(Mf)16.
Actions Taken/To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 28 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	pH	Salinity (ppt)	DO (mgL)	$\begin{gathered} \text { Average } \\ \text { DO }(\mathrm{mg} \mathrm{~L}) \end{gathered}$	Turbidity	Depth- Averaged Turbidity	SS (mg/L)	Depth- Averaged SS
TMCLKL	HY/2012/08	201908128	Mid-Ebb	$\mathrm{CS}(\mathrm{M}) 5$	9:55	Suface	1	1	27.7	7.8	23.3	5.1	4.5	2.1	2.3	16.9	12.0
TMCLKL	HY201208	201908/28	Mid-Ebb	CS(Mf) 5	9:55	Suface	1	2	27.7	7.9	22.9	5.1		1.9		16.0	
TMCLKL	HY/201208	201908/28	Mid-Ebb	CS(Mf) 5	9:55	Middle	2	1	25.9	7.8	28.8	3.9		1.5		12.9	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	$\mathrm{CS}(\mathrm{M}) 5$	9:55	Middle	2	2	25.9	7.8	28.2	3.9		1.6		12.0	
TMCLKL	HY/201208	201908/28	Mid-Ebb	$\mathrm{CS}(\mathrm{M}) 5$	9:55	Bottom	3	1	24.8	7.7	31.6	3.2	3.2	3.5		6.2	
TMCLKL	HY/201208	201908/28	Mid-Ebb	CS(Mf) 5	9:55	Botom	3	2	24.8	7.7	30.9	3.2		3.4		7.9	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	11:16	Suface	1	1	28.7	7.8	20.4	4.9	4.5	1.2	5.2	12.6	11.2
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	CS(Mf)3(N$)$	11:16	Sufface	1	2	28.7	7.8	20.0	4.9		1.2		11.6	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3(\mathrm{~N})$	11:16	Middle	2	1	27.9	7.7	23.6	4.0		4.8		12.1	
TMCLKL	HY/201208	201908/28	Mid-Ebb	CS(Mf)3(N)	11:16	Middle	2	2	27.9	7.7	23.1	4.0		4.9		11.1	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	11:16	Bottom	3	1	27.2	7.7	26.0	3.7		9.3		10.2	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	11:16	Botom	3	2	27.2	7.6	25.5	3.7	3.7	9.8		9.5	
TMCLKL	HY201208	201908/28	Mid-Ebb	IS(Mf) 16	$11: 51$	Suface	1	1	28.3	7.8	22.7	4.9	4.9	7.8	8.2	19.2	14.3
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS(Mf) 16	11:51	Suface	1	2	28.3	7.8	22.1	4.9		7.9		18.0	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS(Mf) 16	11:51	Middle	2	,									
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 16	11:51	Middle	2	2									
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS(Mf) 16	11:51	Botom	3	1	27.5	7.8	24.3	4.9		8.3		10.4	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS(Mf) 16	11:51	Botom	3	2	27.8	7.8	24.3	4.8		8.9		9.4	
TMCLKL	HY/201208	201908/28	Mid-Ebb	SR4a	12:01	Suface	1	1	28.1	7.7	21.5	4.8	4.8	6.5	7.4	8.1	8.4
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4a	12:01	Surface	1	2	28.1	7.8	21.1	4.8		6.1		7.1	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR 4a	12:01	Middle	2	1									
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4a	12:01	Middle	2	2									
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4a	12:01	Bottom	3	1	27.4	7.7	24.7	4.0		8.9		9.5	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4a	12:01	Botom	3	2	27.4	7.7	24.2	4.0	4.0	8.2		8.7	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4(N2)	12:09	Surface	1	1	28.2	7.7	21.9	4.3	4.3	9.4	10.0	7.0	7.2
TMCLKL	HY/201208	201908/28	Mid-Ebb	SR4(N2)	12:09	Surface	1	2	28.2	7.8	21.5	4.3		9.6		7.7	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4(N2)	12:09	Middle	2	1									
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4(N2)	12:09	Middle	2	2									
TMCLKL	HY/201208	201908/28	Mid-Ebb	SR4(N2)	12:09	Botom	3	1	27.6	7.7	24.0	3.5	35	10.5		6.5	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR4(N2)	12:09	Botom	3	2	27.6	7.7	23.7	3.5		10.6		7.5	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS8(N)	12:14	Suface	1	1	28.0	7.8	22.9	4.6	4.7	7.6	9.1	7.2	8.1
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS8(N)	12:14	Sufface	1	2	28.0	7.7	22.4	4.7		7.3		8.3	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS8(N)	12:14	Middle	2	1									
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS8(N)	12:14	Middle	2	2									
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS8(N)	12:14	Botom	3	1	27.5	7.7	24.4	4.2	4.4	10.7		8.2	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS8(N)	12:14	Bottom	3	2	27.7	7.7	23.4	4.5		10.8		8.5	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS(Mf) 9	12:22	Sufface	1	1					5.6		3.6		9.2
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 9	12:22	Sufface	1	2									
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 9	12:22	Middle	2	1	29.0	7.8	21.5	5.6		3.8		8.7	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS(M) 9	12:22	Middle	2	2	29.0	7.8	21.1	5.6		3.3		9.7	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 9	12:22	Botiom	3						\#DIV/0!				
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 9	12:22	Botom	3	2									
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 11	10:45	Suface		1	28.6	7.8	19.6	5.0	4.8	1.7	3.2	9.8	7.0
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 11	10:45	Surace	1	2	28.6	7.8	19.3	5.0		1.7		8.9	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS(Mf)11	10:45	Middle	2		28.2	7.8	20.9	4.5		3.8		7.2	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 11	10:45	Middle	2	2	28.2	7.8	20.6	4.5		3.1		$\frac{6.3}{56}$	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 11	10:45	Bottom		1	26.0	7.8	28.7	3.5	3.5	4.4		5.6	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS(Mf) 11	10:45	Bottom	3	2	26.0	7.7	28.2	3.5		4.4		4.2	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR7	10:37	Surface	1	1	28.4	7.7	20.9	5.0	5.0	2.8	3.2	8.1	6.7
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	SR7	10:37	Surface	1		28.4	7.6	20.4	5.0		2.5		8.1	
TMCLKL	HY/201208	$201908 / 28$	Mid-Ebb	SR7	10:37	Middle	2	1									
$\frac{\text { TMCLKL }}{\text { TMCLKL }}$	HYY201208	201908828	Mid-Ebb	SR7	10337 1037	Middle	2	2	283	77	213	51		37		58	
TMCLKL	HY/201208	2019008/28	Mid-Ebb	SR7	10:37	Botom	3	2	28.3	7.5	20.9	5.0	5.1	3.6		4.8	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS17	11:42	Suface	1	1	28.3	7.8	21.1	5.0	4.9	4.8	6.9	8.3	6.7
TMCLKL	HY201208	201908/28	Mid-Ebb	IS17	11:42	Surface	1	2	28.3	7.8	20.7	5.0		4.8		7.6	
TMCLKL	HY/201208	$201908 / 28$	Mid-Ebb	IS17	11:42	Middle	2	1	27.9	7.8	22.4	4.7		7.2		6.5	
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS17	11:42	Middle	2	2	27.9	7.8	22.1	4.7		7.2		5.6	

Project	Contract	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	D (mg / L)	Average DO (mg/L)	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mgL)	DepthAveraged SS
TMCLKL	HY/2012/08	201908/28	Mid-Ebb	IS17	11:42	Botom	3	1	27.7	7.8	23.8	4.6	4.6	8.6		5.6	
TMCLKL	HY/201208	201908/28	Mid-Ebb	IS17	11:42	Botom	3	2	27.7	7.7	23.5	4.6		8.8		6.6	
TMCLKL	HY/201208	201908/28	Mid-flood	CS(M)5	18:53	Sufface	1	1	27.8	7.8	24.0	4.9	4.2	2.5	8.1	5.8	5.7
TMCLKL	HY/201208	201908/28	Mid-flood	CS(Mf) 5	18:53	Surface	1	2	27.8	7.9	23.5	4.9		2.4		5.4	
TMCLKL	HY/201208	201908/28	Mid-flood	CS(M) 5	18:53	Middle	2	1	25.4	7.8	30.1	3.5		10.9		5.3	
TMCLKL	HY/201208	201908/28	Mid-flood	CS(M) 5	18:53	Middle	2	2	25.4	7.8	29.5	3.5		10.7		5.6	
TMCLKL	HY/201208	201908/28	Mid-flood	$\mathrm{CS}(\mathrm{M}) 5$	18:53	Botom	3	1	25.4	7.8	30.1	3.6		10.6		5.6	
TMCLKL	HY/2012/08	201908/28	Mid-flood	CS(Mf) 5	18:53	Botom	3	2	25.4	7.8	29.5	3.6	3.6	11.3		6.6	
TMCLKL	HY/201208	201908/28	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:56	Sufface	1	1	29.8	7.8	15.1	5.5	5.3	5.9	5.9	7.7	7.2
TMCLKL	HY/2012/08	201908/28	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:56	Sufface	1	2	29.8	7.8	14.9	5.4		5.1		7.8	
TMCLKL	HY/2012/08	201908/28	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:56	Middle	2	1	29.8	7.8	15.2	5.1		6.0		8.1	
TMCLKL	HY/2012/08	201908/28	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:56	Middle	2	2	29.8	7.7	14.9	5.2		5.9		7.7	
TMCLKL	HY/201208	201908/28	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	17:56	Botom	3	1	28.2	7.7	19.9	4.5		6.2		5.4	
TMCLKL	HY/2012/08	201908/28	Mid-flood	$\mathrm{CS}(\mathrm{Mf} 33 \mathrm{~N})$	17:56	Botom	3	2	28.4	7.7	20.3	4.4		6.3		6.4	
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf)16	17:22	Suface	1	1	28.7	7.9	22.0	5.8	5.8	9.1	10.4	8.4	8.1
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf) 16	17:22	Sufface	1	2	28.7	7.9	21.6	5.8		9.0		8.8	
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf) 16	17:22	Middle	2	1									
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS(Mf)16	17:22	Middle	2	2									
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS(Mf)16	17:22	Botom	3	1	28.7	7.9	22.1	5.8	58	11.6		7.0	
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf) 16	17:22	Botom	3	2	28.6	7.8	21.7	5.8		11.9		8.0	
TMCLKL	HY/201208	201908/28	Mid-flood	SR 4a	17:12	Suface	1	1	28.5	7.9	22.2	5.6	5.6	5.9	6.7	7.1	7.9
TMCLKL	HY/201208	201908/28	Mid-flood	SR4a	17:12	Surface	1	2	28.5	7.9	21.7	5.6		5.7		7.7	
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR4a	17:12	Middle	2	1									
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR4a	17:12	Middle	2	2									
TMCLKL	HY/2012/08	201908128	Mid-flood	SR 4a	17:12	Botom	3	1	28.1	7.8	23.0	4.2		7.9		8.9	
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR 4a	17:12	Botom	3	2	28.1	7.8	22.5	4.2	4.2	7.4		7.9	
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR4(N2)	17:04	Surface	1	1	29.4	7.9	21.2	6.1	6.1	7.9	10.6	9.1	8.7
TMCLKL	HY/201208	201908/28	Mid-flood	SR4(N2)	17:04	Suface	1	2	29.4	7.9	20.8	6.1		7.9		8.9	
TMCLKL	HY/201208	201908/28	Mid-flood	SR4(N2)	17:04	Middle	2	1									
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR4(N2)	17:04	Middle	2	2									
TMCLKL	HY/201208	201908/28	Mid-flood	SR4(N2)	17:04	Botom	3	1	28.8	7.9	22.0	5.2		13.4		8.8	
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR4(N2)	17:04	Botom	3	2	28.8	7.8	21.7	5.2		13.0		7.8	
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS8(N)	16:58	Surface	1	1	28.9	7.9	21.5	5.8	5.8	8.5	9.6	7.4	7.6
TMCLKL	HY/201208	201908/28	Mid-flood	IS8(N)	16:58	Surface	1	2	28.9	7.9	21.1	5.8		8.5		6.4	
TMCLKL	HY/2012/08	201908128	Mid-flood	IS8(N)	16:58	Middle		1									
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS8(N)	$16: 58$	Middle	2	2									
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS8(N)	16:58	Botom	3	1	28.9	7.9	21.5	5.8	5.8	11.0		8.7	
TMCLKL	HY/201208	201908/28	Mid-flood	IS8(N)	16:58	Botom	3	2	28.9	7.8	21.1	5.8		10.2		7.9	
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf)	16:49	Suface	1	1					6.2		8.7		8.2
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS(Mf)	16:49	Surface	1	2									
TMCLKL	HY/2012/08	201908128	Mid-flood	IS(Mf) ${ }^{\text {a }}$	16:49	Middle	2	1	28.8	8.0	21.9	6.1		8.4		8.7	
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf)	16:49	Middle	2	2	28.8	7.9	21.5	6.2		8.9		7.7	
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS(Mf)	16:49	Botom	3	1					\#DIV/0!				
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS(M)9	16:49	Botom	3	2									
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf)11	18:21	Sufface	1	1	29.1	7.8	18.7	5.5	4.8	4.7	13.6	7.5	13.7
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf) 11	18:21	Surface		2	29.1	7.8	18.3	5.4		4.6		6.5	
TMCLKL	HY/2012/08	201908128	Mid-flood	IS(Mfl1	18:21	Middle		1	27.4	7.8	24.3	4.1		11.1		5.4	
TMCLKL	HY/2012/08	201908/28	Mid-flood	IS(Mf)11	18:21	Middle	2		27.4	7.8	23.9	4.3		11.0		6.2	
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf) 11	18:21	Botom	3	1	27.0	7.8	25.8	3.7	3.8	25.0		30.2	
TMCLKL	HY/201208	201908/28	Mid-flood	IS(Mf)11	18:21	Botom	3	2	27.0	7.8	25.3	3.8	3.8	24.9		26.4	
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR7	18:30	Surface	1	1	28.2	7.8	21.4	5.1	5.1	6.8	9.5	6.8	26.8
TMCLKL	HY/201208	201908/28	Mid-flood	SR7	18:30	Suface	1	2	28.2	7.8	20.9	5.1		6.7		7.7	
TMCLKL	HY/2012/08	$201908 / 28$	Mid-flood	SR7	18:30	Middle	2	1									
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR7	18:30	Middle	2										
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR7	18:30	Botom	3	1	27.7	7.8	24.2	4.3	4.3	12.5		44.1	
TMCLKL	HY/2012/08	201908/28	Mid-flood	SR7	18:30	Botom		2	27.6	7.8	23.8	4.3		12.1		48.5	
TMCLKL	HY/201208	201908128	Mid-flood	IS17	17:29	Sufface	1	1	28.5	7.9	21.9	5.1	4.8	3.7	4.7	6.9	7.2
TMCLKL	HY/201208	201908/28	Mid-flood	IS17	17:29	Suface	1		28.5	7.8	21.5	5.1		3.8		6.0	
TMCLKL	HY/201208	201908128	Mid-flood	IS17	17:29	Middle	2	1	27.6	7.8	24.3	4.5		4.8		6.6	
TMCLKL	HY/201208	201908/28	Mid-flood	IS17	17:29	Middle	2	2	27.5	7.8	23.9	4.5		4.8		6.2	
TMCLKL	HY/201208	201908/28	Mid-flood	IS17	17:29	Botom	3	1	27.5	7.8	24.6	4.3	4.3	$\frac{6.0}{5}$		9.2	
TMCLKL	HY/2012/08	$201908 / 28$	Mid-flood	IS17	17:29	Botom	3	2	27.4	7.7	24.3	4.3		5.0		8.3	

Figure 1

Email message	Environmental Resources Management	
To	Ramboll Hong Kong Limited (ENPO)	2507, 25/F One Harbourfront, 18 Tak Fung Street,
From	ERM- Hong Kong, Limited	Hung Hom, Hong Kong Telephone: (852) 2271 3113 Facsimile: (852) 2723 5660
Ee-mail: jasmine.ng@erm.com		

Dear Sir or Madam,
Please find the Notification of Exceedance (NOE) of the following Log no.:

```
Action Level Exceedance
0212330_30 August 2019_Surface & Middle DO_E_Station SR4a
0212330_30 August 2019_ Bottom DO_E_Station SR4a
0212330_30 August 2019_Surface & Middle DO_E_Station SR4(N2)
0212330_30 August 2019_ Surface & Middle DO_E_Station IS8(N)
0212330_30 August 2019_ Surface & Middle DO_E_Station IS(Mf)11
0212330_30 August 2019_ Bottom DO_E_Station IS(Mf)11
0212330_30 August 2019_ Surface & Middle DO_E_Station SR7
0212330_30 August 2019_ Bottom DO_E_Station SR7
0212330_30 August 2019_Surface & Middle DO_E_Station IS17
0212330_30 August 2019_ Bottom DO_F_Station SR4a
0212330_30 August 2019_ Surface & Middle DO_F_Station SR4(N2)
0212330_30 August 2019_ Surface & Middle DO_F_Station SR7
```

A total of twelve Action Level exceedances were recorded on 30 August 2019.

Regards,

Dr Jasmine Ng
Environmental Team Leader

CONFIDENTIALITY NOTICE

This facsimile transmission is intended only for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information in this facsimile. If you are not the intended recipient, please telephone or fax us.

CONTRACT NO. HY/2012/08

Tuen Mun - Chek Lap Kok Link -
 Northern Connection Sub-Sea Tunnel Section

Marine Water Quality Impact Monitoring Notification of Exceedance

Log No.	Action Level Exceedance 0212330_30 August 2019_ Surface \& Middle DO_E_Station SR4a 0212330_30 August 2019_ Bottom DO_E_Station SR4a 0212330_30 August 2019_Surface \& Middle DO_E_Station SR4(N2) 0212330_30 August 2019_ Surface \& Middle DO_E_Station IS8(N) 0212330_30 August 2019_ Surface \& Middle DO_E_Station IS(Mf) 11 0212330_30 August 2019_ Bottom DO_E_Station IS(Mf)11 0212330_30 August 2019_ Surface \& Middle DO_E_Station SR7 0212330_30 August 2019_ Bottom DO_E_Station SR7 0212330_30 August 2019_Surface \& Middle DO_E_Station IS17 0212330_30 August 2019_ Bottom DO_F_Station SR4a 0212330_30 August 2019_ Surface \& Middle DO_F_Station SR4(N2) 0212330_30 August 2019_ Surface \& Middle DO_F_Station SR7 [Total No. of Exceedances = 12]
Date	30 August 2019 (Measured) 3 September 2019 (In situ results received by ERM) 9 September 2019 (Laboratory results received by ERM)
Monitoring Station	CS(Mf)5, SR4a, SR4(N2), IS8(N), IS(Mf)16, IS(Mf)9, CS(Mf)3(N), SR7, IS17, IS(Mf)11
Parameter(s) with Exceedance(s)	Dissolved Oxygen (mg/L)
Action Levels	DO Surface and Middle Bottom $5.0 \mathrm{mg} / \mathrm{L}$ $4.7 \mathrm{mg} / \mathrm{L}$
Limit Levels	DO Surface and Middle Bottom $4.2 \mathrm{mg} / \mathrm{L}$ $3.6 \mathrm{mg} / \mathrm{L}$
Measured Levels	Action Level Exceedance for DO ($4.5 \mathrm{mg} / \mathrm{L}$) is observed at SR4a at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.5 \mathrm{mg} / \mathrm{L}$) is observed at SR4a at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at SR4(N2) at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO $(4.9 \mathrm{mg} / \mathrm{L})$ is observed at IS8(N) at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf)11 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.3 \mathrm{mg} / \mathrm{L}$) is observed at IS(Mf) 11 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.6 \mathrm{mg} / \mathrm{L}$) is observed at SR7 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.6 \mathrm{mg} / \mathrm{L}$) is observed at SR7 at Bottom Level during mid-ebb tide. Action Level Exceedance for DO ($4.9 \mathrm{mg} / \mathrm{L}$) is observed at IS17 at Surface \& Middle Level during mid-ebb tide. Action Level Exceedance for DO ($4.1 \mathrm{mg} / \mathrm{L}$) is observed at SR4a at Bottom Level during mid-flood tide. Action Level Exceedance for DO ($4.9 \mathrm{mg} / \mathrm{L}$) is observed at SR4(N2) at Surface \& Middle Level during mid-flood tide. Action Level Exceedance for DO ($4.8 \mathrm{mg} / \mathrm{L}$) is observed at SR7 at Surface \& Middle Level during mid-flood tide.
Works Undertaken (at the time of monitoring event)	According to the information provided by the Contractor, Seawall Modification Works was carried out on 30 August 2019.

Possible Reason for Action or Limit Level Exceedance(s)	The exceedances are unlikely to be due to the Contract, in view of the following: - All monitored parameters, except DO, at all monitoring stations were in compliance with the Action and Limit Levels during both mid-ebb and mid-flood tides on the same day. - SR4a, SR4(N2), IS8(N), IS(Mf)11 and SR7 are far away (>2 km) from the Seawall Modification Works Area (Figure 1), thus the observed exceedance should not be affected by the marine works under this Contract. Therefore, the exceedance is unlikely to be related to this Contract. - Surface \& Middle-depth DO levels at SR4a, SR4(N2), IS8(N), IS(Mf)11, SR7 and IS17 were similar to the corresponding control stations, $\mathrm{CS}(\mathrm{Mf}) 3(\mathrm{~N})$, during mid-ebb tide, in which the recorded Surface \& Middledepth DO levels at the corresponding control station were below Action Level. - The DO pattern at SR4a, IS(Mf)11 and SR7 during mid-ebb tide were similar to the their corresponding control station where the bottom-depth DO levels were generally lower. Lower bottom-depth DO levels may be possibly caused by the stratification of seawater during summer when the freshwater discharged from the Pearl River tended to form a surface layer of lower salinity water, which is probably responsible for the lower Salinity recorded at the surface and middle levels compared to the higher Salinity recorded at the bottom level of the monitoring stations. The stratification of seawater in the water column is likely a contributing factor to the results of lower levels of DO at the bottom level. - Bottom-depth DO levels at SR4a was similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Bottom-depth DO levels at the corresponding control station were below Action Level. - Surface \& Middle-depth DO levels at SR4(N2) and SR7 were similar to the corresponding control stations, CS(Mf)5, during mid-flood tide, in which the recorded Surface \& Middle-depth DO levels at the corresponding control station were below Action Level. - As reported by the marine mammal observer, no discharge of organic matters into waters from landside works area was recorded. Moreover, no exceedance was recorded at IS(Mf)16 which is the closest station to the Seawall Modification Works Area during both mid-ebb and mid-flood tide. Therefore, exceedances recorded at SR4a, SR4(N2), IS8(N), IS(Mf)11, SR7 and IS17 during mid-ebb tide and SR4a, SR4(N2) and SR7 during midflood tide are unlikely to be caused by the marine works of this Contract.
Actions Taken/To Be Taken	No immediate action is considered necessary. The ET will monitor for future trends in exceedances.
Remarks	The monitoring results on 30 August 2019 and locations of water quality monitoring stations are attached.

Project	Contract	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	DO (mgL)	$\begin{gathered} \text { Average } \\ \text { DO }(\mathrm{mg} \mathrm{~L}) \end{gathered}$	Turbidity	Depth- Averaged Turbidity	SS (mgL)	Depth- Averaged SS
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	$\mathrm{CS}(\mathrm{M}) 5$	11:23	Suface	1	1	27.4	7.8	24.4	5.1	5.0	4.7	6.3	7.4	8.6
TMCLKL	HY201208	201908/30	Mid-Ebb	CS(Mf) 5	11:23	Suface	1	2	27.4	7.8	24.3	5.2		4.7		8.3	
TMCLKL	HY/201208	201908/30	Mid-Ebb	CS(M) ${ }^{\text {c }}$	11:23	Middle	2	1	27.1	7.8	25.4	4.8		6.0		8.8	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	$\mathrm{CS}(\mathrm{M}) 5$	11:23	Middle	2	2	27.1	7.8	25.4	4.8		6.1		8.3	
TMCLKL	HY/201208	201908/30	Mid-Ebb	$\mathrm{CS}(\mathrm{M}) 5$	11:23	Botom	3	1	26.5	7.8	27.7	4.4	4.4	8.3		8.8	
TMCLKL	HY/201208	201908/30	Mid-Ebb	CS(Mf) 5	11:23	Botom	3	2	26.5	7.8	27.7	4.3		8.2		9.8	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:35	Suface	1	1	27.8	7.8	23.5	4.8	4.8	7.1	8.7	8.4	8.1
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:35	Sufface	1	2	27.8	7.8	23.5	4.8		7.1		8.6	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	CS(Mf)3(N)	12:35	Middle	2	1	27.7	7.8	24.2	4.8		9.2		9.2	
TMCLKL	HY/201208	201908/30	Mid-Ebb	CS(Mf)3(N)	12:35	Middle	2	2	27.7	7.8	24.2	4.8		9.3		9.5	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:35	Botom	3	1	27.6	7.8	24.7	5.0	5.0	10.0		6.8	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	12:35	Bottom	3	2	27.6	7.8	24.7	5.0		9.3		5.8	
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS(Mf) 16	13:07	Sufface	1	1	27.2	7.8	24.9	5.1	5.1	9.7	10.3	11.8	12.2
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS(Mf) 16	13:07	Suface	1	2	27.4	7.8	24.7	5.1		9.4		12.1	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf) 16	13:07	Middle	2	1									
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf) 16	13:07	Middle	2	2									
TMCLKL	HY/2012/08	2019/08/30	Mid-Ebb	IS(Mf) 16	13:07	Bottom	3	1	26.8	7.8	27.2	4.8	4.8	11.0		12.9	
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS(Mf) 16	13:07	Botom	3	2	26.8	7.8	27.2	4.7		10.9		12.0	
TMCLKL	HY/201208	201908/30	Mid-Ebb	SR4a	13:16	Suface	1	1	27.4	7.8	24.7	4.5	4.5	10.2	10.3	12.7	14.5
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	SR4a	13:16	Surface	1	2	27.4	7.8	24.5	4.5		9.9		14.6	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	SR 4a	13:16	Middle	2	1									
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	SR4a	13:16	Middle	2	2									
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	SR 4a	13:16	Botom	3	1	26.8	7.8	26.8	4.5	4.5	10.7		14.3	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	SR4a	13:16	Botom	3	2	26.8	7.8	26.8	4.4	4.5	10.4		16.4	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	SR4(N2)	13:21	Surface	1	1	27.6	7.8	23.5	4.8	4.8	12.2	14.1	9.0	11.4
TMCLKL	HY/201208	201908/30	Mid-Ebb	SR4(N2)	13:21	Sufface	1	2	27.6	7.8	23.5	4.8		11.9		10.2	
TMCLKL	HY/201208	201908/30	Mid-Ebb	SR4(N2)	13:21	Middle	2	1									
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	SR4(N2)	13:21	Middle	2	2									
TMCLKL	HY/201208	201908/30	Mid-Ebb	SR4(N2)	13:21	Botom	3		27.1	7.8	24.9	4.9		16.2		13.3	
TMCLKL	HY/201208	201908/30	Mid-Ebb	SR4(N2)	13:21	Botom	3	2	27.2	7.8	24.9	4.9		16.2		13.1	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS8(N)	13:27	Suface	1	1	27.6	7.8	24.0	4.9	4.9	9.2	11.3	11.8	11.8
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS8(N)	13:27	Surface	1	2	27.6	7.8	24.1	4.9		8.3		11.2	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS8(N)	13:27	Middle	2	1									
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS8(N)	13:27	Middle	2	2									
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS8(N)	13:27	Botom	3	1	27.1	7.8	24.4	4.7	4.8	13.8		12.4	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS8(N)	13:27	Bottom	3	2	27.2	7.8	24.6	4.8		13.8		11.8	
TMCLKL	HY/2012/08	2019/08/30	Mid-Ebb	IS(Mf) 9	13:35	Suface		1	27.8	7.8	24.3	5.1	5.1	9.7	9.5	7.9	8.5
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS(Mf) 9	13:35	Surface	1	2	27.8	7.8	24.3	5.1		9.9		8.9	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf) 9	13:35	Middle	2	1									
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf) 9	13:35	Middle	2	2									
TMCLKL	HY/2012/08	2019/08/30	Mid-Ebb	IS(Mf) 9	13:35	Botom	3	1	27.8	7.8	24.2	5.2	5.2	9.2		8.4	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf) 9	13:35	Botom	3	2	27.8	7.8	24.2	5.1		9.1		8.9	
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS(Mf)11	12:02	Suface	1	1	27.8	7.8	23.7	5.0	4.8	6.9	13.0	13.9	11.2
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf) 11	12:02	Surace	1	2	27.8	7.8	23.7	5.0		7.0		12.1	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf)11	12:02	Middle	2	1	27.2	7.8	24.7	4.6		15.7		11.3	
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS(Mf)11	12:02	Middle	2	2	27.4	7.8	24.6	4.6		15.5		10.3	
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS(Mf) 11	12:02	Bottom	3	1	26.5	7.8	27.8	4.3	43	16.4		10.6	
TMCLKL	HY201208	201908/30	Mid-Ebb	IS(Mf)11	12:02	Botom	3	2	26.5	7.8	27.8	4.3	4.3	16.3		9.2	
TMCLKL	HY/2012/08	2019/08/30	Mid-Ebb	SR7	$11: 54$	Surface	1	I	27.4	7.8	25.0	4.6	4.6	10.5	12.8	6.2	6.4
TMCLKL	HY/201208	201908/30	Mid-Ebb	SR7	11:54	Surface	1		27.4	7.8	24.8	4.6		10.2		6.4	
TMCLKL	HY/201208	201908/30	Mid-Ebb	SR7	11:54	Middle	2	1									
$\frac{\text { TMCLKL }}{\text { TMCLKL }}$	HYY201208	2019008/30	Mid-Ebb		11:54	Middle	,	2	27.	78	25.4	46		159		61	
TMCLKL	HY/201208	2019008/30	Mid-Ebb	SR7	11:54	Botom	3	2	27.3	7.8	25.4	4.6	4.6	14.7		6.7	
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS17	13:00	Suface	1	1	27.6	7.8	24.1	4.9	4.9	8.3	8.5	8.8	8.7
TMCLKL	HY201208	201908/30	Mid-Ebb	IS17	13:00	Surface	1	2	27.6	7.8	24.1	4.9		8.1		9.6	
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS17	13:00	Middle	2		27.5	7.8	24.6	4.9		8.6		8.8	
TMCLKL	HY/201208	201908/30	Mid-Ebb	IS17	13:00	Middle	2	2	27.5	7.8	24.6	4.9		8.5		7.9	

Project	Contract	Date (yyyy-mm-dd)	Tide	Station	Start Time	Level	Lev_Cod	Replicate	Temperature (${ }^{\circ} \mathrm{C}$)	pH	Salinity (ppt)	DO (mgL)	$\begin{gathered} \text { Average } \\ \text { DO (mg/L) } \end{gathered}$	$\begin{aligned} & \text { Turbidity } \\ & \text { (NTU) } \end{aligned}$	Depth- Averaged Turbidity	SS (mgL)	DepthAveraged SS
TMCLKL	HY/2012/08	201908/30	Mid-Ebb	IS17	13:00	Botom	3	1	27.1	7.8	25.9	4.9		8.7		8.0	
TMCLKL	HY201208	201908/30	Mid-Ebb	IS17	13:00	Botom	3	2	27.1	7.8	25.8	4.8	4.9	8.6		8.8	
TMCLKL	HY201208	201908/30	Mid-flood	CS(M)5	19:52	Sufface	1	1	27.4	7.8	25.0	4.8		5.4		7.9	
TMCLKL	HY201208	201908/30	Mid-flood	CS(Mf) 5	19:52	Surface	1	2	27.4	7.8	25.1	4.8		5.4		7.1	
TMCLKL	HY/2012/08	201908/30	Mid-flood	CS(M)5	19:52	Middle	2	1	26.8	7.8	26.7	4.6		7.0	6.9	7.8	8.8
TMCLKL	HY/201208	201908/30	Mid-flood	CS(M)5	19:52	Middle	2	2	27.0	7.8	26.1	4.6		7.0	6.9	7.9	8.8
TMCLKL	HY/201208	201908/30	Mid-flood	CS(M) 5	19:52	Botom	3	1	26.6	7.8	27.3	4.6	4.6	8.6		11.7	
TMCLKL	HY201208	201908/30	Mid-flood	CS(M)5	$19: 52$	Botom	3	2	26.6	7.8	27.3	4.6	4.6	8.1		10.4	
TMCLKL	HY/201208	201908/30	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	19:01	Suface	1	1	28.7	7.7	18.4	4.8		11.1		8.9	
TMCLKL	HY/2012/08	201908/30	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	19:01	Surface	1	2	28.7	7.7	18.4	4.8	4.8	11.9		8.0	
TMCLKL	HY/201208	2019/08/30	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	19:01	Middle	2	1	28.6	7.7	18.7	4.9		13.9		9.2	8.6
TMCLKL	HY201208	201908/30	Mid-flood	$\mathrm{CS}(\mathrm{Mf}) 3 \mathrm{~N})$	19:01	Middle	2	2	28.7	7.7	18.7	4.8		13.7	13.6	8.5	8.6
TMCLKL	HY/201208	201908/30	Mid-flood	$\left.\mathrm{CS}(\mathrm{Mf})^{3} \mathrm{~N}\right)$	19:01	Bottom		1	28.6	7.7	18.9	4.9		15.7		8.9	
TMCLKL	HY/201208	201908/30	Mid-flood	$\mathrm{CS}(\mathrm{Mf} 33 \mathrm{~N})$	19:01	Botom		2	28.6	7.7	18.9	4.9	4.9	15.3		7.9	
TMCLKL	HY201208	201908/30	Mid-flood	IS(Mf16	18:27	Surface	1	1	27.7	7.9	24.2	5.3		17.1		8.9	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(Mf) 16	18:27	Suface	1	2	27.7	7.9	24.2	5.3	53	17.8		8.4	
TMCLKL	HYY201208	201908/30	Mid-flood	ISMfl16	18:27	Middle	2	1							18.6		9.6
TMCLKL	HY201208	201908/30	Mid-flood	IS(Mfl16	18:27	Middle	2	2									
TMCLKL	HY/201208	2019/08/30	Mid-flood	IS(Mf)16	18:27	Botom	3	1	27.7	7.9	24.5	5.3		19.9		10.4	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(Mf) 16	18:27	Botom	3	2	27.7	7.9	24.5	5.3	5.3	19.4		10.6	
TMCLKL	HY/2012/08	201908/30	Mid-flood	SR4a	18:20	Sufface	1	1	27.6	7.9	24.0	5.0		10.4		14.5	
TMCLKL	HY/201208	201908/30	Mid-flood	SR4a	18:20	Sufface	1	2	27.7	7.9	23.9	5.0	5.0	10.2		12.9	
TMCLKL	HY/2012/08	201908/30	Mid-flood	SR4a	18:20	Middle	2	1							12.4		13.7
TMCLKL	HY/2012/08	201908/30	Mid-flood	SR4a	18:20	Middle	2	2									
TMCLKL	HY/201208	201908/30	Mid-flood	SR4a	18:20	Botom	3	1	27.3	7.9	26.5	4.1		14.1		14.0	
TMCLKL	HY201208	201908/30	Mid-flood	SR 4a	18:20	Botom	3	2	27.3	7.9	26.5	4.0	4.1	14.8		13.2	
TMCLKL	HY/201208	2019/08/30	Mid-flood	SR4(N2)	18:17	Suface	1	1	27.5	7.9	24.6	4.9		9.6		10.9	
TMCLKL	HY/201208	201908/30	Mid-flood	SR4(N2)	18:17	Surface	1	2	27.5	7.9	24.4	4.9	4.9	9.9		12.3	
TMCLKL	HYY201208	201908/30	Mid-flood	SR4(N2)	18:17	Middle	2	1							9.9		13.2
TMCLKL	HY/201208	201908/30	Mid-flood	SR4(N2)	18:17	Middle	2	2									
TMCLKL	HY/201208	201908/30	Mid-flood	SR4(N2)	18:17	Botom	3	1	27.4	7.9	24.8	5.0		9.9		13.9	
TMCLKL	HY/201208	201908/30	Mid-flood	SR4(N2)	18:17	Botom	3	2	27.4	7.9	24.8	4.9		10.0		15.7	
TMCLKL	HY/201208	201908/30	Mid-flood	IS8(N)	18:13	Suface	1	1	27.7	7.9	24.3	5.3		10.3		10.4	
TMCLKL	HY/201208	201908/30	Mid-flood	IS8(N)	18:13	Surface	1	2	27.7	7.9	24.2	5.3	53	10.3		9.5	
TMCLKL	HY/201208	201908/30	Mid-flood	IS8(N)	18:13	Middle	2	1							10.6		11.2
TMCLKL	HY/201208	201908/30	Mid-flood	IS8(N)	18:13	Middle	2	2							10.6		
TMCLKL	HYY201208	201908/30	Mid-flood	IS8(N)	18:13	Botom	3	1	27.7	7.9	24.4	5.4	5.4	10.9		13.0	
TMCLKL	HY/201208	201908/30	Mid-flood	IS8(N)	18:13	Botom	3	2	27.7	7.9	24.4	5.4		10.9		11.7	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(M) 9	18:05	Sufface	1	1	27.7	8.0	24.5	5.8		16.8		8.9	
TMCLKL	HY/2012/08	201908/30	Mid-flood	IS(M) ${ }^{\text {a }}$	18:05	Surface	1	2	27.7	8.0	24.5	5.8	5.8	16.6		7.9	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(Mf)	18:05	Middle	2	1							18.0		8.2
TMCLKL	HY/201208	201908/30	Mid-flood	IS(M)9	18:05	Middle	2	2									
TMCLKL	HY/2012/08	201908/30	Mid-flood	IS(M)9	18:05	Botom	3	1	27.7	8.0	24.5	5.9		19.3		8.1	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(M) 9	18:05	Botom	3	2	27.7	8.0	24.5	5.8		19.3		7.7	
TMCLKL	HY201208	201908/30	Mid-flood	IS(Mf)11	18:40	Sufface	1	1	27.9	7.9	23.3	5.3		6.9		9.0	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(Mf)11	18:40	Sufface	1	2	28.0	7.9	22.8	5.3		6.8		8.1	
TMCLKL	HY/201208	201908/30	Mid-flood	ISMfl11	18:40	Middle	2	1	27.6	7.9	24.4	5.3		9.4	9.0	8.4	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(Mf)11	18:40	Middle	2	2	27.6	7.9	24.4	5.3		9.8	9.0	7.9	9.2
TMCLKL	HY/201208	201908/30	Mid-flood	IS(Mf) 11	18:40	Botom	3	1	27.6	7.9	24.5	5.4	5.4	10.6		10.7	
TMCLKL	HY/201208	201908/30	Mid-flood	IS(Mf)11	18:40	Botom		2	27.6	7.9	24.5	5.4		10.4		10.9	
TMCLKL	HY/201208	201908/30	Mid-flood	SR7	19:32	Sufface	1	1	27.6	7.8	24.3	4.8		10.4		5.0	
TMCLKL	HYY201208	201908/30	Mid-flood	SR7	19:32	Sufface		2	27.6	7.8	24.3	4.8	4.8	10.2		6.8	
TMCLKL	HY/201208	201908/30	Mid-flood	SR7	19:32	Middle	2	1							13.0		5.4
TMCLKL	HY/201208	201908/30	Mid-flood	SR7	19:32	Middle	2	2									
TMCLKL	HYY201208	201908/30	Mid-flood	SR7	19:32	Botom	3	1	27.6	7.8	24.3	5.0	5.0	15.5		4.4	
TMCLKL	HY/201208	201908/30	Mid-flood	SR7	19:32	Botom	3	2	27.6	7.8	24.3	5.0		16.0		5.4	
TMCLKL	HY/201208	201908/30	Mid-flood	IS17	18:35	Sufface	1	1	27.9	7.8	23.2	5.0		6.0		12.0	
TMCLKL	HY/201208	201908/30	Mid-flood	IS17	18:35	Sufface	1	2	27.9	7.8	23.0	5.0	5.0	5.7		10.4	
TMCLKL	HYY201208	2019088/30	Mid-flood	IS17	18:35	Middle	2	1	27.7	7.9	24.0	5.0		7.3	10.0	11.8	11.5
TMCLKL	HYY201208	2019/08/30	Mid-flood	IS17	18:35	Middle	2	2	27.7	7.9	23.9	5.0		7.8		12.1	
TMCLKL	HY2012/08	201908/30	Mid-flood	IS17	18:35	Botom	3	1	27.4	7.9	24.8	5.0	5.0	16.7		11.8	
TMCLKL	HY/201208	201908/30	Mid-flood	IS17	18:35	Botom	3	2	27.5	7.9	24.7	5.0		16.3		10.9	

Indicates Exceedance of Action Leve

Figure 1

